Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-01-10 19:05:00
  • Article ID: 667503

Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function

  • Credit: Hebrew University of Jerusalem

    This illustration shows the setup for an experiment at Berkeley Lab’s Advanced Light Source that used infrared light (shown in red) and an atomic force microscope (middle and top) to study the local surface chemistry on coated platinum particles (yellow) measuring about 100 nanometers in length.

  • Credit: "High-spatial-resolution mapping of catalytic reactions on single particles," Nature, Jan. 11, 2017

    Nanosized gold particles, shown here at low-magnification, left, and high-magnification, right, in images produced with a scanning electron microscope, were studied with infrared light produced by Berkeley Lab’s Advanced Light Source. The scale bar at left represents 5 microns, or 5 millionths of an inch, and the scale bar at right represents 1 micron.

  • Credit: Roy Kaltschmidt/Berkeley Lab

    Dean Toste, left, of Berkeley Lab and UC Berkeley, and Elad Gross, right, of the Hebrew University of Jerusalem, led a study of site-specific chemical reactivity on tiny platinum and gold particles at Berkeley Lab’s Advanced Light Source.

  • Credit: "High-spatial-resolution mapping of catalytic reactions on single particles," Nature, Jan. 11, 2017

    From a collection of nanoscale platinum particles, left, researchers homed in on the chemistry occurring in different surface areas of individual nanoscale platinum particles like the one at right, which measures about 100 billionths of an inch across. Researchers found that chemical reactivity is concentrated toward the edges of the particles (red circle at right), with lesser activity in the central area (black circle). This image was produced by an atomic force microscope.

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, a team of researchers working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the Hebrew University of Jerusalem in Israel confirmed with a unique infrared probe.

Experiments like this should help researchers to customize the structural properties of catalysts to make them more effective in fostering chemical reactions.

The study, published Jan. 11 in Nature, is an important step in chronicling how the atomic structure of nanoparticles impacts their function as catalysts in chemical reactions. Catalysts, which play a role in the production of many industrial products, such as fertilizers, fuel, and plastics, are materials that can speed up chemical reactions and make them more efficient while remaining unchanged in the process.

Scientists have known that materials can behave differently at the nanoscale than they do in larger quantities, and that customizing their size and shape can enhance their properties for specific uses. This new technique pinpointed the areas on single metallic particles—which measure about 100 nanometers (100 billionths of a meter)—that are most active in chemical reactions.

Researchers combined a broad spectrum of infrared light, produced by Berkeley Lab’s Advanced Light Source (ALS), with an atomic force microscope to reveal different levels of chemical reactivity at the edges of single platinum and gold nanoparticles compared to their smooth, flat surfaces.

They used a unique capability at ALS, dubbed SINS (for synchrotron-radiation-based infrared nanospectroscopy), to explore the detailed chemistry occurring on the surface of the particles, and achieved resolution down to 25 nanometers.

“It allows you to see all of this interplay in chemistry,” said Michael Martin, a senior staff scientist in charge of infrared beamlines at the ALS. “That’s what makes this special.”

Hans Bechtel, a research scientist at Berkeley Lab who works at the ALS infrared beamlines, added, “You can simultaneously see reactants and the products formed in reactions.”

In the experiment, researchers coated the metallic particles with a layer of reactive molecules and focused the ALS-produced infrared light onto the tiny tip (25 nanometers in its diameter) of the atomic force microscope.

The microscope’s tip, when coupled with the highly focused infrared light, worked like an extremely sensitive antenna to map the surface structure of individual nanoparticles while also revealing their detailed surface chemistry.

“We were able to see the exact fingerprint of molecules on the surface of the particles and validate a well-known hypothesis in the field of catalysis,” said Elad Gross, a faculty member at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, who led the study along with F. Dean Toste, a faculty scientist in the Chemical Sciences Division at Berkeley Lab and professor in UC Berkeley’s Department of Chemistry.

Knowing the precise level of energy that’s needed to trigger chemical reactions (the activation energy) is key in optimizing reactions, and can reduce costs at the industrial scale by conserving energy use.

“This technique has the ability to tell you not only where and when a reaction occurred, but also to determine the activation energy for the reaction at different sites,” Gross said. “What you have here is a tool that can address fundamental questions in catalysis research. We showed that areas which are highly defective at the atomic level are more active than smooth surfaces.”

This characteristic relates to the small size of the particles, Gross noted. “As the particle size is decreased, the structure is less uniform and you have more defects,” he said.

Smaller particles have higher surface area per particle than larger particles, which means that more atoms will be located at the edges. Atoms at the edges of the particles have fewer neighbors than those along its smooth surfaces, and fewer neighbors means more freedom to participate in chemistry with other elements.

As the studied chemical reactions occur very rapidly—in less than a second—and the ALS technique can take about 20 minutes to scan a single spot on a particle, the researchers used a layer of chemically active molecules, which were attached to the surface of the particle, as markers for the catalytic reactivity.

The catalytic reaction in the study was analogous to what occurs in gasoline-powered vehicles’ catalytic converters. Catalytic converters use platinum particles and other materials to convert car exhaust into less-toxic emissions.

Future experiments planned using the SINS technique will focus on documenting active chemical processes that use controlled flows of gases or liquids to trigger reactions, researchers said, and future experiments may use varying pressure and temperature to gauge effects.

“I think this is going to be a very interesting tool for further experiments and analyses that can answer a lot of questions that couldn’t be answered before,” Gross said. “This tool gives us the capability to get better resolution by three orders of magnitude than some other techniques, which has opened a very wide field for catalysis and surface-chemistry studies.”

