Engineering Project Explores Energy Conservation Through Shark Research

Released: 11/29/2007 11:15 AM EST
Source Newsroom: University of Alabama
Contact Information

Available for logged-in reporters only

Newswise — The stars of the "Jaws" films"sharks"have recently become the subject of a University of Alabama engineering research project. Conducted by Dr. Amy Lang, assistant professor of aerospace engineering and mechanics, the project explores energy conservation and boundary layer control in regard to a shark's surface.

The project findings will allow researchers to explore natural solutions for the reduction of skin friction over solid surfaces, which could result in new innovations and applications concerning energy conservation. This research will not only provide a greater understanding of the evolutionary development of sharks, but it will also investigate methods of flow control and drag reduction that can be easily applied to mobile vehicles.

Research has shown the issue of reducing drag over solid surfaces can save thousands of dollars. For example, it is estimated that even a 1 percent reduction in drag can save an airline company up to $200,000 and at least 25,000 gallons of fuel per year per aircraft. The resulting reduction in emissions into the air is equally impressive.

Funded through a National Science Foundation Small Grant, the project is investigating the boundary layer flow over a surface that mimics the skin of a fast-swimming shark. The boundary layer is the area closest to the surface where viscous conditions cause drag"in this instance a shark's skin.

Lang hopes to explain why fast sharks that swim upwards of 60 mph have smaller denticles, or scales, than slower shark species. Evidence suggests that sharks with smaller denticles have the ability to stick out their scales when they swim, allowing them to swim faster and creating a unique surface pattern on the skin that results in various mechanisms of boundary layer control.

"We hope to explain how a shark's skin controls the boundary layer to decrease drag and swim faster," said Lang. "If we can successfully show there is a significant effect, future applications to reduce drag of aircraft and underwater vehicles could be possible."

Lang's research is being conducted using a water tunnel facility in Hardaway Hall. The water tunnel lab can increase the shark skin geometry by 100 times with a corresponding decrease in flow over the model. This makes the flow over the skin observable, and it allows for the visualization and measurement of flow using modern experimental techniques.

In addition to the National Science Foundation Small Grant, Lang recently received a Lindbergh Grant for this research project. Lindbergh Grants are made in amounts up to $10,580, a symbolic amount representing the cost of building Charles Lindbergh's plane, the Spirit of St. Louis.

In 1837, The University of Alabama became one of the first five universities in the nation to offer engineering classes. Today, UA's fully accredited College of Engineering has about 1,900 students and nearly 100 faculty. In the last seven years, students in the College have been named USA Today All-USA College Academic Team members, Goldwater scholars, Hollings scholars and Portz scholars.

The University of Alabama, a student-centered research university, is in the midst of a planned, steady enrollment growth with a goal of reaching 28,000 students by 2010. This growth, which is positively impacting the campus and the state's economy, is in keeping with UA's vision to be the university of choice for the best and brightest students. UA, the state's flagship university, is an academic community united in its commitment to enhancing the quality of life for all Alabamians.


Comment/Share