Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-04-11 13:05:26
  • Article ID: 672945

Brookhaven Lab-Led Research Aims to Develop Protections Against Chemical Warfare Agents

  • Credit: Brookhaven National Lab photo

    Anatoly Frenkel

  • Members of the project team are, from left, Anatoly Frenkel (Stony Brook University, BNL), John Morris (Virginia Tech), Gregory Peterson (ECBC), Robert Botto (DTRA), Jamal Musaev (Emory University), Robert Chapleski (Virginia Tech), Diego Troya (Virginia Tech), Chris Karwacki (ECBC), Conor Sharp (Virginia Tech), Craig Hill (Emory University), Sanjaya Senanayake (BNL), Wesley Gordon (ECBC), Mark Mitchell (Kennesaw State University), and Weiwei Guo (Emory University).

Chemical warfare agents that could be deployed against both soldiers and civilians have been a grave concern since World War I, when they were first used. Research on methods to defeat these weapons has been a focus of scientists since that time. Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are participating in a collaborative effort to study how the use of zirconium (Zr)-based metal organic frameworks (MOFs) and niobium (Nb)-based polyoxometalates (POMs) may be effectively used in gas masks to capture and decompose dangerous chemical agents like Sarin, notably used in a subway terrorist attack in Japan in 1995.

Results of the research were recently published in two separate scientific papers published in the December 30, 2016 issue of the Journal of the American Chemical Society and in the April 10, 2017 issue of the journal Scientific Reports.

Both investigations were carried out by collaborative teams led by Anatoly Frenkel, a joint appointee in Brookhaven Lab’s Chemistry Division and the Materials Science and Chemical Engineering Department at Stony Brook University. The teams used Brookhaven Lab’s National Synchrotron Light Source (NSLS) and its successor, NSLS-II, the Stanford Synchrotron Radiation Lightsource (SSRL), and Argonne National Laboratory’s Advanced Photon Source (APS)—all DOE Office of Science User Facilities—to conduct probes on how the MOFs and POMs interact with dimethyl methyl-phosphonate (DMMP), a low-toxicity simulant of Sarin.

“As shown in previous studies—notably by the groups of J. Hupp and O. Farha in Nature Materials (2015) 14, 512—MOFs can be effective for the degradation of nerve agents and their simulants,” said Frenkel. “Our team developed an in situ, multimodal approach, using synchrotron diffraction and absorption facilities, that allowed us to investigate the uptake of the simulant into the MOF pores and the simulant decomposition by the MOF. In the case of POMs, we uncovered the mechanism of DMMP decomposition and the specific roles of niobium-oxygen bonds for this process.”

The MOF is somewhat like a sponge that not only uptakes DMMP but also decomposes it and keeps it from reentering the airstream. In the case of POMs, the polyoxoniobate also breaks down the DMMP, but the products of decomposition remain strongly bound to the POMs. Frenkel says this research highlights the need for new approaches that address product inhibition, and may lead to innovations in the new design of protective materials for gas masks.

“Three years ago, a group of scientists got together and decided to investigate the mechanisms of filtration at a new level of detail — at the level of single atoms and molecules — and this is where Brookhaven’s facilities were uniquely useful,” Frenkel said. “We have the ability to study the geometric structural environment of atoms and molecules at a broad range of scales and times. And we can do it under conditions similar to those in which these filtration materials operate.”

"Such a complex problem requires a highly interdisciplinary approach to the science," said John Morris, a professor of chemistry at Virginia Tech, surface scientist, and lead PI on the grant that supports this work.

This interdisciplinary approach is evident in both papers. MOFs are a novel class of materials with a very porous structure and a large surface area that enables them to act as sponges, taking in chemicals or any ambient molecules from the airstream. Prior research showed that zirconium oxides had enhanced adsorption qualities and the ability to bind chemicals, so it was chosen as the main element. Four different MOFs were tested, each with different structural details that would allow researchers to better understand which might make a good filtration material. Differences included pore size and number of connections.

Since Brookhaven Lab is not designed for handling real chemical warfare agents, the researchers used DMMP, a simulant that imitates Sarin’s chemical properties but without its biological toxicity, allowing it to be used safely in laboratory studies on the action of filtration materials.

 Anna Plonka, a member of Frenkel’s group and the first author in the first paper, used the XPD beamline at NSLS-II and 17-BM beamline at APS to conduct x-ray diffraction measurements. Those measurements provided evidence that DMMP entered the MOF, but the method did not have sufficient sensitivity to investigate the decomposition of DMMP.

“Using diffraction beamlines at APS and NSLS-II, we were able to answer two questions: First, did DMMP molecules enter MOFs or not?” Frenkel said. “By comparing the diffraction data before and after the MOFs were exposed to DMMP, we could see that the pore size increased after the exposure, but it was not direct evidence that DMMP entered the pores. So we asked the second question: Can we capture the image of DMMP molecules inside the pores—in other words, catching it red-handed?”

For that, the scientists used a technique called a Difference Density Map, which showed the crystallographic structure of the MOF with evidence of foreign objects inside.

“What we see using this method is, so to speak, ‘shadows’ of DMMP, signaling that it is inside the MOFs,” said Frenkel. “Furthermore, we noticed that the DMMP shadows were present near zirconium clusters. That fact, along with our knowledge that zirconium species may be catalytically active, pointed towards a possibility that the DMMP decomposition occurred as a result of interaction with Zr clusters.”

