X
X
X

Filters:

Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Filters:

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Filters:

Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.


ARM Data Is for the Birds

Article ID: 671096

Released: 2017-03-13 12:05:00

Source Newsroom: Department of Energy, Office of Science

  • Credit: Image courtesy of iStock

    Scientists used wind measurements and bird distribution data to study how the animals make optimal use of available atmospheric conditions.

The Science

Birds are well attuned to weather and climate conditions, migrating south to warmer climates in the autumn and back north to their breeding grounds in the spring. Their aerial movements are influenced by atmospheric flows. Recently, scientists looked at how a large-scale atmospheric motion called the Great Plains Low-Level Jet impacts this behavior. The jet flows across the central United States. It consists of enhanced winds in the lowest few kilometers of the atmosphere following sunset. The winds persist into early morning. The jet produces tailwinds during spring as birds head north, but strong headwinds during autumn when they are heading south. It is not clear whether birds adjust their flight patterns to take advantage of the tailwinds or to avoid the headwinds. Using data from the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Oklahoma, scientists showed how birds and other aerial migrants exploit the jet for maximal wind assistance.

The Impact

Scientists suspected that the low-level jet plays a prominent role in defining migratory routes, but the flight strategies birds use with respect to these winds had not been examined. Understanding bird migration patterns is important for aviation safety and minimizing the impact of wind power development on birds. An investigation over Oklahoma during two spring and two autumn migration seasons shed light on the flight strategies. The scientists found that in general migrating organisms choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. In autumn, most typically fly below the jet. However, some aerial migrants will rapidly climb to reach altitudes above the inhibiting winds. The migration intensity was relatively constant throughout the spring due to predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.

Summary

The ARM Southern Great Plains site in Oklahoma is located in the “central flyway," one of the three main North American routes for seasonal bird migrations. The Great Plains Low-Level Jet is a prominent atmospheric flow spanning the latitudinal extent of the central United States from Mexico to Canada. This rapid stream of meridional winds has likely played a lasting role in nocturnal migration across the central United States. To explore interactions between the low-level jet and migrating birds, two independent data streams were needed: wind measurements and animal distributions. Wind retrievals from Doppler LIDAR are generally unaffected by scattering from birds or insects, yielding true atmospheric motions. While designed for measuring cloud particles, the Ka-band ARM zenith radar (KAZR) also observes scattering signals from flying organisms such as birds, bats, and insects. The team used KAZR radar reflectivity below 2 km as a proxy for animal density. Because the specifications of the radar were designed for clouds, not birds, definitely delineating between birds and insects in the signal was not possible, so the study refers to these organisms generally as “migrants” although birds likely dominate the signal (due to their much larger scattering cross section). In this study, scientists combined the ARM Doppler LIDAR and KAZR measurements over two years to examine whether the low-level jet influences the choice of migration flight altitude. In particular, the team examined whether the seasonal shift in migration direction results in seasonal differences in altitude selection; whether the nightly variability in jet speed, direction, and altitude affect the overall abundance of migrating organisms in the airspace; and whether there are seasonal differences in migratory decision making with respect to low-level jet conditions. The scientists found that the altitude at which migrants choose to fly does appear to depend on the presence, height, and favorability of low-level jet winds. Specifically, seasonally favorable jets promote enhanced migration activity through the depth of the favorable wind layers. Unfavorable jets motivated avoidance behaviors such as flying at an altitude that minimizes the impact of the southerly jet winds or delaying migration until conditions that are more favorable occur. Overall, the results suggest that aerial migrants in the U.S. Great Plains region exploit the low-level jet for maximal wind assistance.

Funding

The LIDAR and Ka-band radar data were obtained from the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy Office of Science user facility sponsored by the Office of Biological and Environmental Research. This work was partially supported by National Science Foundation grant EF-1340921.

Publications

C.E. Wainwright, P.M. Stepanian, and K.G. Horton, “The role of the U.S. Great Plains low-level jet in nocturnal migrant behavior.” International Journal of Biometeorology 60(10), 1531-42 (2016). [DOI: 10.1007/s00484-016-1144-9]