Newswise — Inhibition of miR-24-3p reduced growth of cancer cells and was found to regulate proteins as a potential treatment target for Mesothelioma (MPM). The new potential target, and the method researchers have used to identify it, is an important step in addressing this challenging disease.  

MPM is a lethal cancer with increasing worldwide incidence and resistance to treatment. Despite this dreadful scenario, preclinical research has struggled to identify potential treatments.  

“The ‘one more indication’ strategy is not the right approach for Mesothelioma,” say Professors Antonio Giordano and Luciano Mutti from the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University and the Italian Group for Mesothelioma (GIMe), referencing attempts to discover existing drug combinations that may yield an effective treatment. “Drugs with some activities in other tumours have utterly failed in MPM,” they say, “providing evidence we have to rethink what we have been doing so far and start over from a solid biological background.”

Researchers published their findings this month in Cancer Research, in the study titled A polysome-based microRNA screen identifies miR-24-3p as a novel pro-migratory miRNA in mesothelioma.

MicroRNAs (miRNAs) are small, non-coding RNA molecules, which target genes and regulate gene expression and function. Abnormal expression of miRNA plays a relevant role in cancer biology and they are therefore a potential target for the development of innovative cures.

“We have identified a novel approach for identifying relevant miRNA in cancer biology,” Professor Biffo of the National Institute of Molecular Genetics in Milan explains. “By examining the polyribosomes where translation occurs, this ‘focused’ search has allowed us to identify that miR-24-3p (a particular miRna) expression is relevant to cancer progression and metastasis.”

Biffo, in collaboration with the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University, University of Siena, Columbus University, Leicester University, and supported by GIMe, has conducted a research program that has made significant steps forward in the fight against MPM.

“The first take home message for us is, ‘hunt where the ducks are,’” the authors say. “High levels of miR24-3p are detected only where they exert their biological effects (the polyribosomes), and increase tumour cell migration and Mesotheliomia progression via an enzyme family called Rho Kinase. These enzymes can be inhibited by specific drugs. Now it is time to translate our research into a pharmaceutical solution to develop this potential therapy,” the authors conclude.

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit www.shro.org

Journal Link: Cancer Research