Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-06 10:05:04
  • Article ID: 667255

Top 10 PPPL Stories That You Shouldn't Miss

Key developments and discoveries at the Princeton Plasma Physics Laboratory in 2016.

  • Credit: Elle Starkman/Princeton Plasma Physics Laboratory

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

The NSTX-U recorded important findings during its first 10 weeks of operation, before shutting down for repairs. Results ranged from rapidly achieving high plasma confinement, a superior regime for plasma performance, to swiftly surpassing the maximum field strength of its predecessor prior to the upgrade. The nearly four-year overhaul doubled the heating capacity and field strength of the NSTX-U, making it the most powerful spherical torus device in the world.

2. Collaborating on fusion facilities around the world

PPPL contributes heavily to worldwide fusion experiments. PPPL leads all U.S. collaborators on the Wendelstein 7-X stellarator in Germany, and played a key role in confirming the accuracy of the twisty, 3D magnetic fields that distinguish stellarators from 2D tokamak devices. The Lab leads studies on avoiding disruptions on KSTAR, the major tokamak in South Korea, and heads a multi-institutional project to study plasma-material interaction on China’s EAST tokamak. Domestically, PPPL collaborations on the DIII-D tokamak at General Atomics this year have ranged from analyzing the behavior of the crucial edge of fusion plasmas to coupling our flagship TRANSP fusion analysis code to a GA code to make TRANSP widely available to beginners and experts alike.

3. Unraveling the source of rapid reconnection

Scientists have puzzled for decades over what causes magnetic reconnection, a universal process that sets off solar flares, northern lights and geomagnetic storms, to develop so much faster than theory says it should. Recent findings at PPPL suggest the answer lies in electrically charged plasma sheets that break up into tiny magnetic islands called “plasmoids” that evolve from quiescent to explosive stages. This process, which roughly follows a principle laid out by 17th century mathematician Pierre de Fermat, accelerates magnetic reconnection, which occurs when the magnetic field lines in plasma converge and violently snap apart.

4.Applying Einstein and quantum mechanics to astrophysical mysteries

Pulsars, collapsed stars that orbit a cosmic companion and flash like lighthouses in the sky, have many properties that defy detailed explanation. Researchers at PPPL and Princeton have combined Albert Einstein’s theory of special relativity with the theory of quantum mechanics to portray several of the qualities. The new method infers the strength of the magnetic field and density of the plasma that surrounds pulsars with greater precision than standard approaches can show. This method, based on the complex behavior of plasma waves, can also infer such properties for the plasma created by inertial fusion, which uses lasers to vaporize a target that contains plasma fuel.

5. Delivering power and diagnostics to ITER

The United States is a key contributor to ITER, the international fusion experiment under construction in France to demonstrate the feasibility of fusion power. PPPL is an important participant in the experiment. During the past year the Laboratory completed delivery of new major components for the steady state electrical network that will power the complex plant’s electrical loads, with the exception of the pulsed loads that will power the heating, current and magnetic fields inside the giant tokamak itself. PPPL also furthered development of designs for seven diagnostic instruments that the U.S. will provide to ITER to observe, record and analyze data from its experiments.

6. First steps toward a possible technique for facilitating disarmament agreements

The Laboratory and Princeton University successfully completed a novel experiment for a system that, when fully developed, could prove useful in future disarmament talks. The experiment translated a method called “zero-knowledge protocol” that is employed in cryptography into use in a physical system. The aim of this system is to determine, without tapping into classified information, whether objects to be dismantled are true nuclear warheads. The experiment successfully distinguished between “true” and “false” patterns of 2-inch steel and aluminum cubes without revealing any information about the composition and configuration of the cubes. While far more development will need to be done, the test marked a promising beginning.

7. Creating a framework for improving high-intensity particle accelerator beams

Accelerator beams consist of billions of charged particles that are used in scientific experiments to strike other particles with enormous intensity and generate subatomic particles not seen since the early universe. However, mutual repulsion of the particles and imperfections of accelerators tend to degrade the beam, so the walls of large devices are lined with high-precision magnets to control the motion. Now researchers at PPPL, South Korea and Germany have teamed up to develop a theoretical framework for optimizing the beams. The new method contrasts with standard approaches, which treat the horizontal and vertical motions of the charged particles as uncoupled. Instead, the new system couples all forces and elements that can stabilize the beam, and the results agreed well with simulation of a German experiment that illustrated a technique for manipulating the beams of future accelerators.

