X
X
X

Filters:

Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Filters:

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Filters:

Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.


Study: Soils Could Release Much More Carbon Than Expected as Climate Warms

Article ID: 670856

Released: 2017-03-08 14:05:45

Source Newsroom: Lawrence Berkeley National Laboratory

  • Credit: Berkeley Lab

    An innovative deep soil warming experiment in full swing. Scientist Caitlin Hicks Pries downloads soil temperature data while fellow Berkeley Lab scientists Cristina Castanha (left) and Neslihan Tas (middle) work on an experimental plot in the background.

Soils could release much more CO2 than expected into the atmosphere as the climate warms, according to new research by scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

Their findings are based on a field experiment that, for the first time, explored what happens to organic carbon trapped in soil when all soil layers are warmed, which in this case extend to a depth of 100 centimeters. The scientists discovered that warming both the surface and deeper soil layers at three experimental plots increased the plots’ annual release of CO2 by 34 to 37 percent over non-warmed soil. Much of the CO2 originated from deeper layers, indicating that deeper stores of carbon are more sensitive to warming than previously thought.

They report their work online March 9 in the journal Science.

The results shed light on what is potentially a big source of uncertainty in climate projections. Soil organic carbon harbors three times as much carbon as Earth’s atmosphere. In addition, warming is expected to increase the rate at which microbes break down soil organic carbon, releasing more CO2 into the atmosphere and contributing to climate change.

But, until now, the majority of field-based soil warming experiments only focused on the top five to 20 centimeters of soil—which leaves a lot of carbon unaccounted for. Experts estimate soils below 20 centimeters in depth contain more than 50 percent of the planet’s stock of soil organic carbon. The big questions have been: to what extent do the deeper soil layers respond to warming? And what does this mean for the release of CO2 into the atmosphere?

“We found the response is quite significant,” says Caitlin Hicks Pries, a postdoctoral researcher in Berkeley Lab’s Climate and Ecosystem Sciences Division. She conducted the research with co-corresponding author Margaret Torn, and Christina Castahna and Rachel Porras, who are also Berkeley Lab scientists.

“If our findings are applied to soils around the globe that are similar to what we studied, meaning soils that are not frozen or saturated, our calculations suggest that by 2100 the warming of deeper soil layers could cause a release of carbon to the atmosphere at a rate that is significantly higher than today, perhaps even as high as 30 percent of today’s human-caused annual carbon emissions depending on the assumptions on which the estimate is based,” adds Hicks Pries.

The need to better understand the response of all soil depths to warming is underscored by projections that, over the next century, deeper soils will warm at roughly the same rate as surface soils and the air. In addition, Intergovernmental Panel on Climate Change simulations of global average soil temperature, using a “business-as-usual” scenario in which carbon emissions rise in the decades ahead, predict that soil will warm 4° Celsius by 2100.

To study the potential impacts of this scenario, the Berkeley Lab scientists pioneered an innovative experimental setup at the University of California’s Blodgett Forest Research Station, which is located in the foothills of California’s Sierra Nevada mountains. The soil at the research station is representative of temperate forest soils, that in turn account for about 13.5 percent of soil area worldwide.

The scientists built their experiment around six soil plots that measure three meters in diameter. The perimeter of each plot was ringed with 22 heating cables that were vertically sunk more than two meters underground. They warmed three of the plots 4° Celsius for more than two years, leaving the other three plots unheated to serve as controls.

They monitored soil respiration three different ways over the course of the experiment. Each plot had an automated chamber that measured the flux of carbon at the surface every half hour. In addition, one day each month, Hicks Pries and the team measured surface carbon fluxes at seven different locations at each plot.

A third method probed the all-important underground realm. A set of stainless steel “straws” was installed below the surface at each plot. The scientists used the straws to measure CO2 concentrations once a month at five depths between 15 and 90 centimeters. By knowing these CO2 concentrations and other soil properties, they could model the extent to which each depth contributed to the amount of CO2 released at the surface.

They discovered that, of the 34 to 37 percent increase in CO2 released at the three warmed plots, 40 percent of this increase was due to CO2 that came from below 15 centimeters. They also found the sensitivity of soil to warming was similar across the five depths.

The scientists say these findings suggest the degree to which soil organic carbon influences climate change may be currently underestimated.

“There’s an assumption that carbon in the subsoil is more stable and not as responsive to warming as in the topsoil, but we’ve learned that’s not the case,” says Torn. “Deeper soil layers contain a lot of carbon, and our work indicates it’s a key missing component in our understanding of the potential feedback of soils to the planet’s climate.”

The research was supported by the Department of Energy’s Office of Science.

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.