Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2014-01-07 17:00:00
  • Article ID: 612159

The Play-by-Play of Energy Conversion: Catching Catalysts in Action

  • Credit: Courtesy Brookhaven National Laboratory

    Click on the image to download a high-resolution version. Brookhaven Lab scientists (from left) Kumudu Mudiyanselage, Ashleigh Baber, Fang Xu, and Dario Stacchiola.

Karen McNulty Walsh, kmcnulty@bnl.gov, (631) 344-8350

The Play-by-Play of Energy Conversion: Catching Catalysts in Action

By Justin Eure

The whistle blows and the big game begins on TV. You watch the punted football sail over the field and into the arms of the opposing team—then the feed abruptly cuts out. The information blackout is apparently universal, with no coverage online or on the radio. Hours later, the signal returns and you learn that your beloved home team pulled off a stunning, come-from-behind victory. But here’s the kicker: there’s no way to find out the play-by-play. Did the quarterback’s last-second Hail-Mary pass decide the game, or was it a devastating interception returned for a touchdown?

Believe it or not, catalytic chemical reactions can fall into a similar blackout, but watching the “game” is trickier than buying a ticket or tuning in on the television. Before catalysis unfolds in a laboratory, scientists painstakingly assemble the materials and spark a reaction. But like that lost signal, many experimental techniques only capture the static details before and after the reaction. Now, researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated an unprecedented ability to peer into the dynamic, real-time reactions blazing along at scales spanning just billionths of a meter.

“For the first time, a comprehensive set of tools is available for exploring correlations among the morphological, structural, electronic, and chemical properties of catalytic materials under working conditions,” said Darío Stacchiola, a Brookhaven Lab chemist and coauthor on two recent studies. “These in situ studies allow us to propose reaction mechanisms and help guide the design of more efficient catalysts.”

The two studies—published in Angewandte Chemie and the Journal of the American Chemical Society—used microscopy and spectroscopy to catch custom-built catalysts during processes that could play a crucial role in securing sustainable sources of energy. The results not only demonstrate an experimental breakthrough, but they may also lead to better-than-ever methods of distilling hydrogen or purifying exhaust gases from cars.

Materials scientists often probe catalysts under frigid, ultra-high vacuum conditions to avoid the ever-present threat of interactions with ambient particles that can obscure the data—but these catalysts must ultimately operate in industrial processes and next-gen devices. To bridge that gap, Brookhaven Lab’s Catalysis Group combined a new suite of tools for atomic-scale synthesis and characterization in the Chemistry Department and Center for Functional Nanomaterials (CFN) with powerful synchrotron x-rays.

Transforming Water into Fuel (Angewandte Chemie)

Apply a little heat to the right catalyst and water and carbon monoxide can transform into pure hydrogen gas and carbon dioxide (H20 + CO = H2 + CO2). The process, called the water-gas shift reaction (WGS), can provide the high-purity hydrogen crucial to applications as varied as fertilizer synthesis and automobile fuel cell technology.

The Brookhaven Lab collaboration had already discovered that combining copper or gold with ceria—rather than the zinc oxide commonly used in commercial catalysts—yielded excellent WGS performance, but they were unable to explain why. To pinpoint the reaction mechanism, the researchers enlisted photons to interrogate the catalysts:

• Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) used the high-density photons from synchrotron light sources to interact with catalysts and determine their electronic states throughout the reaction. Importantly, this breakthrough technique caught the action without the constraints of an ultra-high vacuum.

• Near-ambient pressure infrared reflection absorption spectroscopy (NAP-IRRAS) used lower frequency photons to identify the molecular make-up and structural configuration of molecules acting at the catalyst interface.

• Density functional theory computational analysis combined that data to show that the site of the metal/oxide interface enabled the activation of an extremely efficient reaction pathway, regardless of the inert quality of a metal such as gold.

“Theory suggested that this interface could be a critical catalysis site, but the complexity of the reaction system prevented direct observation and confirmation,” said Jesus Graciani, a study coauthor and collaborator from the University of Seville, Spain. “But our method unequivocally proved the presence of bent CO2 molecules. These were not predicted to be relevant to the reaction, but they prove the existence of an associative mechanism at the metal/oxide interface. Maximizing the number of interfacial sites could be the key to more efficient hydrogen generation.”

