X
X
X

Filters:

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Neutrino Experiments Utilize ORNL Experts, Equipment to Explore the Unknown

Article ID: 659572

Released: 2016-08-23 09:05:14

Source Newsroom: Oak Ridge National Laboratory

  • Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Genevieve Martin

    From left, David Dean, Alfredo Galindo-Uribarri and Chris Bryan of Oak Ridge National Laboratory check on a prototype detector at the High Flux Isotope Reactor, a Department of Energy Office of Science User Facility that creates continuous neutron beams. The prototype will mine neutrinos formed as a byproduct of radioactive decay processes for one of three neutrino experiments with major ORNL participation.

  • Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

    Nearly 60 international scientists attended a workshop organized by ORNL’s Physics Division, “Neutrinos in Nuclear Physics,” July 29–31 in Knoxville.

Approximately 100 trillion neutrinos bombard your body every second—but you don’t notice these ghostly subatomic particles. Because they are electrically neutral and interact with other matter via the weak force, their detection is difficult—and the subject of challenging experiments that convene physicists from universities, national labs and other research institutions worldwide.

The demonstration that neutrinos can change identities—made possible by two large experiments—was rewarded with the Nobel Prize last year. The discovery meant that neutrinos have mass, albeit small. It hinted at new physics beyond the Standard Model, which captures our current understanding of matter and energy but is incomplete. This year the field of neutrino physics is full of enthusiasm as three significant experiments with different goals gear up to advance our understanding of neutrino physics. All three experiments benefit from expertise and facilities at the Department of Energy’s Oak Ridge National Laboratory.

“We’re enthusiastic because these experiments will provide the means to answer basic questions about the universe,” said ORNL physicist Alfredo Galindo-Uribarri. Physicists will use novel detectors to explore unknowns of the cosmos, from the properties of neutrinos to the possibility that neutrinos are a component of dark matter, which makes up one-quarter of the universe.

One of the neutrino experiments, with ORNL nuclear physicists in leadership roles, is the MAJORANA DEMONSTRATOR. It is located inside a former gold mine in Lead, South Dakota, where the Homestake solar neutrino experiment once ran. Nearly a mile underground to block most radiation from interfering with sensitive experiments, the Homestake solar neutrino experiment detected cosmic neutrinos from 1970 to 1994. A Nobel Prize recognized this work in 2002.

Partnering institutions from all over the world later built the MAJORANA DEMONSTRATOR’s neutrino detector at the Sanford Underground Research Facility in South Dakota to detect an event that, if seen, would have weighty implications for the nature of the neutrino and its role in the cosmos. ORNL nuclear physicists have lead roles in project management, detector development and design, and detector modeling and simulation. David Radford, who leads the MAJORANA and Advanced Detectors group in ORNL’s Physics Division, joined the MAJORANA Collaboration in 2006. ORNL took on project office leadership in 2009.

The MAJORANA DEMONSTRATOR uses the isotope germanium-76 as both source and detector in a search for “neutrinoless double-beta decay.” The initial experiment, with equipment weighing 88 pounds (40 kilograms), is to demonstrate the feasibility of a much larger ton-scale experiment. If the decay process is observed, it would prove that the neutrino is its own antiparticle, give a measure of the neutrino mass, and provide a possible answer to why the universe is made of matter and not antimatter.

Detecting neutrinos from neutron factories

Two other large, collaborative neutrino experiments, called PROSPECT and COHERENT, are sited in Tennessee at ORNL. These two high energy physics experiments will detect, for the first time, neutrinos generated at two facilities whose main purpose is the production of neutrons.

Two new neutrino detectors for COHERENT and PROSPECT are possible thanks to ORNL’s two world-class neutron “factories,” the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). SNS and HFIR are DOE Office of Science User Facilities.

At ORNL’s neutron factories neutrinos are produced in very large quantities during normal operations. Why not use the neutrinos for experiments too? At SNS, researchers use the proton beam parasitically to generate neutrinos for the COHERENT experiment. At HFIR, the neutrinos to be detected by PROSPECT are produced in the core of the reactor from the decay of fission products.

PROSPECT is a reactor neutrino experiment led by Yale University. Its partners will mine information about neutrino oscillations—transmutations of electron neutrino, muon neutrino and tau neutrino “flavors” from one to another. Specifically, they want to find out if neutrinos oscillate over short distances (less than 20 meters). Short-baseline neutrino oscillations have not been definitively observed. Observing neutrinos from HFIR’s core would allow precision measurements of the neutrino flux and energy spectrum and possibly reveal the existence of a fourth flavor known as “sterile neutrinos.” Seeing this new particle would necessitate revising the Standard Model, which describes elementary particles and the forces that govern them.

“PROSPECT is sited at HFIR because it was identified as the best site for short-baseline neutrino experiments, in part due to the fact that it has the most compact core of any high-power research reactor,” said Chris Bryan, who manages experiments at HFIR for ORNL’s Research Reactors Division. The study involves 68 collaborators from 14 institutions, including 14 from ORNL. Near the reactor, experimenters will place a movable detector system that, including shielding, weighs 30 tons and stands 15 feet tall. The detector system will sit as close as 21 feet to the reactor core. Researchers will fill it with 3 tons of liquid scintillator to detect the flash produced when a neutrino interacts with a proton to form a positron (or anti-electron) and a neutron. A prototype detector has been built at ORNL for tests preparing for the arrival of PROSPECT’s detection instrument, now under construction at Yale. That instrument will be deployed at ORNL’s famous research reactor before data collection begins next year.

COHERENT, a Duke University–led experiment at SNS, has partners from 16 institutions. Its 65 researchers include 8 from ORNL, with Jason Newby, a physicist in the Nuclear Security and Isotope Technology Division, as the ORNL representative to the collaboration. The scientists aim to make first-of-a-kind measurements of a phenomenon predicted by the Standard Model but never observed—the scattering of low-energy neutrinos off various nuclei. “The pulsed nature of the proton beam makes the Spallation Neutron Source a unique facility for this experiment,” said ORNL Physics Division Director David Dean. “In the U.S., the SNS is the best facility for observing coherent, low-energy neutrino scattering.”

Because the SNS accelerator produces pulsed beams of protons, the neutrinos will be pulsed too, allowing researchers to easily separate scientifically significant signals from background noise.

For this test of the Standard Model, a beam of protons will hit a target of mercury, an atom with a big nucleus capable of releasing a slew of particles, including pions that stop in the target, decay and release neutrinos. Because the pions decay at rest, the neutrinos generated will be of low energy and suitable for the scattering experiments. In the SNS basement under the mercury target, these neutrinos will penetrate 20 meters of shielding before being identified by a detector made of a 31-pound scintillating crystal of cesium iodide. Three additional targets of argon, germanium and sodium iodide will be installed this fall.

Owing in large part to ORNL facilities, and large national collaborative efforts, scientists worldwide will soon be better able investigate the nature of these ghostly neutrinos, forcing them out of the dark shadows of the unknown universe.

The U.S. Department of Energy supports neutrino research through its Office of High Energy Physics, with the exception of neutrinoless double-beta decay studies, which are supported by the Office of Nuclear Physics.

Neutrinos loomed large at Nuclear Structure 2016, an international physics conference that ORNL’s Physics Division hosted in Knoxville in July.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit www.science.energy.gov.—by Dawn Levy