The Effects of Weak Magnetic Fields on Cancer Cells and Other Aspects of Biology

Released: 4/17/2012 1:00 PM EDT
Embargo expired: 4/23/2012 4:05 PM EDT
Source Newsroom: Federation of American Societies for Experimental Biology (FASEB)
Contact Information

Available for logged-in reporters only

Citations Experimental Biology 2012

EMBARGOED UNTIL
Monday, April 23, at 1:05 p.m. PT



Studies suggest that small variations in magnetic fields can be environmental stresses

Newswise — SAN DIEGO, April 23, 2012 – We are surrounded by a constantly changing magnetic field, be it the Earth’s or those emanating from devices, such as cell phones. Carlos Martino, an assistant professor at the University of Nevada, Reno, is interested in understanding how these magnetic-field fluctuations change biochemical reactions inside us.

Martino explains that the subject is controversial. “Our research shows that exposure to different types of magnetic fields affect biological response,” he says. “More importantly, the exposure levels are well below the standard levels” approved by the World Health Organization. “This raises the concern of safety issues,” he adds. Martino will be presenting some of his work at the Experimental Biology 2012 meeting in San Diego, California on Monday, April 23.

Magnetic fields come in different types. There are static fields, like those around permanent magnets. The Earth’s magnetic field is quasi-static, which means it can fluctuate slightly. Then there are radiofrequency magnetic fields, which may change both in intensity and frequency.

Martino’s work concerns low-level static magnetic fields, which are one to two orders of magnitude weaker than the Earth’s field, as well as weak radiofrequency magnetic fields. Martino gives the example of cell phones, which give off very weak magnetic fields. There is debate whether these magnetic fields cause brain tumors in cell-phone users.

Martino says his work on low-level fields and radiofrequency magnetic fields raises “the question of reassessing the standard limit of exposure because we clearly see effects both in vitro and in vivo in the low level and radiofrequency magnetic field range.”

But it’s not all doom and gloom. In fact, by understanding how weak magnetic fields affect cancer cell processes and tumor growth, Martino sees the potential for a therapy based on weak radiofrequency fields.

He explains his group has recently shown that the reduction of the Earth’s magnetic field inhibits growth rates of cancerous lung fibrosarcoma cells, colorectal cancer cells and primary endothelial cells. He adds that low-level fields may modulate the production of reactive oxygen molecules, known to affect cellular proliferation and survival. Interestingly, Martino says pancreatic cancer cells show an increase in growth rate in the same low magnetic fields, indicating different cell types react differently to changes in magnetic fields.

Martino has extended his work beyond cell cultures to animal models. For instance, his group has shown that weak radiofrequency magnetic fields inhibit tumor growth in animal models. But in all of his work, Martino says, his group is aiming to get to the bottom of the molecular mechanisms that cause different cells to react in various ways to fluctuations in static and alternating magnetic fields.

###

About Experimental Biology 2012
Experimental Biology is an annual gathering of six scientific societies that this year is expected to draw 14,000-plus independent scientists and exhibitors. The American Association of Anatomists (AAA) is a co-sponsor of the meeting, along with the American Physiological Society (APS), American Society for Biochemistry and Molecular Biology (ASBMB), American Society for Investigative Pathology (ASIP), American Society for Nutrition (ASN) and the American Society for Pharmacology and Experimental Therapeutics (ASPET).

More information about EB2011 for the media can be found on the press page: http://experimentalbiology.org/EB/pages/Press-Registration.aspx.

About the American Society for Biochemistry and Molecular Biology
The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society’s student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.


Comment/Share