Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2015-05-18 11:05:00
  • Article ID: 634449

Visualizing How Radiation Bombardment Boosts Superconductivity

Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing

  • Credit: Brookhaven National Laboratory

    High-energy gold ions impact the crystal surface from above at the sites indicated schematically by dashed circles. Measurement of the strength of superconductivity in this same field of view, as shown on the lower panel, reveals how the impact sites are the regions where the superconductivity is also annihilated. In additional studies, the scientists discovered that it is in these same regions that the strongest pinning of quantized vortices occurs, followed at higher magnetic fields by pinning at the single atom crystal damage sites. Pinning the vortices allows high current superconductivity to flow unimpeded through the rest of the sample.

EMBARGOED for release on Friday, May 22, 2015, 2 p.m. U.S. Eastern Time

Visualizing How Radiation Bombardment Boosts Superconductivity

Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing

UPTON, NY—Sometimes a little damage can do a lot of good—at least in the case of iron-based high-temperature superconductors. Bombarding these materials with high-energy heavy ions introduces nanometer-scale damage tracks that can enhance the materials’ ability to carry high current with no energy loss—and without lowering the critical operating temperature. Such high-current, high-temperature superconductors could one day find application in zero-energy-loss power transmission lines or energy-generating turbines. But before that can happen, scientists would like to understand quantitatively and in detail how the damage helps—and use that knowledge to strategically engineer superconductors with the best characteristics for a given application.

In a paper published May 22, 2015, in Science Advances, researchers from the U.S. Department of Energy’s (DOE) Brookhaven and Argonne national laboratories describe atomic-level “flyovers” of the pockmarked landscape of an iron-based superconductor after bombardment with heavy ion radiation. The surface-scanning images show how certain types of damage can pin potentially disruptive magnetic vortices in place, preventing them from interfering with superconductivity.

The work is a product of the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center established at Brookhaven in partnership with Argonne and the University of Illinois to foster collaboration and maximize the impact of this research.

“This study opens a new way forward for designing and understanding high-current, high-performing superconductors,” said study co-author J.C. Séamus Davis, a physicist at Brookhaven Lab and Cornell University. “We demonstrated a procedure whereby you can irradiate a sample with heavy ions, visualize what the ions do to the crystal at the atomic scale, and simultaneously see what happens to the superconductivity in precisely the same field of view.”

Argonne physicist Wai-Kwong Kwok led the effort on heavy ion bombardment. “Heavy ions such as gold can create nearly continuous or discontinuous column shaped damage tracks penetrating through the crystal. As the very high-energy ions traverse the material, they melt the crystal at the atomic scale and destroy the crystal structure over a diameter of a few nanometers. It’s important to understand the details of how these atomic-scale defects affect local electronic properties and the macroscopic current carrying capacity of the bulk material,” he said.

The scientists were particularly interested in how the nanoscale defects interact with microscopic magnetic vortices that form when iron-based superconductors are placed in a strong magnetic field—the type that would be present in turbines and other energy applications.

“These quantum vortices are like eddies in a river moving across or counter to the direction of flow,” Davis said. “They are the enemy of superconductivity. You can’t prevent them from forming, but scientists as long ago as the 1970s found you can sometimes prevent them from moving around by shooting some high-energy ions into the material to form atomic-scale damage tracks that trap the vortices.”

But random bombardment is, literally, hit-or-miss. Scientists developing materials for energy applications would like to take a more strategic approach by developing a quantitative and predictive theory for how to engineer these materials.

“If a company comes to us and says we are developing these superconductors and we want them to have this current at a certain temperature in this type of magnetic field, we’d like to be able to tell them exactly what type of defects to introduce,” Kwok said. To do that they needed a way to map out the defects, map out the superconductivity, and map out the locations of the vortices—and a quantitative theoretical model that describes how those variables relate to one another and the material’s bulk superconductivity.

A precision spectroscopic-imaging scanning tunneling microscope (SI-STM) developed by Davis is the first tool that can map out those three characteristics on the same material. Under Davis’ guidance, Brookhaven Lab postdoctoral fellow Freek Massee (now at University Paris-Sud in France) and Cornell University graduate student Peter Sprau—the two lead co-authors on the paper—used the instrument’s fine electron-tunneling tip to scan over the material’s surface, imaging the atomic structure of the landscape below and the properties of its electrons, atom by atom. The precision allows the scientists to scan the same atoms repeatedly under different external conditions—such as changes in temperature and ramped up magnetic fields—to study the formation, movement, and effects of quantum vortices.

