X
X
X

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Two-Dimensional MXene Materials Get Their Close-Up

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders.


Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.

Two PNNL Researchers Elected to Membership in the National Academy of Engineering

Two scientists at the Pacific Northwest National Laboratory will become members of the prestigious National Academy of Engineering.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Hollow-Fiber Membranes Could Cut Separation Costs, Energy Use

Article ID: 619971

Released: 2014-06-30 09:00:00

Source Newsroom: Georgia Institute of Technology

  • Credit: Georgia Tech Photo: Rob Felt

    This close-up photograph shows the prototype reactor module used to fabricate hollow-fiber metal-organic framework (MOF) membranes at Georgia Tech using the interfacial microfluidic technique.

  • Credit: Georgia Tech Photo: Rob Felt

    Georgia Tech researcher Andrew Brown places a finished hollow fiber metal-organic framework (MOF) membrane module into a membrane testing apparatus to measure its gas separation properties.

  • Credit: Georgia Tech Photo: Rob Felt

    This photograph shows the inside of the prototype hollow-fiber metal-organic framework (MOF) membrane module, revealing a hollow fiber MOF membrane mounted in it.

  • Credit: Georgia Tech Photo: Rob Felt

    Georgia Tech professors Christopher Jones (left) and Sankar Nair (right), with graduate student Andrew Brown, who led the membrane fabrication work and holds a metal-organic framework (MOF) membrane module.

  • Credit: Georgia Tech Photo: Rob Felt

    This photograph shows the inside of the prototype hollow-fiber metal-organic framework (MOF) membrane module, revealing a hollow fiber MOF membrane mounted in it.

Researchers have developed a microfluidic technique for fabricating a new class of metal-organic framework (MOF) membranes inside hollow polymer fibers that are just a few hundred microns in diameter. The new fabrication process, believed to be the first to grow MOF membranes inside hollow fibers, could potentially change the way large-scale energy-intensive chemical separations are done.

The researchers believe the process can be scaled up to inexpensively provide large membrane surface areas in compact modules. By replacing energy-intensive distillation or cryogenic techniques, these molecular sieving membranes could cut the cost of gaseous and liquid separations, reduce energy consumption – and lead to industrial processes that generate less carbon dioxide. The researchers have demonstrated that membranes produced with the new technique can separate hydrogen from hydrocarbon mixtures, and propylene from propane.

Development of the membrane fabrication methodology was scheduled to be described in the July 4 issue of the journal Science.

“This work opens up new ways of fabricating molecular sieving separation membranes using microscopic hollow fibers as a platform,” said Sankar Nair, a professor in the School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology, and one of the paper’s co-authors. “Many of the separations that currently are done with energy-intensive techniques could one day be performed with membranes fabricated by a scaled-up version of our methodology.”

Energy-intensive separation processes are widely used in the industrial production of petro-based and bio-based fuels and chemicals, as well as a variety of other technological materials. The most common separation technique is distillation, which applies heat to chemical mixtures to drive off specific molecules according to their boiling points. Other techniques, such as crystallization, involve cooling to lower temperatures to separate the molecules from the mixtures.

In contrast, molecular sieving membranes use semipermeable materials to separate molecules from mixtures that are produced by chemical reactions or found in raw material feedstocks. The process may be driven by a pressure gradient, and relies on the membranes to preferentially pass certain molecules through their pore structures. Crystalline materials known as zeolites have been fabricated into membranes, but high membrane fabrication costs and a limited selection of materials have prevented their widespread use.

Metal-organic framework (MOF) materials offer an alternative with more benign fabrication methods and many thousands of material types available. But before MOF membranes could be used on a large scale, researchers had to find ways of producing them at low cost in large volumes.

The Georgia Tech technique for producing MOF membranes takes advantage of the large surface area that can be obtained by using large numbers of hollow fibers spun from inexpensive polymers. For instance, a one cubic meter hollow-fiber membrane module could contain as much as 10,000 square meters of membrane area.

The new fabrication process relies on a microfluidic technique for bringing the different reactants needed to form MOF membranes into contact inside the fibers. The inner diameter of the fibers may be 100 microns or less, limiting the amount of reactants present and changing the interplay of the physical and chemical forces that control membrane formation. By adjusting the flow and positioning of the reactants and their solvents, the researchers learned to control the location of the MOF membrane films, allowing their formation on the inside or outside of the fibers – and even within the structure of the fibers.

“We have combined a high-performance MOF material with a new fabrication technique to come up with a membrane that can be scaled up in an inexpensive way,” Nair explained. “A key realization behind this development is that if you want to scale up MOF membrane growth using hollow fiber modules, you have to first learn how to scale down their growth in the microscopic environments of individual hollow fibers.”

Once the researchers learned to fabricate a functional membrane using a single hollow fiber, they could simultaneously fabricate membranes in parallel on multiple hollow fibers that were pre-assembled into a module. The research reported in the journal produced membrane films made of the MOF ZIF-8 inside three fibers simultaneously. Ultimately, Nair believes large bundles of the polymer fibers could be pre-assembled into modules and then coated simultaneously with molecular sieving MOF membranes.

An important next step for the research is to develop a better microscopic understanding of the process.

“To optimize this technique and scale it up to thousands or even millions of fibers at a time, we need to dig deeper to understand how the chemical reactions and molecular transport processes leading to membrane formation can be controlled under the microscopic conditions that exist within the fibers,” Nair said.

Though the researchers have so far demonstrated the functionality of their membranes in gaseous separation processes of interest to the petrochemical industry, the membrane processing technique could have broader applications.

“The approach we have developed could open the door to a whole new class of molecular sieving, polycrystalline film membranes,” said Christopher Jones, a professor in the School of Chemical & Biomolecular Engineering and another of the paper’s co-authors. “Such membranes could revolutionize how oil and chemical companies carry out gas and liquid separations, for example, by replacing energy-intensive and expensive cryogenic distillation processes with more energy-friendly membrane separations.”

In addition to those already mentioned, the research team included first author Andrew J. Brown, a graduate student in the Georgia Tech School of Chemistry and Biochemistry. Other researchers included William J. Koros, a professor in the School of Chemical & Biomolecular Engineering; Nicholas A. Brunelli, now an assistant professor in the Department of Chemical and Biomolecular Engineering at The Ohio State University; Kiwon Eum, a graduate student in the Georgia Tech School of Chemical & Biomolecular Engineering; postdoctoral fellow Fereshteh Rashidi; and researcher J.R. Johnson, who is now at SABIC.

This work was supported by Phillips 66 Company.

CITATION: Andrew J. Brown, et al., “Interfacial Microfluidic Processing of Metal-Organic Framework Hollow Fiber Membranes, (Science 2014).