X
X
X

Filters:

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Peering Into Batteries: X-Rays Reveal Lithium-Ion's Mysteries

Article ID: 664123

Released: 2016-11-03 09:00:40

Source Newsroom: Department of Energy, Office of Science

  • Credit: Photo courtesy of Argonne National Laboratory

    Argonne physicist Mahalingam Balasubramanian loads an in situ lithium-ion battery into the low-energy resolution inelastic X-ray (LERIX) system at the Advanced Photon Source. This multi-element X-ray scattering instrument is helping Argonne researchers to understand the fundamental mechanisms that limit batteries' performance.

Billions of smartphone owners are familiar with the dreaded “low battery” symbol on their devices. While consumers groan, scientists are working to understand why and when lithium-ion batteries in phones, plug-in electric vehicles, and other applications lose charge or fail.

One of the best tools scientists are using in this investigation is x-rays from the Department of Energy’s (DOE) advanced light sources. These light sources use beams of electrons to produce x-rays that are more than a billion times stronger than those at the dentist’s office. Compared to weaker x-rays available in other facilities, the light sources allow researchers to gather more data in greater detail than they would be able to otherwise. Scientists are using these unique tools to examine how lithium-ion batteries function in real time.

From the Lab to the Road

In the 1990s, existing battery materials simply weren’t suited for the level of power and performance needed for hybrid or plug-in electric vehicles. In response, researchers at DOE’s Argonne National Laboratory used the Advanced Photon Source (APS), a DOE Office of Science user facility, to observe interactions within batteries at the atomic level for the first time.

The APS also lets scientists watch what’s happening at the atomic level as batteries are charging and discharging. With this understanding, manufacturers can improve batteries’ performance and lifetime and ultimately could craft more affordable and efficient electronics and plug-in electric vehicles.

Scientists do this by using the APS to look at batteries in situ, or while they are actually working. Previously, scientists ran tests on a battery, took it apart, and examined it under a microscope. In contrast, studying batteries in situ allows them both to watch atoms moving inside the battery and to measure the stability of the molecular structure during the charging and discharging process.

Once researchers supported by the Office of Science mapped out the fundamentals, they transferred the work to applied scientists supported by the DOE’s Office of Energy Efficiency and Renewable Energy. That research led to a new cathode for lithium-ion batteries that was safer, more affordable, and able to store more energy than ever before. (The cathode is the positive electrode in a battery cell, which accepts lithium ions and electrons from the negative anode during discharge or use.) In fact, these advances were so significant that Chevrolet used the cathode in the first mass market plug-in electric vehicle – the Volt.

X-Rays: Hard and Soft

Both airport security machines and the APS produce “hard” x-rays, which are higher energy with shorter wavelengths (less than 1 nanometer or 1/100,000th the thickness of a piece of paper). Hard x-rays are very good at penetrating materials and looking at atomic structures.

In contrast, “soft” x-rays are lower energy with longer wavelengths (1-10 nanometers). While their wavelengths are too long to examine atomic structures, they provide “really exquisite chemical information,” according to David Shapiro, a physicist at DOE’s Lawrence Berkeley National Laboratory (LBNL). Using these x-rays, scientists can examine chemical states and these states’ transformations within nano-materials. The Advanced Light Source at LBNL, a DOE Office of Science user facility, is one of the world’s brightest sources of soft x-rays.

Each of these light sources allows scientists to study a different aspect of the lithium-ion puzzle.

“Every single technique has some sort of shortcoming with respect to the full story,” said Jason Croy, a materials scientist at Argonne. “[But] each technique can be really powerful to give you certain bits of information.”

In fact, researchers enjoy the challenge of piecing the diverse findings together.

“It’s a great field because it utilizes the strengths of all of the facilities,” said Shapiro.

Examining Batteries from Every Angle

Scientists from national laboratories, universities, and other research institutions are using the user facilities’ exceptional instruments to dig deeper into lithium’s interactions. The work at the three light sources is supported by DOE’s Office of Science.

Understanding How Atoms Move at Argonne: Researchers at Argonne are building on the work that contributed to the Chevrolet Volt’s cathode. The original study sought to understand the structure of lithium with manganese and other transition metal oxide forms before it went through multiple charge-discharge cycles.

Now, scientists are looking at how the battery’s structure degrades over time. As the battery charges and discharges, the lithium ions move in and out of the anode and cathode. However, other atoms within the electrodes move as well, causing damage and reducing the battery’s ability to deliver energy. Using the APS, scientists examined how these single atoms move and tracked how the structure changes with use.

Currently, researchers are altering batteries’ structures and seeing how those changes affect the batteries. Ideally, these modifications will increase the stability of the batteries’ structures, minimize degradation, and improve their performance.

Brookhaven Views Batteries in 5D: DOE’s Brookhaven National Laboratory (BNL) recently added another dimension to battery research. They developed the most comprehensive look yet at batteries: a 3D chemical map at the nanometer scale that charts changes over time.

Normally, x-ray spectroscopy produces 2D images that show the average of what’s going on across an entire sample. It doesn’t show what’s happening in individual layers.

In contrast, the BNL team combined the National Synchrotron Light Source (NSLS) – then a DOE user facility – and a unique full-field transmission x-ray microscope to develop a new x-ray nano-imaging technique. The scientists rotated battery samples 180 degrees under hard x-rays of different x-ray energies.

“This is the first time [we can] in-situ monitor the phase transformation in 3D at nanometer scale in a working battery cell,” said Jun Wang, a physicist at BNL.

Wang and her colleagues will continue their work at the NSLS-II, which will follow on from the original NSLS. The NSLS-II will eventually provide beams 10,000 times brighter than its predecessor, allowing scientists to study these reactions on an even finer time scale.

Fast vs. Slow Charging at Lawrence Berkeley: LBNL researchers are examining the same problem, but from a different perspective and using a different machine. Using soft x-rays from the Advanced Light Source (ALS), they’re looking at how the speed of charging and whether a battery is charging or discharging affects the distribution and transport of ions.

A team of researchers from Stanford University, working with LBNL, built a nanoscale see-through battery that has one ten-billionth of the charge of a smartphone. It allows them to observe the movement of individual lithium ions.

Ideally, ions should distribute themselves evenly across the electrodes as they move back and forth. Unfortunately, they don’t, causing stress in certain spots.

The team found that slow charging actually resulted in more irregular distribution than fast charging. This was surprising, considering that fast charging is usually considered more harmful to the battery. They also found that charging the battery caused more uneven distribution than discharging, or using the battery, does.

Building on this research, LBNL scientists may be able to reduce one source of damage to batteries, improving their performance and lifetime.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit http://science.energy.gov.