Their atomic-scale imaging studies reveal that vortex pinning—the ability to keep those disruptive eddies in place—depends on the shape of the high-energy ion damage tracks (specifically whether they are point-like or elongated), and also on a form of “collateral damage” discovered by the researchers far from the primary route traversed by each ion. Collaborating theorists at the University of Illinois are now using the experimental results to develop a descriptive framework the scientists can use to predict and test new approaches for materials design.

“These studies will really help us solve at which temperature which type of defects will be best for carrying a particular current,” Kwok said. “The ability to achieve critical current by design is one of the ultimate goals of the Center for Emergent Superconductivity.”

This work was supported by the DOE Office of Science through the Center for Emergent Superconductivity at Brookhaven National Laboratory.

Brookhaven National Laboratory and Argonne National Laboratory are supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

X
X
X
  • Filters

  • × Clear Filters

Sodium- and Potassium-based Batteries Hold Promise for Cheap Energy Storage

Researchers at the Georgia Institute of Technology have found new evidence suggesting that batteries based on sodium and potassium hold promise as a potential alternative to lithium-based batteries.

ORNL researchers use AI to improve mammogram interpretation

In an effort to reduce errors in the analyses of diagnostic images by health professionals, a team of researchers from Oak Ridge National Laboratory has improved understanding of the cognitive processes involved in image interpretation, work that has enormous potential to improve health outcomes for the hundreds of thousands of American women affected by breast cancer each year. The ORNL-led team found that analyses of mammograms by radiologists were significantly influenced by context bias, or the radiologist's previous diagnostic experiences.

Scientists Make the First Molecular Movie of One of Nature's Most Widely Used Light Sensors

Scientists have made the first molecular movie of the instant when light hits a sensor that's widely used in nature for probing the environment and harvesting energy from light. The sensor, a form of vitamin A known as retinal, is central to a number of important light-driven processes in people, animals, microbes and algae, including human vision and some forms of photosynthesis, and the movie shows it changing shape in a trillionth of an eye blink.

Scientists isolate protein data from the tiniest of caches - single human cells

Scientists have captured the most information yet about proteins within a single human cell, giving scientists one of their clearest looks yet at the molecular happenings inside a human cell. The team detected on average more than 650 proteins in each cell - many times more than conventional techniques capture from single cells.

Researchers Generate Electricity and Hydrogen from Live Bacteria

Using a family of photosynthetic bacteria that commonly live in lakes and seas, researchers at the Technion have developed a technology to generate electricity and hydrogen energy. The researchers believe their technology can serve as a promising source of clean, environment-friendly energy that will not emit pollutants during production or use (hydrogen fuel).

Carbon Nanotube Optics Poised to Provide Pathway to Optical-Based Quantum Cryptography and Quantum Computing

Researchers at Los Alamos and partners in France and Germany are exploring the enhanced potential of carbon nanotubes as single-photon emitters for quantum information processing. Their analysis of progress in the field is published in this week's edition of the journal Nature Materials.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

Scientists Use Neutrons to Take a Deeper Look at Record Boost in Thermoelectric Efficiency

Neutron facilities at Oak Ridge National Laboratory are aiding scientists in research to boost the power and efficiency of thermoelectric materials. These performance increases could enable more cost-effective and practical uses for thermoelectrics, with wider industry adoption, to improve fuel economy in vehicles, make power plants more efficient, and advance body heat-powered technologies for watches and smartphones.

The science behind pickled battery electrolytes

Argonne material scientists have discovered a reaction that helps explain the behavior of a key electrolyte additive used to boost battery performance.

Faster, Cheaper, Better: A New Way to Synthesize DNA

Researchers at the Department of Energy's Joint BioEnergy Institute (JBEI) based at Berkeley Lab have pioneered a new way to synthesize DNA sequences through a creative use of enzymes that promises to be faster, cheaper, and more accurate. DNA synthesis is a fundamental tool in the rapidly growing field of synthetic biology, in which organisms can be engineered to do things like decompose plastic and manufacture biofuels and medicines. This discovery could dramatically accelerate the pace of scientific discovery.


