X
X
X

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Two-Dimensional MXene Materials Get Their Close-Up

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders.


Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.

Two PNNL Researchers Elected to Membership in the National Academy of Engineering

Two scientists at the Pacific Northwest National Laboratory will become members of the prestigious National Academy of Engineering.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Reverse Combustion? Turning Carbon Dioxide From Burning Fossil Fuel Back Into Fuel

Article ID: 606787

Released: 2013-08-26 07:00:00

Source Newsroom: American Chemical Society (ACS)

Contact: Michael Bernstein

m_bernstein@acs.org

317-262-5907 (Indianapolis Press Center, Sept. 6-11)

202-872-6042

Michael Woods

m_woods@acs.org

317-262-5907 (Indianapolis Press Center, Sept. 6-11)

202-872-6293

EMBARGOED FOR RELEASE:

Sunday, Sept. 8, 2013, 9:30 a.m. Eastern Time

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

A press conference on this topic is tentatively scheduled for Sunday, Sept. 8, at 3 p.m. in the ACS Press Center, Room 211, in the Indiana Convention Center. Reporters can attend in person or access live audio and video of the event and ask questions at www.ustream.tv/channel/acslive.

INDIANAPOLIS, Sept. 8, 2013 — With almost 40 billion tons of carbon dioxide (CO2) released each year from burning coal, gasoline, diesel and other fossil fuels in the United States alone, scientists are seeking ways to turn the tables on the No. 1 greenhouse gas and convert that troublesome CO2 back into fuel.

Those efforts to unring one of the bells of global warming are the topic of a symposium here today at the 246th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society. Thousands of scientists and others are expected for the meeting, which features almost 7,000 reports on new discoveries in science and other topics and continues through Thursday in the Indiana Convention Center and downtown hotels.

Converting CO2 into a renewable energy sources would involve capturing the gas from the smokestacks of coal-fired electric power generating stations, for instance, and processing it with catalysts or other technology into fuels and raw materials for plastics and other products.

Abstracts in the symposium appear below.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Abstracts

Homogeneous reduction of formic acid by pyridine: A key step in CO2 reduction to CH3OH

Chern-Hooi Lim1, chernhooi.lim@colorado.edu, Aaron M. Holder1,2, Charles B. Musgrave1,2. (1) Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309-0596, United States, (2) Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0596, United States

One key obstacle in CO2 reduction that is often overlooked is the reduction of formic acid (HCOOH), a common intermediate en route to CH3OH production. In fact, most CO2 reduction catalysts successfully convert CO2 to HCOOH or its deprotonated form formate (HCOO-), but fail to achieve the subsequent reduction of HCOOH to ultimately produce CH3OH. We address this challenge by showing how competent catalysts, when synergistically combined with optimum reaction conditions, can accomplish HCOOH reduction. We employ high-level CCSD(T) quantum chemical calculations to demonstrate a viable concerted proton-coupled electron transfer (PCET) mechanism for the homogeneous reduction of formic acid (HCOOH) by pyridinium radical (PyH0) and hydronium ion (H3O+). The predicted barrier (∆H0act) for concerted PCET to convert HCOOH to PyH+•CH(OH)2is 10.5 kcal/mol. PyH+•CH(OH)2can then dissociate and complex with pyridine to form Py•CH(OH)20, which undergoes condensation and ultimately forms Py•OCH0, a proposed intermediate in formaldehyde formation. The highest barrier step for HCOOH reduction is the condensation reaction which results in C-O bond cleavage with ∆H0act = 14.9 kcal/mol. The electron affinity and pKaquantitatively show that concerted PCET is favored over sequential PCET in the PyH0 catalyzed reduction of HCOOH due to the high cost of localizing electron density on HCOOH and deprotonating PyH0

CO2 chemistry: Catalytic transformation of carbon dioxide based on its activation

Liang-Nian He, heln@nankai.edu.cn, Zhen-Zhen Yang, An-Hua Liu, Bing Yu, Yu-Nong Li. State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China

Carbon dioxide chemistry (in particular, capture and conversion) has attracted much attention from the scientific community due to global warming associated with positive carbon accumulation.1-2 in this context, COis very attractive as an environmentally friendly feedstock for making commodity chemicals, fuels, and materials from a standpoint of C1 chemistry and green chemistry. The challenge is to develop catalysts that are capable of activating COunder low pressure (preferably at 1 atm), and thus incorporating COinto organic molecules catalytically. 3-5 CO2could be activated through the formation of carbamate/alkyl carbonate with Lewis basic nitrogen species. In this work, we would like to discuss and update advances on C-N bond formation with the production of oxazolidinones, quinazolines, carbamates, isocyanates and polyurethanes using CO2 as C1 feedstock, and CO2 capture by amino-functionalized ionic liquids presumably leading to CO2's activation and thus subsequent conversion through C-N bond formation pathway.