Reduction Propagation (Journal of the American Chemical Society)

Oxidation—responsible for the creeping rust that ruins some metals—and reduction reactions are ubiquitous for various catalytic processes, propagating across a material and transforming its chemical properties. Understanding the reaction’s journey and impact on the catalysts can help optimize processes ranging from air pollution control to synthesis of oxygenated fuels.

The Brookhaven Lab collaboration specifically examined the way copper oxide catalysts transform under the ambient pressure of carbon monoxide gas. To track the reaction dynamics in unprecedented detail, they used four complementary techniques:

• Low-energy electron microscopy (LEEM) used a focused electron beam to map micrometer (millionth of a meter) morphological changes. The LEEM available at the CFN revealed the reduction reaction advancing from the catalyst edges across the entire material.

• NAP Scanning tunneling microscopy (NAP-STM) captured the electronic signatures of atoms to identify materials with sub-nanometer precision. STM pinpointed copper atoms being released by the reduction reaction leading to a large mass transfer across the surface.

• NAP-IRRAS tracked the adhesion of carbon monoxide molecules on the surface, in this case showing that CO attaches first to the copper oxide and only later to metallic copper.

• NAP-XPS pinpointed the oxidation state of the ongoing surface reaction, and even quantified the total amount of oxygen present.

“We can finally see the dynamic nature of oxide catalysts with clarity,” said study coauthor and Brookhaven Lab scientist Ashleigh Baber. “We now know that nanoscale defects impact the way copper oxidizes or reduces. We also found that metallic copper quickly makes copper nanoparticles that fly across the surface in the presence of reactants, providing a new framework for molecular-level improvements to catalyst construction.”

The Future of Catalysis – Live and Direct

Two synchrotrons, the Advanced Light Source at Lawrence Berkeley National Lab and the MAX-Lab in Sweden, provided the x-rays for the crucial spectroscopy work and helped move in situ studies closer than ever to mirroring industrial and commercial conditions—but some details remain hidden. Beginning in 2015, the next-generation National Synchrotron Light Source II (NSLS-II) will provide even brighter x-rays, and the Center for Functional Nanomaterials (CFN) will operate the first truly Ambient Pressure XPS end station. This cutting-edge instrument will allow researchers to obtain unparalleled information about the electronic state of active catalysts.

“The sets of state of the art tools at both NSLS and CFN allow us to attack the same system from multiple directions, providing a picture that goes beyond the individual components,” Stacchiola said. “Future reaction studies will require higher pressures than the current AP-XPS setup can handle, but that will all change when we begin working with NSLS-II.”

This research was supported by the U.S. Department of Energy’s Office of Science, Spain’s Ministerio de Economía y Competitividad, and the Swedish Research Council.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

X
X
X
  • Filters

  • × Clear Filters

A New Optimization Model Could Bring Higher Solar-Power Integration

With numerous installations of solar power systems for residential homes at or near the distribution site, there is a challenge to balance supply and demand to make these intermittent energy sources reliable. Demand response is one promising way to increase operational flexibility and energy efficiency, and researchers in Malaysia have incorporated DR scenarios in case studies based on 100 urban low-voltage network samples to learn more. They report their findings in this week's Journal of Renewable and Sustainable Energy.

Making Polymer Chemistry 'Click'

A team including Berkeley Lab scientists has developed a faster and easier way to make a class of sulfur-containing plastics that will lower the cost of large-scale production.

Imaging Technology Reveals Copper Is Key to Meeting Future Food and Energy Needs

For the first time, Cornell University researchers are using imaging capabilities at the Cornell High Energy Synchrotron Source (CHESS) to explore how copper affects plant fertility. The work could provide key insights into how plants can be bred for better performance in marginal soils.

PPPL Researchers Perform First Basic Physics Simulation of the Impact of Recycled Atoms on Plasma Turbulence

Article describes simulation of impact of recycled atoms on plasma turbulence.

"Hindcasting" Study Investigates the Extreme 2013 Colorado Flood

Using a publicly available climate model, Berkeley Lab researchers "hindcast" the conditions that led to the Sept. 9-16, 2013 flooding around Boulder, Colo. and found that climate change attributed to human activity made the storm much more severe than would otherwise have occurred.

Ultrathin Device Harvests Electricity From Human Motion

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down. A new, ultrathin energy harvesting system developed at Vanderbilt University's Nanomaterials and Energy Devices Laboratory has the potential to do just that.

