X
X
X

Chemists ID Catalytic 'Key' for Converting CO2 to Methanol

Results from experiments and computational modeling studies that definitively identify the "active site" of a catalyst commonly used for making methanol from CO2 will guide the design of improved catalysts for transforming this pollutant to useful chemicals.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Berkeley Lab researchers have extended cryo-EM's impact further by developing a new computational algorithm instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

New Study Maps Space Dust in 3-D

A new Berkeley Lab-led study provides detailed 3-D views of space dust in the Milky Way, which could help us understand the properties of this dust and how it affects views of distant objects.

Single-Angle Ptychography Allows 3D Imaging of Stressed Materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

New Feedback System Could Allow Greater Control Over Fusion Plasma

A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Towards Super-Efficient, Ultra-Thin Silicon Solar Cells

Researchers from Ames Laboratory used supercomputers at NERSC to evaluate a novel approach for creating more energy-efficient ultra-thin crystalline silicon solar cells by optimizing nanophotonic light trapping.

Study IDs Link Between Sugar Signaling and Regulation of Oil Production in Plants

UPTON, NY--Even plants have to live on an energy budget. While they're known for converting solar energy into chemical energy in the form of sugars, plants have sophisticated biochemical mechanisms for regulating how they spend that energy. Making oils costs a lot. By exploring the details of this delicate energy balance, a group of scientists from the U.

High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Two-Dimensional MXene Materials Get Their Close-Up

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders.


Three SLAC Employees Awarded Lab's Highest Honor

At a March 7 ceremony, three employees of the Department of Energy's SLAC National Accelerator Laboratory were awarded the lab's highest honor ­- the SLAC Director's Award.

Dan Sinars Represents Sandia in First Energy Leadership Class

Dan Sinars, a senior manager in Sandia National Laboratories' pulsed power center, which built and operates the Z facility, is the sole representative from a nuclear weapons lab in a new Department of Energy leadership program that recently visited Sandia.

ORNL, HTS International Corporation to Collaborate on Manufacturing Research

HTS International Corporation and the Department of Energy's Oak Ridge National Laboratory have signed an agreement to explore potential collaborations in advanced manufacturing research.

Jefferson Lab Director Honored with Energy Secretary Award

Hugh Montgomery, director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded The Secretary's Distinguished Service Award by the Secretary of Energy earlier this year.

New Projects to Make Geothermal Energy More Economically Attractive

Geothermal energy, a clean, renewable source of energy produced by the heat of the earth, provides about 6 percent of California's total power. That number could be much higher if associated costs were lower. Now scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have launched two California Energy Commission-funded projects aimed at making geothermal energy more cost-effective to deploy and operate.

Southern Research Project Advances Novel CO2 Utilization Strategy

The U.S. Department of Energy's Office of Fossil Energy has awarded Southern Research nearly $800,000 for a project that targets a more cost-efficient and environmentally friendly method of producing some of the most important chemicals used in manufacturing.

Harker School Wins 2017 SLAC Regional Science Bowl Competition

After losing its first match of the day to the defending champions, The Harker School's team won 10 consecutive rounds to claim victory in the annual SLAC Regional DOE Science Bowl on Saturday, Feb. 11.

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative

Alexander brings extensive management and leadership experience in computational science research to the position.

Kalinin, Paranthaman Elected Materials Research Society Fellows

Two researchers at Oak Ridge National Laboratory, Sergei Kalinin and Mariappan Parans Paranthaman, have been elected fellows of the Materials Research Society.

Two PNNL Researchers Elected to Membership in the National Academy of Engineering

Two scientists at the Pacific Northwest National Laboratory will become members of the prestigious National Academy of Engineering.


High-Energy Electrons Probe Ultrafast Atomic Motion

A new technique synchronized high-energy electrons with an ultrafast laser pulse to probe how vibrational states of atoms change in time.

Rare Earth Recycling

A new energy-efficient separation of rare earth elements could provide a new domestic source of critical materials.

Modeling the "Flicker" of Gluons in Subatomic Smashups

A new model identifies a high degree of fluctuations in the glue-like particles that bind quarks within protons as essential to explaining proton structure.

Rare Nickel Atom Has "Doubly Magic" Structure

Supercomputing calculations confirm that rare nickel-78 has unusual structure, offering insights into supernovas.

Microbial Activity in the Subsurface Contributes to Greenhouse Gas Fluxes

Natural carbon dioxide production from deep subsurface soils contributes significantly to emissions, even in a semiarid floodplain.

Stretching a Metal Into an Insulator

Straining a thin film controllably allows tuning of the materials' magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

How Moisture Affects the Way Soil Microbes Breathe

Study models soil-pore features that hold or release carbon dioxide.

ARM Data Is for the Birds

Scientists use LIDAR and radar data to study bird migration patterns, thanks to the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The Future of Coastal Flooding

Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.

Estimating Global Energy Use for Water-Related Processes

Scientists find that water-related energy consumption is increasing across the globe, with pronounced differences across regions and sectors.


Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park




Laser R&D Focuses on Next-Gen Particle Collider

Article ID: 666406

Released: 2016-12-13 12:05:06

Source Newsroom: Lawrence Berkeley National Laboratory

  • Credit: Paul Mueller

    Wim Leemans, director of Berkeley Lab's Accelerator Technology & Applied Physics Division, speaks with graduate students Joost Daniels, left, and Kelly Swanson in the BELLA laser control room. Berkeley Lab’s BELLA Center is the site of a laser plasma wakefield acceleration R&D effort and other laser experiments that could help set the stage for a next-generation particle collider.

A set of new laser systems and proposed upgrades at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) will propel long-term plans for a more compact and affordable ultrahigh-energy particle collider.

