Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2014-01-07 17:00:00
  • Article ID: 612159

The Play-by-Play of Energy Conversion: Catching Catalysts in Action

  • Credit: Courtesy Brookhaven National Laboratory

    Click on the image to download a high-resolution version. Brookhaven Lab scientists (from left) Kumudu Mudiyanselage, Ashleigh Baber, Fang Xu, and Dario Stacchiola.

Karen McNulty Walsh, kmcnulty@bnl.gov, (631) 344-8350

The Play-by-Play of Energy Conversion: Catching Catalysts in Action

By Justin Eure

The whistle blows and the big game begins on TV. You watch the punted football sail over the field and into the arms of the opposing team—then the feed abruptly cuts out. The information blackout is apparently universal, with no coverage online or on the radio. Hours later, the signal returns and you learn that your beloved home team pulled off a stunning, come-from-behind victory. But here’s the kicker: there’s no way to find out the play-by-play. Did the quarterback’s last-second Hail-Mary pass decide the game, or was it a devastating interception returned for a touchdown?

Believe it or not, catalytic chemical reactions can fall into a similar blackout, but watching the “game” is trickier than buying a ticket or tuning in on the television. Before catalysis unfolds in a laboratory, scientists painstakingly assemble the materials and spark a reaction. But like that lost signal, many experimental techniques only capture the static details before and after the reaction. Now, researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated an unprecedented ability to peer into the dynamic, real-time reactions blazing along at scales spanning just billionths of a meter.

“For the first time, a comprehensive set of tools is available for exploring correlations among the morphological, structural, electronic, and chemical properties of catalytic materials under working conditions,” said Darío Stacchiola, a Brookhaven Lab chemist and coauthor on two recent studies. “These in situ studies allow us to propose reaction mechanisms and help guide the design of more efficient catalysts.”

The two studies—published in Angewandte Chemie and the Journal of the American Chemical Society—used microscopy and spectroscopy to catch custom-built catalysts during processes that could play a crucial role in securing sustainable sources of energy. The results not only demonstrate an experimental breakthrough, but they may also lead to better-than-ever methods of distilling hydrogen or purifying exhaust gases from cars.

Materials scientists often probe catalysts under frigid, ultra-high vacuum conditions to avoid the ever-present threat of interactions with ambient particles that can obscure the data—but these catalysts must ultimately operate in industrial processes and next-gen devices. To bridge that gap, Brookhaven Lab’s Catalysis Group combined a new suite of tools for atomic-scale synthesis and characterization in the Chemistry Department and Center for Functional Nanomaterials (CFN) with powerful synchrotron x-rays.

Transforming Water into Fuel (Angewandte Chemie)

Apply a little heat to the right catalyst and water and carbon monoxide can transform into pure hydrogen gas and carbon dioxide (H20 + CO = H2 + CO2). The process, called the water-gas shift reaction (WGS), can provide the high-purity hydrogen crucial to applications as varied as fertilizer synthesis and automobile fuel cell technology.

The Brookhaven Lab collaboration had already discovered that combining copper or gold with ceria—rather than the zinc oxide commonly used in commercial catalysts—yielded excellent WGS performance, but they were unable to explain why. To pinpoint the reaction mechanism, the researchers enlisted photons to interrogate the catalysts:

• Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) used the high-density photons from synchrotron light sources to interact with catalysts and determine their electronic states throughout the reaction. Importantly, this breakthrough technique caught the action without the constraints of an ultra-high vacuum.

• Near-ambient pressure infrared reflection absorption spectroscopy (NAP-IRRAS) used lower frequency photons to identify the molecular make-up and structural configuration of molecules acting at the catalyst interface.

• Density functional theory computational analysis combined that data to show that the site of the metal/oxide interface enabled the activation of an extremely efficient reaction pathway, regardless of the inert quality of a metal such as gold.

