Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2015-05-18 11:05:00
  • Article ID: 634449

Visualizing How Radiation Bombardment Boosts Superconductivity

Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing

  • Credit: Brookhaven National Laboratory

    High-energy gold ions impact the crystal surface from above at the sites indicated schematically by dashed circles. Measurement of the strength of superconductivity in this same field of view, as shown on the lower panel, reveals how the impact sites are the regions where the superconductivity is also annihilated. In additional studies, the scientists discovered that it is in these same regions that the strongest pinning of quantized vortices occurs, followed at higher magnetic fields by pinning at the single atom crystal damage sites. Pinning the vortices allows high current superconductivity to flow unimpeded through the rest of the sample.

EMBARGOED for release on Friday, May 22, 2015, 2 p.m. U.S. Eastern Time

Visualizing How Radiation Bombardment Boosts Superconductivity

Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing

UPTON, NY—Sometimes a little damage can do a lot of good—at least in the case of iron-based high-temperature superconductors. Bombarding these materials with high-energy heavy ions introduces nanometer-scale damage tracks that can enhance the materials’ ability to carry high current with no energy loss—and without lowering the critical operating temperature. Such high-current, high-temperature superconductors could one day find application in zero-energy-loss power transmission lines or energy-generating turbines. But before that can happen, scientists would like to understand quantitatively and in detail how the damage helps—and use that knowledge to strategically engineer superconductors with the best characteristics for a given application.

In a paper published May 22, 2015, in Science Advances, researchers from the U.S. Department of Energy’s (DOE) Brookhaven and Argonne national laboratories describe atomic-level “flyovers” of the pockmarked landscape of an iron-based superconductor after bombardment with heavy ion radiation. The surface-scanning images show how certain types of damage can pin potentially disruptive magnetic vortices in place, preventing them from interfering with superconductivity.

The work is a product of the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center established at Brookhaven in partnership with Argonne and the University of Illinois to foster collaboration and maximize the impact of this research.

“This study opens a new way forward for designing and understanding high-current, high-performing superconductors,” said study co-author J.C. Séamus Davis, a physicist at Brookhaven Lab and Cornell University. “We demonstrated a procedure whereby you can irradiate a sample with heavy ions, visualize what the ions do to the crystal at the atomic scale, and simultaneously see what happens to the superconductivity in precisely the same field of view.”

Argonne physicist Wai-Kwong Kwok led the effort on heavy ion bombardment. “Heavy ions such as gold can create nearly continuous or discontinuous column shaped damage tracks penetrating through the crystal. As the very high-energy ions traverse the material, they melt the crystal at the atomic scale and destroy the crystal structure over a diameter of a few nanometers. It’s important to understand the details of how these atomic-scale defects affect local electronic properties and the macroscopic current carrying capacity of the bulk material,” he said.

The scientists were particularly interested in how the nanoscale defects interact with microscopic magnetic vortices that form when iron-based superconductors are placed in a strong magnetic field—the type that would be present in turbines and other energy applications.

“These quantum vortices are like eddies in a river moving across or counter to the direction of flow,” Davis said. “They are the enemy of superconductivity. You can’t prevent them from forming, but scientists as long ago as the 1970s found you can sometimes prevent them from moving around by shooting some high-energy ions into the material to form atomic-scale damage tracks that trap the vortices.”

But random bombardment is, literally, hit-or-miss. Scientists developing materials for energy applications would like to take a more strategic approach by developing a quantitative and predictive theory for how to engineer these materials.

“If a company comes to us and says we are developing these superconductors and we want them to have this current at a certain temperature in this type of magnetic field, we’d like to be able to tell them exactly what type of defects to introduce,” Kwok said. To do that they needed a way to map out the defects, map out the superconductivity, and map out the locations of the vortices—and a quantitative theoretical model that describes how those variables relate to one another and the material’s bulk superconductivity.