Energy-Efficient Accelerator Was 50 Years in the Making

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

3-D Models Help Scientists Gauge Flood Impact

Using one of the world's most powerful supercomputers--Titan, the 27-petaflop Cray XK7 at the Oak Ridge Leadership Computing Facility (OLCF)--a University of Iowa team performed one of the first highly resolved, 3-D, volume-of-fluid Reynolds-averaged Navier-Stokes (RANS) simulations of a dam break in a natural environment. The simulation allowed the team to map precise water levels for actual flood events over time.


  • Filters

  • × Clear Filters

CSU Joins Effort to Drive Clean Energy Innovation

The California State University (CSU) has partnered with the Los Angeles Cleantech Incubator (LACI) to develop the next generation of clean energy entrepreneurs.

DOE User Facilities Join Forces to Tackle Biology's Big Data

Through the "Facilities Integrating Collaborations for User Science" (FICUS) initiative, 6 proposals have been selected to participate in a new partnership between the DOE Joint Genome Institute and the National Energy Research Scientific Computing Center, both U.S. Department of Energy user facilities at Lawrence Berkeley National Laboratory.

Qubitekk Licenses ORNL Single-Photon Source Approach for Quantum Encryption

Qubitekk has non-exclusively licensed an Oak Ridge National Laboratory-developed method to produce quantum light particles, known as photons, in a controlled, deterministic manner that promises improved speed and security when sharing encrypted data.

Construction of Massive Neutrino Experiment Kicks Off a Mile Underground

A new era in international particle physics research officially began July 21 with a unique groundbreaking held a mile underground at the Sanford Underground Research Facility in South Dakota. Dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by roughly 1,000 scientists and engineers from 30 countries.

Construction Begins on International Mega-Science Experiment to Understand Neutrinos

In a unique groundbreaking ceremony held this afternoon at the Sanford Underground Research Facility in Lead, South Dakota, a group of dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries.

Buchanan Named Deputy for Science and Technology at Oak Ridge National Laboratory

Michelle Buchanan, an accomplished scientific leader and researcher, has been appointed Deputy for Science and Technology at the Department of Energy's Oak Ridge National Laboratory by new Lab Director Thomas Zacharia.

Neutrino Project to Fuel Particle Physics Research

Over the next decade, 800,000 tons of rock will be excavated from the former Homestake Mine in Lead, South Dakota, to accommodate a particle detector filled with 70,000 tons of liquid argon cooled to -300 degrees Fahrenheit to study neutrinos beamed from Fermilab in Illinois. It's called the Deep Underground Neutrino Experiment.

Berkeley Lab to Lead Multimillion-Dollar Geothermal Energy Project

The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.

PNNL Scientist Ruby Leung Appointed a Battelle Fellow

Ruby Leung of the Department of Energy's Pacific Northwest National Laboratory has been named a Battelle Fellow -- the highest recognition from Battelle for leadership and accomplishment in science. She is one of eight Battelle fellows at PNNL.

Gu and Paranthaman Named ORNL Corporate Fellows

Researchers Baohua Gu and Parans Paranthaman have been named Corporate Fellows of the Department of Energy's Oak Ridge National Laboratory.


  • Filters

  • × Clear Filters

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

Weaving a Fermented Path to Nylons

Microbial enzymes create precursors of nylon while avoiding harsh chemicals and energy-demanding heat.

Loosening of Lignocellulose: Switchgrass and Success in Sugar Release

Using a genetically modified line of switchgrass, scientists reduced plant cell wall recalcitrance while increasing sugar release over three generations.

Extending the Life of Lithium-Ion Batteries

Scientists offer new insights into how the source of electrons in batteries fails.

Unraveling the Molecular Complexity of Cellular Machines and Environmental Processes

State-of-the-art mass spectrometer delivers unprecedented capability to scientists.

Speeding Up Catalysts for Energy Storage

Researchers develop the fastest synthetic catalyst for producing hydrogen gas, potentially leading to a new environmentally friendly, affordable fuel.

Watching Neutrons Flow

Like water, neutrons seek their own level, and watching how they flow may teach us about how the chemical elements were made.

FIONA to Take on the Periodic Table's Heavyweights

FIONA (For the Identification Of Nuclide A) is a newly installed device designed to measure the mass numbers of individual atoms of heavy and superheavy elements. FIONA will let researchers learn about the shape and structure of heavy nuclei, guide the search for new elements, and offer better measurements for nuclear fission and related processes.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215