Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-06 10:05:04
  • Article ID: 667255

Top 10 PPPL Stories That You Shouldn't Miss

Key developments and discoveries at the Princeton Plasma Physics Laboratory in 2016.

  • Credit: Elle Starkman/Princeton Plasma Physics Laboratory

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

The NSTX-U recorded important findings during its first 10 weeks of operation, before shutting down for repairs. Results ranged from rapidly achieving high plasma confinement, a superior regime for plasma performance, to swiftly surpassing the maximum field strength of its predecessor prior to the upgrade. The nearly four-year overhaul doubled the heating capacity and field strength of the NSTX-U, making it the most powerful spherical torus device in the world.

2. Collaborating on fusion facilities around the world

PPPL contributes heavily to worldwide fusion experiments. PPPL leads all U.S. collaborators on the Wendelstein 7-X stellarator in Germany, and played a key role in confirming the accuracy of the twisty, 3D magnetic fields that distinguish stellarators from 2D tokamak devices. The Lab leads studies on avoiding disruptions on KSTAR, the major tokamak in South Korea, and heads a multi-institutional project to study plasma-material interaction on China’s EAST tokamak. Domestically, PPPL collaborations on the DIII-D tokamak at General Atomics this year have ranged from analyzing the behavior of the crucial edge of fusion plasmas to coupling our flagship TRANSP fusion analysis code to a GA code to make TRANSP widely available to beginners and experts alike.

3. Unraveling the source of rapid reconnection

Scientists have puzzled for decades over what causes magnetic reconnection, a universal process that sets off solar flares, northern lights and geomagnetic storms, to develop so much faster than theory says it should. Recent findings at PPPL suggest the answer lies in electrically charged plasma sheets that break up into tiny magnetic islands called “plasmoids” that evolve from quiescent to explosive stages. This process, which roughly follows a principle laid out by 17th century mathematician Pierre de Fermat, accelerates magnetic reconnection, which occurs when the magnetic field lines in plasma converge and violently snap apart.

4.Applying Einstein and quantum mechanics to astrophysical mysteries

Pulsars, collapsed stars that orbit a cosmic companion and flash like lighthouses in the sky, have many properties that defy detailed explanation. Researchers at PPPL and Princeton have combined Albert Einstein’s theory of special relativity with the theory of quantum mechanics to portray several of the qualities. The new method infers the strength of the magnetic field and density of the plasma that surrounds pulsars with greater precision than standard approaches can show. This method, based on the complex behavior of plasma waves, can also infer such properties for the plasma created by inertial fusion, which uses lasers to vaporize a target that contains plasma fuel.

5. Delivering power and diagnostics to ITER

The United States is a key contributor to ITER, the international fusion experiment under construction in France to demonstrate the feasibility of fusion power. PPPL is an important participant in the experiment. During the past year the Laboratory completed delivery of new major components for the steady state electrical network that will power the complex plant’s electrical loads, with the exception of the pulsed loads that will power the heating, current and magnetic fields inside the giant tokamak itself. PPPL also furthered development of designs for seven diagnostic instruments that the U.S. will provide to ITER to observe, record and analyze data from its experiments.

6. First steps toward a possible technique for facilitating disarmament agreements

The Laboratory and Princeton University successfully completed a novel experiment for a system that, when fully developed, could prove useful in future disarmament talks. The experiment translated a method called “zero-knowledge protocol” that is employed in cryptography into use in a physical system. The aim of this system is to determine, without tapping into classified information, whether objects to be dismantled are true nuclear warheads. The experiment successfully distinguished between “true” and “false” patterns of 2-inch steel and aluminum cubes without revealing any information about the composition and configuration of the cubes. While far more development will need to be done, the test marked a promising beginning.

7. Creating a framework for improving high-intensity particle accelerator beams

Accelerator beams consist of billions of charged particles that are used in scientific experiments to strike other particles with enormous intensity and generate subatomic particles not seen since the early universe. However, mutual repulsion of the particles and imperfections of accelerators tend to degrade the beam, so the walls of large devices are lined with high-precision magnets to control the motion. Now researchers at PPPL, South Korea and Germany have teamed up to develop a theoretical framework for optimizing the beams. The new method contrasts with standard approaches, which treat the horizontal and vertical motions of the charged particles as uncoupled. Instead, the new system couples all forces and elements that can stabilize the beam, and the results agreed well with simulation of a German experiment that illustrated a technique for manipulating the beams of future accelerators.

8. Modeling the accretion disk that feeds the black hole at the center of our galaxy

As the accretion disk that orbits the supermassive black hole at the center of the Milky Way spirals into the hole, the plasma particles that comprise it emit far less radiation than the disks that flow into many other black holes. The question is why, since feeding black holes can create some of the brightest and most energetic radiation in the universe, and the huge Milky Way hole has four million times the mass of our sun. To help find the answer, scientists at PPPL and Princeton University have developed a rigorous new method for modeling the disk around the gigantic Milky Way hole, which is called Sagittarius A*. The particles inside this disk’s plasma rarely collide, compared with the frequent collisions of particles in other disks. So tracing the movements of individual collisionless particles in Sagittarius A*, rather than relying on standard formulas that treat the plasma in collisional disks as a fluid, could produce improved predictions of how the Sagittarius A* disk will behave when compared with astrophysical observations.

9. A shot-by-shot look at what happens when plasma meets walls

Of crucial importance to the production of fusion energy is the contact during experiments — or shots — between particles of the hot plasma that fuels fusion reactions and the walls that enclose the magnetically confined gas. Such contact can erode the walls of a fusion facility and recycle the particles back into the core of the plasma, cooling it down and halting fusion reactions. At PPPL, physicists have collaborated with a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign to successfully test a unique diagnostic called a Materials Analysis Particle Probe (MAPP) that swiftly analyzes what happens when plasma meets a tokamak’s walls. The diagnostic, tested on a shot-by-shot basis on the NSTX-U at PPPL, could become an integral part of fusion research and lead to optimal methods of conditioning a facility’s walls.