A precision spectroscopic-imaging scanning tunneling microscope (SI-STM) developed by Davis is the first tool that can map out those three characteristics on the same material. Under Davis’ guidance, Brookhaven Lab postdoctoral fellow Freek Massee (now at University Paris-Sud in France) and Cornell University graduate student Peter Sprau—the two lead co-authors on the paper—used the instrument’s fine electron-tunneling tip to scan over the material’s surface, imaging the atomic structure of the landscape below and the properties of its electrons, atom by atom. The precision allows the scientists to scan the same atoms repeatedly under different external conditions—such as changes in temperature and ramped up magnetic fields—to study the formation, movement, and effects of quantum vortices.

Their atomic-scale imaging studies reveal that vortex pinning—the ability to keep those disruptive eddies in place—depends on the shape of the high-energy ion damage tracks (specifically whether they are point-like or elongated), and also on a form of “collateral damage” discovered by the researchers far from the primary route traversed by each ion. Collaborating theorists at the University of Illinois are now using the experimental results to develop a descriptive framework the scientists can use to predict and test new approaches for materials design.

“These studies will really help us solve at which temperature which type of defects will be best for carrying a particular current,” Kwok said. “The ability to achieve critical current by design is one of the ultimate goals of the Center for Emergent Superconductivity.”

This work was supported by the DOE Office of Science through the Center for Emergent Superconductivity at Brookhaven National Laboratory.

Brookhaven National Laboratory and Argonne National Laboratory are supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

  • Filters

  • × Clear Filters

Researchers Create Molecular Movie of Virus Preparing to Infect Healthy Cells

A research team has created for the first time a movie with nanoscale resolution of the three-dimensional changes a virus undergoes as it prepares to infect a healthy cell. The scientists analyzed thousands of individual snapshots from intense X-ray flashes, capturing the process in an experiment at the Department of Energy's SLAC National Accelerator Laboratory.

Nanotechnology Gives Green Energy a Green Color

Solar panels have tremendous potential to provide affordable renewable energy, but many people see traditional black and blue panels as an eyesore. Architects, homeowners and city planners may be more open to the technology if they could install colorful, efficient solar panels, and a new study, published this week in Applied Physics Letters, brings us one step closer. Researchers have developed a method for imprinting existing solar panels with silicon nanopatterns that scatter green light back toward an observer.

New 3-D Simulations Show How Galactic Centers Cool Their Jets

Scientists at Berkeley Lab and Purdue University developed new theories and 3-D simulations to explain what's at work in the mysterious jets of energy and matter beaming from the center of galaxies at nearly the speed of light.

Are Your Tweets Feeling Well?

Study finds opinion and emotion in tweets change when you get sick, a method public health workers could use to track health trends.

"Getting to 80%" on Energy Cutbacks Cannot Occur Unless Behaviors Change

California's plan to cut energy consumption by 80 percent by 2050 cannot be achieved with current proposed policy changes because most solutions focus on changing technologies rather than changing behavior, a new UC Davis study suggests.

New Battery Material Goes with the Flow

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have engineered a new material to be used in redox flow batteries, which are particularly useful for storing electricity for the grid. The material consists of carefully structured molecules designed to be particularly electrochemically stable in order to prevent the battery from losing energy to unwanted reactions.

Simulation Demonstrates How Exposure to Plasma Makes Carbon Nanotubes Grow

PPPL research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow.

Night Vision for Bird- & Bat-Friendly Offshore Wind Power

The ThermalTracker software analyzes video with night vision, the same technology that helps soldiers see in the dark, to help birds and bats near offshore wind turbines.

Drone Tech Offers New Ways to Manage Climate Change

An innovation providing key clues to how humans might manage forests and cities to cool the planet is taking flight. Cornell researchers are using drone technology to more accurately measure surface reflectivity on the landscape, a technological advance that could offer a new way to manage climate change.

Energy Efficiency Takes a 'Village'

The city of the future could start with a village - Missouri University of Science and Technology's Solar Village, to be exact. S&T researchers will study the Solar Village and its residents as their living laboratory over the next three years thanks to an $800,000 grant from the National Institute of Food and Agriculture, funded as part of the National Science Foundation's Cyber-Physical System initiative. The research team is led by Dr. Simone Silvestri, principal investigator and assistant professor of computer science, and Dr. Denise Baker, co-principal investigator and assistant professor of psychological science

  • Filters

  • × Clear Filters

Southern Research to Play Key Role in Low Cost Carbon Fiber Project

Southern Research's Energy & Environment division (E&E) will participate as a subcontractor to WRI to provide renewable acrylonitrile -- the key raw material needed to produce the highest quality carbon fibers -- produced from biomass-derived second generation sugars.

