Their brains rewire the part of the mind associated with sight to process sound

Newswise — MONTREAL, March 16, 2011 – Dr. Olivier Collignon of the University of Montreal’s Saint-Justine Hospital Research Centre compared the brain activity of people who can see and people who were born blind, and discovered that the part of the brain that normally works with our eyes to process vision and space perception can actually rewire itself to process sound information instead. The research was undertaken in collaboration with Dr Franco Lepore of the Centre for Research in Neuropsychology and Cognition and was published late yesterday in the Proceedings of the National Academy of Sciences.

The research builds on other studies which show that the blind have a heightened ability to process sounds as part of their space perception.

“Although several studies have shown occipital regions of people who were born blind to be involved in nonvisual processing, whether the functional organization of the visual cortex observed in sighted individuals is maintained in the rewired occipital regions of the blind has only been recently investigated,” Collignon said. The visual cortex, as its name would suggest, is responsible for processing sight. The right and left hemisphere of the brain have one each. They are located at the back of the brain, which is called the occipital lobe. “Our study reveals that some regions of the right dorsal occipital stream do not require visual experience to develop a specialization for the processing of spatial information and are functionally integrated in the preexisting brain network dedicated to this ability.”

The researchers worked with 11 individuals who were born blind and 11 who were not. Their brain activity was analyzed via MRI scanning while they were subjected to a series of tones. “The results demonstrate the brain’s amazing plasticity,” Collignon said. Plasticity is a scientific term that refers to the brain’s ability to change as a result of an experience. “The brain designates a specific set of areas for spatial processing, even if it is deprived of its natural inputs since birth. The visually deprived brain is sufficiently flexible that it uses “neuronal niche” to develop and perform functions that are sufficiently close to the ones required by the remaining senses. Such research demonstrates that the brain should be more considered as a function-oriented machine rather than a pure sensory machine”.

The findings raise questions regarding how this rewiring occurs during the development of blind new born babies. “In early life, the brain is sculpting itself on the basis of experience, with some synaptic connections eliminated and others strengthened,” Collignon noted. Synaptic connections enable our neurons, or brain cells, to communicate. “After a peak of development ending approximately at the age of 8 months, approximately 40% of the synapses of the visual cortex are gradually removed to reach a stable synaptic density at approximately the age of 11 years. It is possible that that the rewiring occurs as part of the maintenance of our ever changing neural connections, but this theory will require further research,” Collignon said.

Collignon’s study received funding from the Fondation de l'Hôpital Sainte-Justine, the Fonds de la recherche en santé du Québec, the Canadian Institutes for Health Research, the Natural Sciences and Engineering Council of Canada, and the Fonds de la Recherche Scientifique of Belgium.

Des neuropsychologues déterminent que certains aveugles peuvent « voir » grâce à leurs oreilles

Leur cerveau réorganise la partie associée à la vision pour traiter le son

Pour publication immédiateMONTRÉAL, le 16 mars 2011 – Le docteur Olivier Collignon, affilié au Centre de recherche du CHU Sainte-Justine de l’Université de Montréal, a comparé l’activité cérébrale de personnes nées aveugles avec celle de personnes voyantes et a découvert que la partie du cerveau qui collabore normalement avec les yeux pour traiter la vision et la perception spatiale peut se réorganiser pour recevoir des informations sonores. La recherche a été entreprise en collaboration avec le professeur Franco Lepore du Centre de recherche en neuropsychologie et cognition, et a été publiée hier dans Proceedings of the National Academy of Sciences.

Leurs travaux s’appuient sur d’autres études qui démontrent que les aveugles ont une capacité accrue pour traiter des sons dans l’espace. « Bien que plusieurs études prouvent que les régions occipitales des personnes nées aveugles sont associées au traitement non visuel, on n’a abordé que très récemment la question relative à la réorganisation fonctionnelle du cortex visuel chez les personnes nées aveugles : est-ce que ces structures maintiennent une organisation fonctionnelle comparable à celle que l’on connaît chez la personne voyante », a déclaré le docteur Collignon. Le cortex visuel, comme son nom l’indique, est chargé du traitement des informations visuelles. Les hémisphères droit et gauche du cerveau en ont chacun un; ils sont situés à l’arrière du cerveau, dans une région qu’on appelle le lobe occipital. « Notre étude démontre que certaines régions de la voie occipital dorsale droite n’ont pas besoin d’une expérience visuelle pour se spécialiser dans le traitement des informations spatiales et s’intégrer dans le réseau neurologique préexistant dédié à cette capacité. »

Les chercheurs ont collaboré avec onze individus aveugles depuis la naissance et onze personnes voyantes. Leur activité cérébrale a été analysée grâce à l’imagerie par résonance magnétique alors qu’ils écoutaient une série de sons variant selon leur hauteur tonale ou selon leur position dans l’espace. « Les résultats témoignent de l’incroyable plasticité du cerveau », constate Olivier Collignon. Le mot plasticité évoque la capacité du cerveau à évoluer en fonction des expériences qu’il subit. « Le cerveau désigne des régions spécifiques pour le traitement spatial, et ces régions restent impliquées dans ce traitement même si elles sont privées de leurs informations visuelles naturelles. Ce cerveau est tellement flexible qu’il est capable d’exploiter une ‘niche neuronale’ pour réaliser des fonctions suffisamment proches de celles exigées par les sens préservés. Cela suggère que l’on devrait considérer le cerveau plutôt comme une machine orientée vers la réalisation de fonctions, et non comme une machine purement sensorielle».

Les résultats soulèvent des questions relatives à la façon par laquelle cette réorganisation est rendue possible lors du développement des nouveau-nés aveugles. « Très tôt dans la vie, le cerveau se façonne selon ses expériences vécues : certaines connexions synaptiques sont éliminées, et d’autres sont renforcées », a expliqué le docteur Collignon. Les connexions synaptiques permettent la communication entre nos neurones, ou cellules cérébrales. « Vers l’âge de huit mois, on assiste à l’effacement progressif d’approximativement 40 pour cent des synapses dans le cortex visuel, pour atteindre une densité stable vers l’âge de 11 ans. Il est alors possible que les réorganisations cérébrales massives que l’on observe chez les aveugles prend racine durant cette phase de révision synaptique, mais cette théorie doit être validée par des projets de recherche futurs », a souligné Olivier Collignon.

L’étude du Docteur Collignon a été financée en partie par la Fondation de l'Hôpital Sainte-Justine, le Fonds de la recherche en santé du Québec, les Instituts de recherche en santé du Canada, le Conseil de recherches en sciences naturelles et en génie du Canada et le Fonds de la recherche scientifique de la Belgique.

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Proceedings of the National Academy of Sciences (PNAS) (10.1073/pnas.1013928108 Vol 108 No 11, 03/15/2011)