10. Gauging the speed of fusion plasma rotation

The superhot plasma that fuels fusion reactions swirls rapidly during experiments — but how fast is it spinning and why do researchers want to know? At PPPL, physicists have developed a real time velocity diagnostic that delivers crucial information about the speed of the swirl that could lead to a system for actively controlling the rapid motion. Such control can be critical for optimizing the stability of the plasma against a range of instabilities that can shut down reactions. Researchers gathered their findings by measuring just four points of the plasma during NSTX-U operations, enabling the diagnostic to swiftly calculate how the velocity evolves over time.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Kentucky Researchers First to Produce High Grade Rare Earths From Coal

University of Kentucky researchers have produced nearly pure rare earth concentrates from Kentucky coal using an environmentally-conscious and cost-effective process, a groundbreaking accomplishment in the energy industry.

Watching Atoms Move in Hybrid Perovskite Crystals Reveals Clues to Improving Solar Cells

The discovery of nanoscale changes deep inside hybrid perovskites could shed light on developing low-cost, high-efficiency solar cells. Using X-ray beams and lasers, a team of researchers led by the University of California San Diego discovered how the movement of ions in hybrid perovskites causes certain regions within the material to become better solar cells than other parts.

Quantum Dots Amplify Light with Electrical Pumping

In a breakthrough development, Los Alamos scientists have shown that they can successfully amplify light using electrically excited films of the chemically synthesized semiconductor nanocrystals known as quantum dots.

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Strain-Free Epitaxy of Germanium Film on Mica

Germanium was the material of choice in the early history of electronic devices, and due to its high charge carrier mobility, it's making a comeback. It's generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers demonstrate an epitaxy method that incorporates van der Waals' forces to grow germanium on mica. They discuss their work in the Journal of Applied Physics.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

Detailed View of Immune Proteins Could Lead to New Pathogen-Defense Strategies

Biologists at Berkeley Lab and UC Berkeley used cryo-EM to resolve the structure of a ring of proteins used by the immune system to summon support when under attack, providing new insight into potential strategies for protection from pathogens. The researchers captured the high-resolution image of a protein ring, called an inflammasome, as it was bound to flagellin, a protein from the whiplike tail used by bacteria to propel themselves forward.

Unlocking the Secrets of Ebola

Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease. The results come from one of the most in-depth studies ever of blood samples from patients with Ebola.

Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass

Studies at the Department of Energy's SLAC National Accelerator Laboratory have made the first real-time observations of how silica - an abundant material in the Earth's crust - easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.


  • Filters

  • × Clear Filters

Jefferson Lab Scientist Selected to Receive Francis Slack Award

Dr. Hari Areti, has been selected to receive the Francis G. Slack Award, established by the Southeastern Section of the American Physical Society, to honor excellence in service to Physics in the Southeastern U.S.

ORNL Wins Nine R&D 100 Awards

Researchers at the Department of Energy's Oak Ridge National Laboratory have received nine R&D 100 Awards in recognition of their significant advancements in science and technology.

Argonne Scientists Capture Several R&D 100 Awards

Innovative technologies developed by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory recently earned several R&D 100 Awards.

Eight Los Alamos innovations win R&D 100 Awards

Eight Los Alamos National Laboratory technologies won R&D 100 Awards last week at R&D Magazine's annual ceremony in Orlando, Florida.

Physicist David Gates Named Editor-in-Chief of Plasma, a New Online Journal

Article announces David Gates' appointment as editor-in-chief of Plasma magazine

Argonne to Install Comanche System to Explore ARM Technology for High-Performance Computing

Argonne National Laboratory is collaborating with Hewlett Packard Enterprise (HPE) to provide system software expertise and a development ecosystem for a future high-performance computing (HPC) system based on 64-bit ARM processors.

CANDLE Shines in 2017 HPCwire Readers' and Editors' Choice Awards

Argonne National Laboratory has been recognized in the annual <em>HPCwire</em> Readers' and Editors' Choice Awards, presented at the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis (SC17), in Denver, Colorado.

SLAC's Helen Quinn Honored with 2018 Benjamin Franklin Medal in Physics

Helen Quinn, a professor emerita at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, will receive the 2018 Benjamin Franklin Medal in Physics - one of eight prestigious Franklin Institute Awards that will be handed out in Philadelphia next April.

PPPL Honors Grierson and Greenough for Distinguished Research and Engineering Achievements

Article describes PPPL's presentation of 2017 Kaul Prize and Distinguished Engineering Fellow awards.

INCITE Grants of 5.95 Billion Hours Awarded to 55 Computational Research Projects

The U.S. Department of Energy's Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The projects will share 5.95 billion core-hours on three of America's most powerful supercomputers dedicated to capability-limited open science and support a broad range of large-scale research campaigns from infectious disease treatment to next-generation materials development.


  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

The Effect of Hurricanes on Puerto Rico's Dry Forests

More frequent storms turn forests from carbon source to sink.

A Chemical Thermometer for Tropical Forests

Monoterpene measures how certain forests respond to heat stress.

Where a Leaf Lands and Lies Influences Carbon Levels in Soil for Years to Come

Whether carbon comes from leaves or needles affects how fast it decomposes, but where it ends up determines how long it's available.

Twisting Molecule Wrings More Power from Solar Cells

Readily rotating molecules let electrons last, resulting in higher solar cell efficiency.

Rules Are Only Suggestions in Heavy Elements

The arrangement of electrons in an exotic human-made element shows that certain properties of heavy elements cannot be predicted using lighter ones.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215