Future studies could also conceivably combine infrared- and X-ray-based methods at the ALS to gather richer chemical information, researchers said. There are already plans for a new infrared beamline at the ALS that will increase the capacity and capabilities for infrared chemical studies and also launch infrared-based 3-D structural studies at the ALS.

The ALS is a DOE Office of Science User Facility. This work was supported by the DOE Office of Science.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Experiment Provides Deeper Look into the Nature of Neutrinos

The first glimpse of data from the full array of a deeply chilled particle detector operating beneath a mountain in Italy sets the most precise limits yet on where scientists might find a theorized process to help explain why there is more matter than antimatter in the universe.

Transparent Solar Technology Represents 'Wave of the Future'

See-through solar materials that can be applied to windows represent a massive source of untapped energy and could harvest as much power as bigger, bulkier rooftop solar units, scientists report today in Nature Energy.

Electricity From Shale Gas vs. Coal: Lifetime Toxic Releases From Coal Much Higher

Despite widespread concern about potential human health impacts from hydraulic fracturing, the lifetime toxic chemical releases associated with coal-generated electricity are 10 to 100 times greater than those from electricity generated with natural gas obtained via fracking, according to a new University of Michigan study.

Tiny Tornados at the Dawn of the Universe

Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity."

Taming 'Wild' Electrons in Graphene

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped. Until now, that is. Scientists at Rutgers University-New Brunswick have learned how to tame the unruly electrons in graphene, paving the way for the ultra-fast transport of electrons with low loss of energy in novel systems. Their study was published online in Nature Nanotechnology.

On-Demand 3-D Printing of Tiny Magic Wands

Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Cool Roofs Have Water Saving Benefits Too

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study by the Department of Energy's Lawrence Berkeley National Laboratory has found that cool roofs can also save water by reducing how much is needed for urban irrigation.

The Blob That Ate the Tokamak: Physicists Gain Understanding of How Bubbles at the Edge of Plasmas Can Drain Heat and Reduce Fusion Reaction Efficiency

Scientists at PPPL have completed new simulations that could provide insight into how blobs at the plasma edge behave. The simulations, produced by a code called XGC1 developed by a national team based at PPPL, performed kinetic simulations of two different regions of the plasma edge simultaneously.

Scientists Solve a Magnesium Mystery in Rechargeable Battery Performance

A Berkeley Lab-led research team has discovered a surprising set of chemical reactions involving magnesium that degrade battery performance even before the battery can be charged up. The findings could steer the design of next-gen batteries.


  • Filters

  • × Clear Filters

Four Argonne Researchers Appointed Fellows of Scientific Societies

A select group of scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory has been honored as fellows of the American Physical Society and the Electrochemical Society. Physicists Kawtar Hafidi and Michael Carpenter have been appointed as American Physical Society fellows and Materials Scientist Khalil Amine and Chemist Chris Johnson have been elected as Electrochemical Society fellows.

Berkeley Lab and Hydro-Quebec Announce Partnership for Transportation Electrification and Energy Storage

Hydro-Quebec and the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have agreed to explore collaborations toward the research and development of manufacturing and scale-up technology to advance transportation electrification and energy storage.

Two ORNL-Led Research Teams Receive $10.5 Million to Advance Quantum Computing for Scientific Applications

DOE's Office of Science has awarded two research teams, each headed by a member of ORNL's Quantum Information Science Group, more than $10 million over 5 years to both assess the feasibility of quantum architectures in addressing big science problems and to develop algorithms capable of harnessing the massive power predicted of quantum computing systems. The two projects are intended to work in concert to ensure synergy across DOE's quantum computing research spectrum and maximize mutual benefits.

Department of Energy Awards Flow Into Argonne

DOE Secretary Rick Perry awarded Argonne with nearly $4.7 million in projects as part of the DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) in September.

NIH Awards $6.5 Million to Berkeley Lab for Augmenting Structural Biology Research Experience

The NIH has awarded $6.5 million to Berkeley Lab to integrate existing synchrotron structural biology resources to better serve researchers. The grant will establish a center based at the Lab's Advanced Light Source (ALS) called ALS-ENABLE that will guide users through the most appropriate routes for answering their specific biological questions.

LIGO Announces Detection of Gravitational Waves From Colliding Neutron Stars

The U.S.-based Laser Interferometer Gravitational-Wave Observatory and the Virgo detector in Italy announced on Oct. 16 that all three of their detectors had picked up the ripples, or gravitational waves, from two neutron stars that collided 130 million years ago. Among other discoveries, the detection allowed scientists to use gravitational waves to directly calculate the rate at which the universe is expanding.

WVU Energy Conference to Address State's Economic Opportunities

West Virginia University will look at the state's emerging energy economy through industry experts, public policy organizations, environmental groups and academic institutions at the sixth annual National Energy Conference Oct. 20.

Exploring the Exotic World of Quarks and Gluons at the Dawn of the Exascale

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature's secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab) is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Matthew Latimer Receives 2017 Lytle Award

A staff member at the Department of Energy's SLAC National Acceleratory Laboratory, Matthew Latimer is in charge of seven spectroscopy beamlines at SSRL. He was recently selected for the 2017 Farrel W. Lytle Award, established by the SSRL Users' Organization Executive Committee. The award promotes accomplishments in synchrotron science and supports collaboration among visiting scientists and staff who conduct research at SSRL.

Jefferson Lab Completes 12 GeV Upgrade

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. The completion of the 12 GeV Upgrade Project of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) heralds this new era to image nuclei at their deepest level.


  • Filters

  • × Clear Filters

Hybrid Material Glows Like Jellyfish

Scientists combine biology, nanotechnology into composites that light up upon chemical stimulation.

Tiny Tornados at the Dawn of the Universe

Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity."

On-Demand 3-D Printing of Tiny Magic Wands

Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215