X
X
X

The Economic Case for Wind and Solar Energy in Africa

To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030. While hydropower and fossil fuel power plants are favored approaches in some quarters, a new assessment by Lawrence Berkeley National Laboratory has found that wind and solar can be economically and environmentally competitive options and can contribute significantly to the rising demand.

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.


Valerie Taylor Named Argonne National Laboratory's Mathematics and Computer Science Division Director

Computer scientist Valerie Taylor has been appointed as the next director of the Mathematics and Computer Science division at Argonne, effective July 3, 2017.

Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass

Article ID: 613877

Released: 2014-02-17 20:00:00

Source Newsroom: Georgia Institute of Technology

  • Credit: Georgia Tech Photo: John Toon

    Georgia Tech professor Yulin Deng is shown with an experimental setup that demonstrated the operation of a new solar-induced direct biomass-to-electricity hybrid fuel cell.

  • Credit: Georgia Tech Photo: John Toon

    A new solar-induced direct biomass-to-electricity hybrid fuel cell can operate on a variety of fuels. The fuel cell, shown on the right, relies on a polyoxometalate (POM) catalyst (shown in the vials) which changes color as it reacts with light.

  • Credit: Courtesy of Yulin Deng

    This schematic shows the solar-induced direct biomass-to-electricity hybrid fuel cell. Electrons in the biomass can be transferred to polyoxometalate (POM) under sunlight irradiation, and reduced POM can deliver the charges to the anode. These electrons are then captured by oxygen in the cathode.

  • Credit: Georgia Tech Photo: John Toon

    Georgia Tech professor Yulin Deng and graduate students Wei Liu, Wei Mu are shown with an experimental setup that demonstrated the operation of a new solar-induced direct biomass-to-electricity hybrid fuel cell.

  • Credit: Georgia Tech Photo: John Toon

    Georgia Tech professor Yulin Deng is shown with an experimental setup that demonstrated the operation of a new solar-induced direct biomass-to-electricity hybrid fuel cell.

Although low temperature fuel cells powered by methanol or hydrogen have been well studied, existing low temperature fuel cell technologies cannot directly use biomass as a fuel because of the lack of an effective catalyst system for polymeric materials.

Now, researchers at the Georgia Institute of Technology have developed a new type of low-temperature fuel cell that directly converts biomass to electricity with assistance from a catalyst activated by solar or thermal energy. The hybrid fuel cell can use a wide variety of biomass sources, including starch, cellulose, lignin – and even switchgrass, powdered wood, algae and waste from poultry processing.

The device could be used in small-scale units to provide electricity for developing nations, as well as for larger facilities to provide power where significant quantities of biomass are available.

“We have developed a new method that can handle the biomass at room temperature, and the type of biomass that can be used is not restricted – the process can handle nearly any type of biomass,” said Yulin Deng, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering and the Institute of Paper Science and Technology (IPST). “This is a very generic approach to utilizing many kinds of biomass and organic waste to produce electrical power without the need for purification of the starting materials.”

The new solar-induced direct biomass-to-electricity hybrid fuel cell was described February 7, 2014, in the journal Nature Communications.

The challenge for biomass fuel cells is that the carbon-carbon bonds of the biomass – a natural polymer – cannot be easily broken down by conventional catalysts, including expensive precious metals, Deng noted. To overcome that challenge, scientists have developed microbial fuel cells in which microbes or enzymes break down the biomass. But that process has many drawbacks: power output from such cells is limited, microbes or enzymes can only selectively break down certain types of biomass, and the microbial system can be deactivated by many factors.

Deng and his research team got around those challenges by altering the chemistry to allow an outside energy source to activate the fuel cell’s oxidation-reduction reaction.

In the new system, the biomass is ground up and mixed with a polyoxometalate (POM) catalyst in solution and then exposed to light from the sun – or heat. A photochemical and thermochemical catalyst, POM functions as both an oxidation agent and a charge carrier. POM oxidizes the biomass under photo or thermal irradiation, and delivers the charges from the biomass to the fuel cell’s anode. The electrons are then transported to the cathode, where they are finally oxidized by oxygen through an external circuit to produce electricity.

“If you mix the biomass and catalyst at room temperature, they will not react,” said Deng. “But when you expose them to light or heat, the reaction begins. The POM introduces an intermediate step because biomass cannot be directly accessed by oxygen.”

The system provides major advantages, including combining the photochemical and solar-thermal biomass degradation in a single chemical process, leading to high solar conversion and effective biomass degradation. It also does not use expensive noble metals as anode catalysts because the fuel oxidation reactions are catalyzed by the POM in solution. Finally, because the POM is chemically stable, the hybrid fuel cell can use unpurified polymeric biomass without concern for poisoning noble metal anodes.

The system can use soluble biomass, or organic materials suspended in a liquid. In experiments, the fuel cell operated for as long as 20 hours, indicating that the POM catalyst can be re-used without further treatment.

In their paper, the researchers reported a maximum power density of 0.72 milliwatts per square centimeter, which is nearly 100 times higher than cellulose-based microbial fuel cells, and near that of the best microbial fuel cells. Deng believes the output can be increased five to ten times when the process is optimized.

“I believe this type of fuel cell could have an energy output similar to that of methanol fuel cells in the future,” he said. “To optimize the system, we need to have a better understanding of the chemical processes involved and how to improve them.”

The researchers also need to compare operation of the system with solar energy and other forms of input energy, such as waste heat from other processes. Beyond the ability to directly use biomass as a fuel, the new cell also offers advantages in sustainability – and potentially lower cost compared to other fuel cell types.

“We can use sustainable materials without any chemical pollution,” Deng said. “Solar energy and biomass are two important sustainable energy sources available to the world today. Our system would use them together to produce electricity while reducing dependence on fossil fuels.”

In addition to Deng, the research team included Wei Liu, Wei Mu, Mengjie Liu, Xiaodan Zhang and Hongli Cai, all from the School of Chemical and Biomolecular Engineering or the Institute of Paper Science and Technology at Georgia Tech.

CITATION: Wei Liu, et al., “Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier,” (Nature Communications, 2014). (http://www.dx.doi.org/10.1038/ncomms4208).

Research News

Georgia Institute of Technology

177 North Avenue

Atlanta, Georgia 30332-0181 USA

Media Relations Contacts: John Toon (404-894-6986) (jtoon@gatech.edu) or Brett Israel (404-385-1933) (brett.israel@comm.gatech.edu).

Writer: John Toon