Molecular catalysts for the reduction of CO2 to CO or formateAaron M Appel, aaron.appel@pnnl.gov, John C Linehan, Brian J Boro, Brandon R Galan, Matthew S Jeletic, Sonja M Peterson.Pacific Northwest National Laboratory, Richland, WA 99353, United States

The efficient reduction of CO2 requires the development of new catalysts for the interconversion of this substrate and the corresponding fuels. Inspiration from nature can provide a starting point for the design of catalysts through the incorporation of bifunctional interactions. The latest results from our lab will be presented for the catalytic reduction of CO2 using molecular complexes for both hydrogenation and electrocatalytic reduction, as well as related transformations, with a focus on balancing reaction energetics. For the electrocatalytic reduction of CO2, the emphasis will be on analogs of previously reported palladium triphosphine complexes, and for the hydrogenation of CO2, our efforts in using complexes of first row transition metals will be presented.

Catalytic activation of CO2 over lanthanum zirconate (La2Zr2O7) pyrochlores and its role in dry (CO2) reforming of CH4

Devendra Pakhare1, dpakha1@lsu.edu, Viviane Schwartz2, Victor Abdelsayed3, Daniel Haynes3, Dushyant Shekhawat3, James Spivey1. (1) Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States, (2) Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States, (3) National Energy Technology Laboratory, Morgantown, WV 26507, United States

Dry reforming of methane (DRM) is an endothermic reaction and the catalysts used for studying this reaction are unsubstituted lanthanum zirconate (LZ), Rh substituted LRhZ (2 wt%) and LRhZ (5 wt%) pyrochlores. In-situ FTIR studies in CO2 and CH4 were conducted on these three catalysts. The FTIR spectra obtained were then analyzed for the formation of carbonates and formates during DRM reaction. Lanthanum oxide (La2O3) and zirconium oxide (ZrO2) were used as standards for analyzing the carbonate formation over the pyrochlores. It was observed that the absorption spectra of the lanthanum oxide carbonates were very similar to carbonates formed on LZ. There were no observable carbonates formed on zirconia. This suggests that the active site for activation of CO2 is the lanthanum phase of LZ. Lanthanum oxide forms carbonate which then oxidize activated CH4 during the DRM reaction.

Electrocatalytic reduction of CO2 to CO by monodisperse Au nanoparticles

Wenlei Zhu, wenleizhu@gmail.com, Onder Metin, Chritopher Wright, Shouheng Sun. Department of chemistry, brown university, providence, RI 02912, United States

Converting CO2 to active carbon forms, such as CO, formic acid, methanol and other hydrocarbons is considered an essential approach to sustainable use of fuels/chemicals. Recent studies have centered on COcapture, secure storage, and chemical conversions. Among various chemical reactions studied, electrochemical reduction is considered a potentially efficient way to convert CO2 selectively into CO or other hydrocarbon fuels over metal electrodes. Among all metals tested for the electrochemical reduction of CO2, gold is the most attractive one for its catalytic reduction of CO2 to CO. Herein, we present the electrochemical reduction of CO2 to CO with high Faradic efficiency by monodisperse Au nanoparticles. The reduction reaction was tested in aqueous solution of potassium bicarbonate. The working electrode was prepared by the deposition of carbon supported Au NPs over the carbon paper via polyvinylidene fluoride. The electrocatalysis was performed at different potentials (-0.3 V to -0.9 V vs. RHE) and the reduction was found to be Au NP size dependent. With all Au NPs tested, only CO was detected as the gas product while a very low amount of formic acid was found in the liquid phase product analysis. The highest Faradic efficiency of 90% was calculated for the 8 nm Au NPs catalyst at -0.6 V. Our studies show that Au NPs when properly synthesized and activated are selective for electrochemical reduction of CO2 to CO.