8. Modeling the accretion disk that feeds the black hole at the center of our galaxy

As the accretion disk that orbits the supermassive black hole at the center of the Milky Way spirals into the hole, the plasma particles that comprise it emit far less radiation than the disks that flow into many other black holes. The question is why, since feeding black holes can create some of the brightest and most energetic radiation in the universe, and the huge Milky Way hole has four million times the mass of our sun. To help find the answer, scientists at PPPL and Princeton University have developed a rigorous new method for modeling the disk around the gigantic Milky Way hole, which is called Sagittarius A*. The particles inside this disk’s plasma rarely collide, compared with the frequent collisions of particles in other disks. So tracing the movements of individual collisionless particles in Sagittarius A*, rather than relying on standard formulas that treat the plasma in collisional disks as a fluid, could produce improved predictions of how the Sagittarius A* disk will behave when compared with astrophysical observations.

9. A shot-by-shot look at what happens when plasma meets walls

Of crucial importance to the production of fusion energy is the contact during experiments — or shots — between particles of the hot plasma that fuels fusion reactions and the walls that enclose the magnetically confined gas. Such contact can erode the walls of a fusion facility and recycle the particles back into the core of the plasma, cooling it down and halting fusion reactions. At PPPL, physicists have collaborated with a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign to successfully test a unique diagnostic called a Materials Analysis Particle Probe (MAPP) that swiftly analyzes what happens when plasma meets a tokamak’s walls. The diagnostic, tested on a shot-by-shot basis on the NSTX-U at PPPL, could become an integral part of fusion research and lead to optimal methods of conditioning a facility’s walls.

10. Gauging the speed of fusion plasma rotation

The superhot plasma that fuels fusion reactions swirls rapidly during experiments — but how fast is it spinning and why do researchers want to know? At PPPL, physicists have developed a real time velocity diagnostic that delivers crucial information about the speed of the swirl that could lead to a system for actively controlling the rapid motion. Such control can be critical for optimizing the stability of the plasma against a range of instabilities that can shut down reactions. Researchers gathered their findings by measuring just four points of the plasma during NSTX-U operations, enabling the diagnostic to swiftly calculate how the velocity evolves over time.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Imaging Technology Reveals Copper Is Key to Meeting Future Food and Energy Needs

For the first time, Cornell University researchers are using imaging capabilities at the Cornell High Energy Synchrotron Source (CHESS) to explore how copper affects plant fertility. The work could provide key insights into how plants can be bred for better performance in marginal soils.

PPPL Researchers Perform First Basic Physics Simulation of the Impact of Recycled Atoms on Plasma Turbulence

Article describes simulation of impact of recycled atoms on plasma turbulence.

"Hindcasting" Study Investigates the Extreme 2013 Colorado Flood

Using a publicly available climate model, Berkeley Lab researchers "hindcast" the conditions that led to the Sept. 9-16, 2013 flooding around Boulder, Colo. and found that climate change attributed to human activity made the storm much more severe than would otherwise have occurred.

Ultrathin Device Harvests Electricity From Human Motion

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down. A new, ultrathin energy harvesting system developed at Vanderbilt University's Nanomaterials and Energy Devices Laboratory has the potential to do just that.

Energy-Efficient Accelerator Was 50 Years in the Making

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

3-D Models Help Scientists Gauge Flood Impact

Using one of the world's most powerful supercomputers--Titan, the 27-petaflop Cray XK7 at the Oak Ridge Leadership Computing Facility (OLCF)--a University of Iowa team performed one of the first highly resolved, 3-D, volume-of-fluid Reynolds-averaged Navier-Stokes (RANS) simulations of a dam break in a natural environment. The simulation allowed the team to map precise water levels for actual flood events over time.

Titan Simulations Show Importance of Close 2-Way Coupling Between Human and Earth Systems

A new integrated climate model developed by Oak Ridge National Laboratory and other institutions is designed to reduce uncertainties in future climate predictions as it bridges Earth systems with energy and economic models and large-scale human impact data.