Progress on these laser systems and laser-driven accelerators could also provide many spinoffs, such as a new tool to hunt for radioactive materials, and a miniaturized and highly tunable free-electron laser system enabling a range of science experiments.

These efforts are outlined in a DOE-sponsored workshop report that focuses on a set of 10-year road maps designed to kick-start R&D driving a next-generation particle collider for high-energy physics. The ultimate goal is a machine capable of exploring physics beyond the reach of CERN's Large Hadron Collider (LHC). Today’s most powerful collider, the LHC enabled the discovery of the Higgs boson that resulted in the 2013 Nobel Prize in physics.

The LHC, with a main ring 17 miles in circumference, collides protons—subatomic particles liberated from the center of atoms—at collision energies of up to 13 trillion electronvolts (13 TeV).

Meanwhile, proposals for next-generation linear colliders would collide electrons and their antiparticles, positrons, at lower energies—from a few hundred billion electronvolts (GeV) up to a few TeV. And while the collision energies of these machines would be lower than those of the LHC, the physics of their electron-positron collisions would be complementary, enabling more specific, detailed measurements for some particle properties and phenomena.

Building a TeV-level electron-positron collider with today’s accelerator technology is possible but would be expensive due to its great size (its footprint would likely measure more than 20 miles).

In an effort to reduce the scope and associated cost of a next-generation collider, the Office of High Energy Physics within DOE’s Office of Science brought together more than two dozen experts from DOE and across the country to prepare an Advanced Accelerator Development Strategy Report that sets goals for three potentially game-changing accelerator technologies over the next 10 years.

Among other recommendations, the report highlights the need for R&D at BELLA, the Berkeley Lab Laser Accelerator, which is based on one of those three technologies: a laser-driven plasma wakefield accelerator (LWFA). This form of acceleration uses a laser or lasers to accelerate electrons to high energies.

Two other wakefield acceleration concepts being developed elsewhere—one for a particle-beam-driven accelerator, the other for a dielectric wakefield accelerator—are also included in the road map.

Other acceleration techniques are in development that are outside the scope of the report, including an R&D effort based at CERN called AWAKE that is exploring proton-driven plasma wakefield acceleration.

The new approaches to particle acceleration endorsed in the report all offer potential ways to shrink high-energy particle accelerators by creating compact, dense waves of plasmas—formed in hot, highly charged gases—that rapidly accelerate bunches of precisely placed electrons like a surfer riding on an ocean wave.

BELLA researchers have already demonstrated a modular LWFA setup for reaching high energies, and are now working to improve upon this. The near-term goal outlined in the report is to achieve electron-beam energies of 10 GeV, up from BELLA's current world record of 4.3 GeV.

"Once we have 10 GeV beams it will open up a whole new host of things. It will be a major step forward," said Wim Leemans, director of the Lab's Accelerator Technology & Applied Physics Division. The 10 GeV goal is significant because it represents an energy threshold for generating high charge positron beams, which would be required for a next-generation collider.

The LWFA road map, Leemans said, “gives us an anchor in the whole accelerator program” outlined for the DOE national laboratory complex.

The BELLA team will pursue two different approaches for achieving this 10 GeV goal: a single-accelerator-stage setup using a single laser, and a two-stage approach with two separate lasers.

The first stage will raise the electron beam energy to 5 GeV, and the second stage will accelerate the beam an additional 5 GeV, to 10 GeV. The second BELLA beamline for the two-beam setup could be constructed by the end of 2018, as outlined in the road map report, provided funding is available.

The report notes that in addition to advances in accelerator technology, there must also be new developments in laser technology, and supporting equipment such as mirrors, to realize this new type of collider.

BELLA now uses sapphire crystals doped with titanium to produce its laser light. To achieve far higher energies, and average beam power, the DOE report recommends pursuing other types of lasers, such as optical fiber, solid state, or carbon dioxide lasers, among other approaches.

A key technology challenge for BELLA is to make its pulses more rapid-fire, increasing from a current rate of about 1 pulse per second to a rate of about 1,000 per second, or 1 kilohertz (in a future development dubbed “K-BELLA”).

Ultimately, a pulse rate of 10,000 or 100,000 per second would be ideal for a next-generation collider, said Carl Schroeder, a Berkeley Lab senior scientist who leads theoretical and modeling efforts for BELLA experiments and has been working on conceptual designs and modeling for this LWFA collider.

If its R&D effort is successful, BELLA's maximum energy should be sufficient to reach the 10 GeV acceleration milestone, said Anthony Gonsalves, a Berkeley Lab staff scientist who works on BELLA. "We've got plenty of room in the 'tank'—there is a lot of headroom in energy that we haven't even explored yet."

Besides work to develop one-beam and two-beam approaches to a 10 GeV LWFA, the Lab's development of a new, compact type of free-electron laser (FEL) and a separate portable gamma-ray source—to begin testing next year—may be the first important applications of the LWFA technology if the efforts prove successful.

FELs are highly tunable sources of light that can help explore matter down to the atomic and molecular scales with ultrabright pulses measured in femtoseconds, or quadrillionths of a second. The FEL project seeks to miniaturize X-ray FELs by replacing a kilometer-long conventional accelerating structure with a wakefield accelerator less than 10 meters long.

The plasma-based gamma-ray source, meanwhile, could prove to be a useful and portable tool for detecting nuclear materials.

Schroeder said, "The FEL and gamma-ray source are recognized as early applications of this technology. The laser systems for these experiments will be commissioned this winter.

“The roadmap lays out a rich program for the next decade,” added Leemans. “Key concepts are being developed towards future plasma based colliders, and BELLA, with upgrades, will enable the testing and development of many of these concepts.”

The BELLA Center is supported principally by the DOE Office of Science.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.