X
X
X

Filters:

Ames Lab Scientists' Surprising Discovery: Making Ferromagnets Stronger by Adding Non-Magnetic Element

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium to a gadolinium-germanium alloy. It was so unlikely they called it a "counterintuitive experimental finding" in their published work on the research.

Cut U.S. Commercial Building Energy Use 29% with Widespread Controls

The U.S. could slash its energy use by the equivalent of what is currently used by 12 to 15 million Americans if commercial buildings fully used energy-efficiency controls nationwide.

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


High-Precision Calculations on Supercomputers Help Reveal the Physics of the Universe

Article ID: 670928

Released: 2017-03-09 11:05:22

Source Newsroom: Argonne National Laboratory

  • Credit: Taylor Childers

    With the theoretical framework developed at Argonne, researchers can more precisely predict particle interactions such as this simulation of a vector boson plus jet event.

On their quest to uncover what the universe is made of, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are harnessing the power of supercomputers to make predictions about particle interactions that are more precise than ever before.

Argonne researchers have developed a new theoretical approach, ideally suited for high-performance computing systems, that is capable of making predictive calculations about particle interactions that conform almost exactly to experimental data. This new approach could give scientists a valuable tool for describing new physics and particles beyond those currently identified.

The framework makes predictions based on the Standard Model, the theory that describes the physics of the universe to the best of our knowledge. Researchers are now able to compare experimental data with predictions generated through this framework, to potentially uncover discrepancies that could indicate the existence of new physics beyond the Standard Model. Such a discovery would revolutionize our understanding of nature at the smallest measurable length scales.

“So far, the Standard Model of particle physics has been very successful in describing the particle interactions we have seen experimentally, but we know that there are things that this model doesn’t describe completely. We don’t know the full theory,” said Argonne theorist Radja Boughezal, who developed the framework with her team.

“The first step in discovering the full theory and new models involves looking for deviations with respect to the physics we know right now. Our hope is that there is deviation, because it would mean that there is something that we don’t understand out there,” she said.

The theoretical method developed by the Argonne team is currently being deployed on Mira, one of the fastest supercomputers in the world, which is housed at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

Using Mira, researchers are applying the new framework to analyze the production of missing energy in association with a jet, a particle interaction of particular interest to researchers at the Large Hadron Collider (LHC) in Switzerland.

Physicists at the LHC are attempting to produce new particles that are known to exist in the universe but have yet to be seen in the laboratory, such as the dark matter that comprises a quarter of the mass and energy of the universe.

Although scientists have no way today of observing dark matter directly — hence its name — they believe that dark matter could leave a “missing energy footprint” in the wake of a collision that could indicate the presence of new particles not included in the Standard Model. These particles would interact very weakly and therefore escape detection at the LHC. The presence of a “jet”, a spray of Standard Model particles arising from the break-up of the protons colliding at the LHC, would tag the presence of the otherwise invisible dark matter.

In the LHC detectors, however, the production of a particular kind of interaction — called the Z-boson plus jet process — can mimic the same signature as the potential signal that would arise from as-yet-unknown dark matter particles. Boughezal and her colleagues are using their new framework to help LHC physicists distinguish between the Z-boson plus jet signature predicted in the Standard Model from other potential signals.

Previous attempts using less precise calculations to distinguish the two processes had so much uncertainty that they were simply not useful for being able to draw the fine mathematical distinctions that could potentially identify a new dark matter signal.

“It is only by calculating the Z-boson plus jet process very precisely that we can determine whether the signature is indeed what the Standard Model predicts, or whether the data indicates the presence of something new,” said Frank Petriello, another Argonne theorist who helped develop the framework. “This new framework opens the door to using Z-boson plus jet production as a tool to discover new particles beyond the Standard Model.”

Applications for this method go well beyond studies of the Z-boson plus jet. The framework will impact not only research at the LHC, but also studies at future colliders which will have increasingly precise, high-quality data, Boughezal and Petriello said.

“These experiments have gotten so precise, and experimentalists are now able to measure things so well, that it’s become necessary to have these types of high-precision tools in order to understand what’s going on in these collisions,” Boughezal said.

“We’re also so lucky to have supercomputers like Mira because now is the moment when we need these powerful machines to achieve the level of precision we’re looking for; without them, this work would not be possible.”

Funding and resources for this work was previously allocated through the Argonne Leadership Computing Facility’s (ALCF’s) Director’s Discretionary program; the ALCF is supported by the DOE’s Office of Science’s Advanced Scientific Computing Research program. Support for this work will continue through allocations coming from the Innovation and Novel Computational Impact on Theory and Experiment (INCITE) program.

The INCITE program promotes transformational advances in science and technology through large allocations of time on state-of-the-art supercomputers.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.