Weaving a Fermented Path to Nylons

Microbial enzymes create precursors of nylon while avoiding harsh chemicals and energy-demanding heat.


  • Filters

  • × Clear Filters

Construction of Massive Neutrino Experiment Kicks Off a Mile Underground

A new era in international particle physics research officially began July 21 with a unique groundbreaking held a mile underground at the Sanford Underground Research Facility in South Dakota. Dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by roughly 1,000 scientists and engineers from 30 countries.

Construction Begins on International Mega-Science Experiment to Understand Neutrinos

In a unique groundbreaking ceremony held this afternoon at the Sanford Underground Research Facility in Lead, South Dakota, a group of dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries.

Buchanan Named Deputy for Science and Technology at Oak Ridge National Laboratory

Michelle Buchanan, an accomplished scientific leader and researcher, has been appointed Deputy for Science and Technology at the Department of Energy's Oak Ridge National Laboratory by new Lab Director Thomas Zacharia.

Neutrino Project to Fuel Particle Physics Research

Over the next decade, 800,000 tons of rock will be excavated from the former Homestake Mine in Lead, South Dakota, to accommodate a particle detector filled with 70,000 tons of liquid argon cooled to -300 degrees Fahrenheit to study neutrinos beamed from Fermilab in Illinois. It's called the Deep Underground Neutrino Experiment.

Berkeley Lab to Lead Multimillion-Dollar Geothermal Energy Project

The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.

PNNL Scientist Ruby Leung Appointed a Battelle Fellow

Ruby Leung of the Department of Energy's Pacific Northwest National Laboratory has been named a Battelle Fellow -- the highest recognition from Battelle for leadership and accomplishment in science. She is one of eight Battelle fellows at PNNL.

Gu and Paranthaman Named ORNL Corporate Fellows

Researchers Baohua Gu and Parans Paranthaman have been named Corporate Fellows of the Department of Energy's Oak Ridge National Laboratory.

DOE Funds Center for Bioenergy Innovation at ORNL to Accelerate Biofuels, Bioproducts Research

The DOE has announced funding for new research centers to accelerate the development of specialty plants and processes for a new generation of biofuels and bioproducts.

Grant Focuses on 'Hydrogen Sponge' for Use in Fuel-Cell Vehicles

Finding practical hydrogen storage technologies for vehicles powered by fuel cells is the focus of a $682,000 grant from the U.S. Department of Energy, awarded to Mike Chung, professor of materials science and engineering, Penn State.

Engineers Win Energy Department Grants to Help Develop a Reliable, Resilient Power Grid

Two Iowa State electrical engineers have won Energy Department grants to help improve the country's power grid. The projects' goals include addressing the challenges of adding high levels of intermittent power sources to the grid, mainly wind and solar power.


  • Filters

  • × Clear Filters

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

Soils Could Release Much More Carbon than Expected as Climate Warms

Deeper soil layers are more sensitive to warming than previously thought.

Weaving a Fermented Path to Nylons

Microbial enzymes create precursors of nylon while avoiding harsh chemicals and energy-demanding heat.

Loosening of Lignocellulose: Switchgrass and Success in Sugar Release

Using a genetically modified line of switchgrass, scientists reduced plant cell wall recalcitrance while increasing sugar release over three generations.

Extending the Life of Lithium-Ion Batteries

Scientists offer new insights into how the source of electrons in batteries fails.

Unraveling the Molecular Complexity of Cellular Machines and Environmental Processes

State-of-the-art mass spectrometer delivers unprecedented capability to scientists.

Speeding Up Catalysts for Energy Storage

Researchers develop the fastest synthetic catalyst for producing hydrogen gas, potentially leading to a new environmentally friendly, affordable fuel.

Watching Neutrons Flow

Like water, neutrons seek their own level, and watching how they flow may teach us about how the chemical elements were made.

FIONA to Take on the Periodic Table's Heavyweights

FIONA (For the Identification Of Nuclide A) is a newly installed device designed to measure the mass numbers of individual atoms of heavy and superheavy elements. FIONA will let researchers learn about the shape and structure of heavy nuclei, guide the search for new elements, and offer better measurements for nuclear fission and related processes.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215