“Theory suggested that this interface could be a critical catalysis site, but the complexity of the reaction system prevented direct observation and confirmation,” said Jesus Graciani, a study coauthor and collaborator from the University of Seville, Spain. “But our method unequivocally proved the presence of bent CO2 molecules. These were not predicted to be relevant to the reaction, but they prove the existence of an associative mechanism at the metal/oxide interface. Maximizing the number of interfacial sites could be the key to more efficient hydrogen generation.”

Reduction Propagation (Journal of the American Chemical Society)

Oxidation—responsible for the creeping rust that ruins some metals—and reduction reactions are ubiquitous for various catalytic processes, propagating across a material and transforming its chemical properties. Understanding the reaction’s journey and impact on the catalysts can help optimize processes ranging from air pollution control to synthesis of oxygenated fuels.

The Brookhaven Lab collaboration specifically examined the way copper oxide catalysts transform under the ambient pressure of carbon monoxide gas. To track the reaction dynamics in unprecedented detail, they used four complementary techniques:

• Low-energy electron microscopy (LEEM) used a focused electron beam to map micrometer (millionth of a meter) morphological changes. The LEEM available at the CFN revealed the reduction reaction advancing from the catalyst edges across the entire material.

• NAP Scanning tunneling microscopy (NAP-STM) captured the electronic signatures of atoms to identify materials with sub-nanometer precision. STM pinpointed copper atoms being released by the reduction reaction leading to a large mass transfer across the surface.

• NAP-IRRAS tracked the adhesion of carbon monoxide molecules on the surface, in this case showing that CO attaches first to the copper oxide and only later to metallic copper.

• NAP-XPS pinpointed the oxidation state of the ongoing surface reaction, and even quantified the total amount of oxygen present.

“We can finally see the dynamic nature of oxide catalysts with clarity,” said study coauthor and Brookhaven Lab scientist Ashleigh Baber. “We now know that nanoscale defects impact the way copper oxidizes or reduces. We also found that metallic copper quickly makes copper nanoparticles that fly across the surface in the presence of reactants, providing a new framework for molecular-level improvements to catalyst construction.”

The Future of Catalysis – Live and Direct

Two synchrotrons, the Advanced Light Source at Lawrence Berkeley National Lab and the MAX-Lab in Sweden, provided the x-rays for the crucial spectroscopy work and helped move in situ studies closer than ever to mirroring industrial and commercial conditions—but some details remain hidden. Beginning in 2015, the next-generation National Synchrotron Light Source II (NSLS-II) will provide even brighter x-rays, and the Center for Functional Nanomaterials (CFN) will operate the first truly Ambient Pressure XPS end station. This cutting-edge instrument will allow researchers to obtain unparalleled information about the electronic state of active catalysts.

“The sets of state of the art tools at both NSLS and CFN allow us to attack the same system from multiple directions, providing a picture that goes beyond the individual components,” Stacchiola said. “Future reaction studies will require higher pressures than the current AP-XPS setup can handle, but that will all change when we begin working with NSLS-II.”

This research was supported by the U.S. Department of Energy’s Office of Science, Spain’s Ministerio de Economía y Competitividad, and the Swedish Research Council.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

X
X
X
  • Filters

  • × Clear Filters

Researchers Customize Catalysts to Boost Product Yields, Decrease Chemical Separation Costs

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy's Oak Ridge National Laboratory.

Innovative Design Using Loops of Liquid Metal Can Improve Future Fusion Power Plants, Scientists Say

Article describes proposed design for production of steady-state plasma in future fusion power plants.

Scientists Create Most Powerful Micro-Scale Bio-Solar Cell Yet

Researchers at Binghamton University, State University of New York have created a micro-scale biological solar cell that generates a higher power density for longer than any existing cell of its kind.

ESnet's Science DMZ Design Could Help Transfer, Protect Medical Research Data

As medicine becomes more data-intensive, Berkeley Lab & ESnet's Medical Science DMZ eyed as secure solution for transferring data

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance

Chemical Treatment Improves Quantum Dot Lasers

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's Nanotech Team, the ~nanometer-sized dots are being doctored, or "doped," with additional electrons, a treatment that nudges the dots ever closer to producing the desired laser light with less stimulation and energy loss.

