High-Definition Fiber Tractography Is Major Advance in Brain Imaging

Article ID: 592737

Released: 20-Aug-2012 11:30 AM EDT

Source Newsroom: Wolters Kluwer Health: Lippincott Williams and Wilkins

New Technique Lets Researchers Track Nerve Fibers of Living Brain in High Resolution, Reports Neurosurgery

Newswise — Philadelphia, Pa. (August 20, 2012) – A technique called high-definition fiber tractography (HDFT) provides a powerful new tool for tracing the course of nerve fiber connections within the brain—with the potential to improve the accuracy of neurosurgical planning and to advance scientific understanding of the brain's structural and functional networks, reports a paper in the August issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

In the new report, Dr. Juan C. Fernandez-Miranda and colleagues of University of Pittsburgh describe and illustrate the use of the HDFT to track the course of the nerve fibers that make up the white matter of the brain. The researchers write, "Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain." HDFT Shows White Matter Tracts in Living BrainDr. Fernandez-Miranda and coauthors report on the development and evaluation of the HDFT technique, including initial findings in healthy people and patients with various brain lesions. The new technique adds advanced digital processing and reconstruction techniques to current methods of tractography—a method used to trace the course of bundles of white matter fibers, or "tracts," in the brain.

Tractography using a technique called diffusion tensor imaging (DTI) has been available for more than a decade. However, DTI has some important limitations: it can't show the complex course of white matter fiber tracts as they cross each other, and it can't accurately show the starting point and ending points of white matter tracts. The researchers call these the "crossing problem" and the "termination problem," respectively.

Over the past three years, Dr. Fernandez-Miranda and colleagues have been working on refining new fiber mapping techniques—such as high-angular resolution diffusion imaging and diffusion spectrum imaging—to study the structural connections of the brain. They write, "In an attempt to more effectively solve the crossing and termination problems, we have focused on optimizing these methods to obtain what we refer to as HDFT." Through a combination of imaging processing and reconstruction and tractography methods, HDFT can track white matter fiber tracts from their origin, through complex fiber crossings, to their termination point, with resolution of one millimeter or less.

For brain researchers, HDFT provides an unprecedented level of detail to solve both the crossing and termination problems. Color-coded images show the complex architecture of white matter fibers, as they cross each other in complex patterns. The HDFT images accurately replicate known features of the brain anatomy, including the folds and grooves (gyri and sulci) of the brain and the characteristic shape of brain structures.

To evaluate how the new technique might be used for surgical planning, the researchers analyzed HDFT images obtained in patients with cancers and other brain lesions. In patients with brain cancers, HDFT clearly showed the disruption of brain tissue caused by rapid tumor growth. Importantly, it was able to show the absence of white matter fibers within the tumor itself in two types of brain cancers.

In patients with brain blood vessel malformations, HDFT provided information likely to be useful in planning the safest approach to surgery. The ability to differentiate displacement versus disruption of fibers may become a critical factor in determining whether or not damage caused by brain lesions is reversible.

The researchers emphasize that much more research will be needed to refine the HDFT technique and to evaluate its scientific and clinical uses. "From a clinical perspective, we show that accurate structural connectivity studies in patients facilitate white matter damage assessment, aid in understanding lesional patterns of white matter structural damage, and allow innovative neurosurgical applications," the researchers write. They also believe that structural connections shown by HDFT will provide a useful complement to efforts to map the functional connections of brain networks, such as the Human Connectome Project.


About NeurosurgeryNeurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Lippincott Williams & Wilkins Lippincott Williams & Wilkins (LWW) is a leading international publisher of trusted content delivered in innovative ways to practitioners, professionals and students to learn new skills, stay current on their practice, and make important decisions to improve patient care and clinical outcomes. LWW is part of Wolters Kluwer Health, a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company with 2011 annual revenues of €3.4 billion ($4.7 billion).


Chat now!