Oct. 30, 2017

For more information, contact:

Nicole Fawcett, [email protected]

734-764-2220

For immediate release

 

 

Scientists discover surprising immune cell activity that may be limiting immunotherapy

Suppressive Treg cells become even more suppressive when they are eliminated, study finds

Newswise — ANN ARBOR, Michigan — Researchers have uncovered a surprising process within a key immune cell that may help explain the limitations of immunotherapy as a cancer treatment.

Treg cells work within the immune system to suppress immune function. It’s a normal process: T cells fight an infection and when the threat is over, Treg cells send the signal to stand down.

Cancer immunotherapy treatments work by supercharging the immune system to fight cancer. So when Tregs come in and suppress the immune response, it shuts down the cancer-fighting effect.

But eliminating the Tregs doesn’t help. Researchers have tried, but a clinical trial testing that idea showed no benefit to patients.

Now, more than a decade after discovering the immunosuppressive role of Tregs in human cancer, a new study published in Nature Immunology finds that eliminating the Treg cells doesn’t eliminate their suppressive qualities.

When the Tregs die, instead of being negated, they become even more suppressive. All the cells are dead but the machine is still running.

“It’s a double-edged sword: If they do not die, they are suppressive. But if they die, they are even more suppressive,” says senior study author Weiping Zou, M.D., Ph.D., Charles B. de Nancrede Professor of surgery, immunology, pathology and cancer biology at the University of Michigan.

“Nobody expected this – it was a total surprise. But it likely explains why you don’t see benefit when you induce Treg apoptosis,” he says.

Immunotherapy has revolutionized cancer treatment, but limitations and questions remain. One of the biggest questions is why such a small number of patients are responsive.

In 2004, Zou’s lab discovered that Treg cells were acting against cancer immunity. They linked higher numbers of these cells to shorter survival in patients. That work led to the failed clinical trial designed to eliminate the Treg cells.

It turns out, this new study finds, that when Treg cells die, they release a lot of small metabolites called ATP. Usually ATP helps supply the body with energy. But dying Tregs quickly convert ATP to adenosine. The adenosine then targets T-cells, binding to a receptor on the T-cell surface. This affects the function of the T-cells, making them unhealthy.

Tregs travel to the tumor from throughout the body, which explains Zou’s earlier finding that there are many Tregs in a tumor. But while the Tregs proliferate, at the same time they are dying fast. So there are a many Tregs but also many dying Tregs.

Researchers will next look for ways to limit this function by creating a roadblock to prevent the cells from migrating to the tumor microenvironment. They will also investigate options to block or control the suppressive activity.

Additional authors: Tomasz Maj, Wei Wang, Joel Crespo, Hongjuan Zhang, Weimin Wang, Shuang Wei, Lili Zhao, Linda Vatan, Irene Shao, Wojciech Szeliga, Costas Lyssiotis, J. Rebecca Liu, Ilona Kryczek

Funding: National Institutes of Health grants CA217540, CA123088, CA099985, CA156685, CA171306, CA190176, CA193136, CA211016, 5P30CA46592; the Ovarian Cancer Research Fund; Marsha Rivkin Center for Ovarian Cancer Research

Disclosure: None

Reference: Nature Immunology, doi: 10.1038/ni.3868, Oct. 30, 2017

 

Resources:

University of Michigan Comprehensive Cancer Center, www.mcancer.org

Michigan Medicine Cancer AnswerLine, 800-865-1125

Michigan Health Lab, www.MichiganHealthLab.org

 

# # #

 

 

Journal Link: Nature Immunology

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Nature Immunology; CA217540; CA123088; CA099985; CA156685; CA171306; CA190176; CA193136; CA211016; 5P30CA46592