Neutrons Observe Vitamin B6-Dependent Enzyme Activity Useful for Drug Development

Scientists at the Department of Energy's Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant tuberculosis, malaria and diabetes. Specifically, the team used neutron crystallography to study the location of hydrogen atoms in aspartate aminotransferase, or AAT, an enzyme vital to the metabolism of certain amino acids.

Scientists Decode the Origin of Universe's Heavy Elements in the Light From a Neutron Star Merger

On Aug. 17, scientists around the globe were treated to near-simultaneous observations by separate instruments that would ultimately be confirmed as the first measurement of the merger of two neutron stars and its explosive aftermath.

PPPL Takes Detailed Look at 2-D Structure of Turbulence in Tokamaks

Article describes study of cross-correlation of turbulence in tokamaks.

New Method to Detect Spin Current in Quantum Materials Unlocks Potential for Alternative Electronics

A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.


  • Filters

  • × Clear Filters

Department of Energy Awards Flow Into Argonne

DOE Secretary Rick Perry awarded Argonne with nearly $4.7 million in projects as part of the DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) in September.

NIH Awards $6.5 Million to Berkeley Lab for Augmenting Structural Biology Research Experience

The NIH has awarded $6.5 million to Berkeley Lab to integrate existing synchrotron structural biology resources to better serve researchers. The grant will establish a center based at the Lab's Advanced Light Source (ALS) called ALS-ENABLE that will guide users through the most appropriate routes for answering their specific biological questions.

LIGO Announces Detection of Gravitational Waves From Colliding Neutron Stars

The U.S.-based Laser Interferometer Gravitational-Wave Observatory and the Virgo detector in Italy announced on Oct. 16 that all three of their detectors had picked up the ripples, or gravitational waves, from two neutron stars that collided 130 million years ago. Among other discoveries, the detection allowed scientists to use gravitational waves to directly calculate the rate at which the universe is expanding.

WVU Energy Conference to Address State's Economic Opportunities

West Virginia University will look at the state's emerging energy economy through industry experts, public policy organizations, environmental groups and academic institutions at the sixth annual National Energy Conference Oct. 20.

Exploring the Exotic World of Quarks and Gluons at the Dawn of the Exascale

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature's secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab) is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Matthew Latimer Receives 2017 Lytle Award

A staff member at the Department of Energy's SLAC National Acceleratory Laboratory, Matthew Latimer is in charge of seven spectroscopy beamlines at SSRL. He was recently selected for the 2017 Farrel W. Lytle Award, established by the SSRL Users' Organization Executive Committee. The award promotes accomplishments in synchrotron science and supports collaboration among visiting scientists and staff who conduct research at SSRL.

Jefferson Lab Completes 12 GeV Upgrade

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. The completion of the 12 GeV Upgrade Project of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) heralds this new era to image nuclei at their deepest level.

Sunderrajan to Lead Science and Technology Partnerships and Outreach Directorate

Suresh Sunderrajan has been named the associate laboratory director (ALD) for the Science and Technology Partnerships and Outreach (STPO) Directorate at the U.S. Department of Energy's Argonne National Laboratory.

Career Awards Advance Research for Jefferson Lab Researchers

Two researchers affiliated with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have received 2017 Early Career Research Program awards from the DOE's Office of Science.

U.S. Department of Energy Awards Danforth Center $16M to Enhance Sorghum for Bioenergy

This project aims to deliver stress-tolerant sorghum lines, addressing DOE's mission in the generation of renewable energy resources.


  • Filters

  • × Clear Filters

Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.

Explorations of the Universal Glue

The newly upgraded CEBAF Accelerator opens door to strong force studies.

Understanding the Rice Genome for Bioenergy Research

Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.

Bringing Visual "Magic" to Light

Scientists create widely controllable ultrathin optical components that allow virtual objects to be projected in real environments.

Speeding Materials Discovery Puts Solar Fuels on the Fast Track to Commercial Viability

In just two years, a process that was developed by Molecular Foundry staff and users has nearly doubled the number of materials with the potential for using sunlight to produce fuel.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215