Newly Upgraded Laser Allows Scientists to Peer Further Into the Extreme Universe at SLAC's LCLS

Scientists at the Department of Energy's SLAC National Accelerator Laboratory recently upgraded a powerful optical laser system used to create shockwaves that generate high-pressure conditions like those found within planetary interiors. The laser system now delivers three times more energy for experiments with SLAC's ultrabright X-ray laser, providing a more powerful tool for probing extreme states of matter in our universe.

Three Brookhaven Lab Scientists Selected to Receive Early Career Research Program Funding

Three scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have been selected by DOE's Office of Science to receive significant research funding through its Early Career Research Program.

Upcoming 232nd ECS Meeting to Feature International Energy Summit, Nobel Laureate Lecture

The 232nd ECS Meeting will include 49 topical symposia and over 2,300 technical presentations, including the 7th International Electrochemical Energy Summit, the Society's inaugural OpenCon and Hack Day events, and plenary lecture delivered by former U.S. Secretary of Energy and Nobel Prize Laureate Steven Chu.

PNNL Scientist Jiwen Fan Receives DOE Early Career Research Award

Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory has been selected to receive a 2017 Early Career Research Program award from the U.S. Department of Energy. Fan will use the award to study severe thunderstorms in the central United States - storms that produce large hail, damaging winds, tornadoes, and torrential rainfall.

Three SLAC Scientists Receive DOE Early Career Research Grants

Three scientists at the Department of Energy's SLAC National Accelerator Laboratory will receive DOE Early Career Research Program grants for research to find evidence of cosmic inflation, understand how plasmas excite particles to high energies and develop a way to accelerate particles in much shorter distances with terahertz radiation.

Four ORNL Researchers Receive DOE Early Career Funding Awards

Four Oak Ridge National Laboratory researchers specializing in nuclear physics, fusion energy, advanced materials and environmental science are among 59 recipients of Department of Energy's Office of Science Early Career Research Program awards.

Missouri S&T Professor Earns Patent for Energy Storage Technology

ceramic engineering professor at Missouri University of Science and Technology has received a federal patent for his latest innovation, a multi-layer ceramic capacitor that could help boost energy storage in applications ranging from pulse power devices to military hardware.

James Peery Named Chief Scientist of the Global Security Directorate at Oak Ridge National Laboratory

James Peery, who has led critical national security programs at Sandia National Laboratories and Los Alamos National Laboratory, has been selected as the chief scientist of the Global Security Directorate at Oak Ridge National Laboratory.

Franklin Fuller and Cornelius Gati Named 2017 Panofsky Fellows at SLAC

Franklin Fuller and Cornelius Gati have been awarded 2017 Panofsky Fellowships by the Department of Energy's SLAC National Accelerator Laboratory, where they will work over the next five years to get significantly more information about how catalysts work and develop new and improved biological imaging methods.

  • Filters

  • × Clear Filters

Physicists Move Closer to Listening in on Sub-Atomic Conversation

Calculations of a subatomic particle called the sigma provide insight into the communication between subatomic particles deep inside the heart of matter.

Meet the Director: Chuck Black

This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science User Facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Making an Ultra-small Silicon "Chip"

A new polymer, created with a structure inspired by crystalline silicon, may make it easier to build better computers and solar cells.

How to Keep a Vital Diagnostic Isotope in Stock

Researchers succeed in producing larger quantities of a long-lived radioisotope, titanium-44, that generates a needed isotope, scandium-44g, on demand.

When Strontium Is Away, Iridium Comes Out to Play

Developing a highly active and acid-stable catalyst for water splitting could significantly impact solar energy technologies.

On Track Towards a Zika Virus Vaccine

Antibody's molecular structure reveals how it recognizes the Zika virus

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

Weaving a Fermented Path to Nylons

Microbial enzymes create precursors of nylon while avoiding harsh chemicals and energy-demanding heat.


Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park

Showing results

0-4 Of 2215