  • Filters

  • × Clear Filters

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Li (Emily) Liu, associate professor of nuclear engineering and engineering physics in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has been selected by the U.S. Department of Energy Solar Energy Technologies Office (SETO) to receive a $1.8 million award to study high-temperature molten-salt properties and corrosion mechanisms.

Vasilis Fthenakis Receives IEEE's William R. Cherry Award

UPTON, NY; Vasilis Fthenakis, a Senior Scientist Emeritus at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Founder and Director of the Center for Life Cycle Analysis at Columbia University, will receive the 2018 William R. Cherry Award from the Institute of Electrical & Electronics Engineers (IEEE).

New PPPL director Steve Cowley is honored with knighthood by Queen Elizabeth II

Steven Cowley, newly named director of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) effective July 1, has received a knighthood from Queen Elizabeth "for services to science and the development of nuclear fusion."

UVA Darden Releases Policy Playbook Identifying Six Actions to Catalyze Clean-Tech Innovation

Moving the needle on climate change will require substantive and disruptive innovation across multiple industry sectors. Public and private investment focused on a few key areas could have a significant impact, according to a new policy playbook released by the Batten Institute for Entrepreneurship and Innovation on 8 June.

Work Begins on New SLAC Facility for Revolutionary Accelerator Science

The Department of Energy's SLAC National Accelerator Laboratory has started to assemble a new facility for revolutionary accelerator technologies that could make future accelerators 100 to 1,000 times smaller and boost their capabilities.

Oak Ridge National Laboratory Launches America's New Top Supercomputer for Science

The U.S. Department of Energy's Oak Ridge National Laboratory unveiled Summit as the world's most powerful and smartest scientific supercomputer.

Takeuchi Receives European Inventor Award 2018 in the Non-EPO Countries Category

Prolific patent-holder won for inventing battery that increases the lifespan of implantable defibrillators fivefold, greatly reducing need for reoccurring surgery

Steve Kevan Named Next Director of Berkeley Lab's Advanced Light Source

After an international search, Stephen D. "Steve" Kevan has been named the new director of the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory.

International corrosion society elects first Sandia fellow

Sandia National Laboratories materials scientist David Enos has been elected a fellow of NACE International, the chief professional society for corrosion engineering. He is the first Sandia employee to receive the honor.

Power to the People

The University of Utah College of Engineering has received a $2 million grant to create a laboratory and develop new technology for communities with backup power sources, known as microgrids, so they can quickly and more securely operate in the event of a massive power outage due to a natural disaster or cyberattack.


  • Filters

  • × Clear Filters

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

Simulations of Magnetically Confined Plasmas Reveal a Self-Regulating Stabilizing Mechanism

A mysterious mechanism that prevents instabilities may be similar to the process that maintains the Earth's magnetic field.

Seeing All the Colors of the Plasma Wind

2-D velocity imaging helps fusion researchers understand the role of ion winds (aka flows) in the boundary of tokamak plasmas.

Renewable Solvents Derived From Lignin Lowers Waste in Biofuel Production

New class of solvents breaks down plant biomass into sugars for biofuels and bioproducts in a closed-loop biorefinery concept.

Scientists Studying Nuclear Spin Make a Surprising Discovery

The size of a nucleus appears to influence the direction of certain particles emitted from collisions with spinning protons.

Simulating Turbulent Bubbly Flows in Nuclear Reactors

With a better understanding of bubbly flows, researchers can improve the safety and operation of our nuclear reactors.

Solving a Magnesium Mystery in Rechargeable Battery Performance

Study reveals surprising, bad chemical reactivity in battery components previously considered compatible.

Changing the Surroundings Improves Catalysis

Water changes how cobalt-based molecule turns carbon dioxide into chemical feedstock.

How to Draw a Line Narrower Than a Cold Virus

Scientists use ion beams to write high-purity metal structures, enabling nanofabrication opportunities.

Powering Up With a Smart Window

Window material repeatedly switches from being see-through to blocking the heat and converting sunlight into electricity.


Spotlight

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University





Showing results

0-4 Of 2215