X
X
X

Filters:

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Kepler, Don't Give Up on the Hunt for Exomoons

Article ID: 669336

Released: 2017-02-13 06:05:52

Source Newsroom: Lawrence Livermore National Laboratory

  • This simulation shows two celestial bodies collide, ejecting enough debris into orbit to form a moon large enough for the Kelper spacecraft to detect.

The Kepler spacecraft has been prolific in its search for planets outside our solar system, known as exoplanets, discovering thousands since its launch in 2009. But the hunt for moons orbiting these exoplanets, or exomoons, is vastly more challenging. While no exomoons have been found to date, a new study shows that the search is not futile.

Researchers have demonstrated for the first time that it is possible for a planetary collision to form a moon large enough for Kepler to detect. Lawrence Livermore National Laboratory physicist Megan Bruk Syal and Amy Barr of the Planetary Science Institute conducted a series of around 30 simulations to explore how various factors affect moon creation. In the end, they were able to narrow in on a set of conditions that would create satellites much larger than the Earth’s moon. The study – “Formation of massive rocky exomoons by giant impact” – will appear in the May issue of the Royal Astronomical Society’s Monthly Notices.

“We weren’t modeling something that's been observed,” Syal said. “This problem was more abstract, more theoretical. It took a while, but once we were able to generate these massive moons, we were pretty excited.”

The leading thinking on the creation of Earth’s moon is that a planetoid the size of Mars collided with a smaller proto-Earth about 4.5 billion years ago, ejecting significant debris into orbit that consolidated into a disk and eventually the moon. The result was a satellite that is about 1.2 percent of Earth’s mass. But in order for an exomoon to be large enough for Kepler to detect with existing transit techniques, it would need to be at least 10 percent the size of the Earth, according to detection criteria from the “Hunt for Exomoons with Kepler” project.

Previous research on the Earth’s moon considered factors like the angle of impact and relative masses of colliding bodies. As the impact angle becomes more oblique, more material is injected into orbit. Similarly, as the two bodies approach equal size, the disk mass increases. But this study found that a third factor – impact velocity – also plays a crucial role in determining how large a moon an impact can create.

“Prior research has focused on a fairly narrow set of conditions, favorable to forming Earth’s moon,” Syal said. “This is the first study to consider a much wider array of impact scenarios, exploring the full range of what may be possible in other planetary systems. There is a lot of uncharted territory.”

Once impact velocity surpasses a certain threshold, the simulations show a precipitous drop in the amount of mass the disk can retain. By adjusting these three variables, Syal and Barr demonstrated a set of scenarios that would result in the creation of massive moons: A collision between like-sized objects that are 2 to 7 Earth masses, at an oblique impact angle, and velocity near escape speed can launch into orbit enough mass to create a satellite large enough to be detected in Kepler transit data. In the future, when exomoons are successfully observed, results from this study can be used to constrain their individual formation histories.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) provides solutions to our nation’s most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

- END -