To verify this hypothesis, the scientists analyzed the local structure around zirconium atoms during the exposure of the MOFs to DMMP. For that they used EXAFS, a spectroscopy technique that is sensitive to very small scales of distance around each atomic species that absorb x-rays. This work, performed at SSRL, demonstrated that the Zr environment was perturbed when DMMP was added to the reaction volume, thus confirming the hypothesis. Overall, the research shows the important role of both the MOF porosity and the Zr centers in adsorbing and binding the DMMP, and provides guidance for the design of improved filtration materials based on MOF structures.

The second article, describing POMs, follows a similar approach – a combination of in situ EXAFS, in situ Raman spectroscopy, and calculations by Density Functional Theory. The EXAFS and Raman experiments were performed by Qi Wang, a scientist in Frenkel’s group and the first author in the paper.

Both projects involved collaboration with synthetic chemists in the Craig Hill group at Emory University, and Wesley Gordon and Alex Balboa, scientists at the U.S. Army’s Edgewood Chemical and Biological Center in Aberdeen, Maryland. Brookhaven chemist Sanjaya Senanayake and Nebojsa Marinkovic, a staff scientist at the Synchrotron Catalysis Consortium, also contributed to the in situ studies. In addition, collaboration with computational chemists at Virginia Tech, led by Diego Troya, provided insights on the molecular interactions with the MOF and POM materials.

“Obtaining atomic-level insight of any catalytic process is extremely challenging because changes occur very quickly and structural transformations during the reaction are very subtle,” said Troya. “The accuracy of current computational-chemistry approaches to catalysis is reasonable, but requires use of models that need careful calibration. The measurements performed at Brookhaven provided a unique set of experimental data with which the validity of the computational models for nerve-agent decomposition on POMs could be tested. From the synergy between the simulations and the measurements, the atom-level hydrolysis mechanism of toxic nerve agents with POMs was revealed for the first time. The mechanism describes not only the transformation of the nerve agent during reaction, but also structural and electronic changes to the few atoms of the catalyst that directly participate in the reaction.”

The interdisciplinary team also includes experts in infrared spectroscopy in the Mark Mitchell group at Kennesaw State University, and computational chemists at Emory University, led by Djamaladdin (Jamal) Musaev. They provided important insights on the molecular interactions with the MOF and POM materials. Together, the team is advancing the understanding of the use of MOFs and POMs in detoxification of gases.

The research was funded by the Defense Threat Reduction Agency. Operations at NSLS-II, APS, and SSRL are supported by DOE’s Office of Science (BES).

X
X
X
  • Filters

  • × Clear Filters

Laser-Free Method of Ion Cooling Has Range of Potential Uses

Prof. Daniel Zajfman's universal ion trap cools to a tenth of a degree above absolute zero. The new method does not depend on the type or the weight of the ion and, thus, might be used to investigate the properties of large biological molecules or nanoparticles, among other things.

Tiny Lasers from a Gallery of Whispers

Whispering gallery mode resonators rely on a phenomenon similar to an effect observed in circular galleries, and the same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week in APL Photonics, investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths.

Copper Catalyst Yields High Efficiency CO2-to-Fuels Conversion

Berkeley Lab scientists have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of a creating a clean chemical manufacturing system that can put carbon dioxide to good use.

Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene

Berkeley Lab scientists have harnessed the power of photosynthesis to convert carbon dioxide into fuels and alcohols at efficiencies far greater than plants. The achievement marks a significant advance in the effort to move toward sustainable sources of fuel.

New Evidence for Small, Short-Lived Drops of Early Universe Quark-Gluon Plasma?

UPTON, NY--Particles emerging from even the lowest energy collisions of small deuterons with large heavy nuclei at the Relativistic Heavy Ion Collider (RHIC)--a U.S. Department of Energy Office of Science User Facility for nuclear physics research at DOE's Brookhaven National Laboratory--exhibit behavior scientists associate with the formation of a soup of quarks and gluons, the fundamental building blocks of nearly all visible matter.

New Insights Into Nanocrystal Growth in Liquid

PNNL researchers have measured the forces that cause certain crystals to assemble, revealing competing factors that researchers might be able to control. The work has a variety of implications in both discovery and applied science. In addition to providing insights into the formation of minerals and semiconductor nanomaterials, it might also help scientists understand soil as it expands and contracts through wetting and drying cycles.

Discovery Could Reduce Nuclear Waste with Improved Method to Chemically Engineer Molecules

A new chemical principle discovered by scientists at Indiana University has the potential to revolutionize the creation of specially engineered molecules whose uses include the reduction of nuclear waste and the extraction of chemical pollutants from water and soil.

Biologist Reaches Into Electric Eel Tank, Comes Out with Equation to Measure Shocks

Vanderbilt University researcher Ken Catania stuck his arm into a tank with small electric eel 10 times -- the only way to get accurate measurements of the circuit created by animal, arm and water.

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

New Study on Graphene-Wrapped Nanocrystals Makes Inroads Toward Next-Gen Fuel Cells

A new Berkeley Lab-led study provides insight into how an ultrathin coating can enhance the performance of graphene-wrapped nanocrystals for hydrogen storage applications.


  • Filters

  • × Clear Filters

Wayne State Receives $1.2 Million NSF Grant to Develop Autonomous Battery Operating System

Researchers at Wayne State University led by Nathan Fisher, associate professor of computer science in the College of Engineering, received a $1.2 million grant from the National Science Foundation to address the need for effective, integrative battery operating systems that provide sustained and reliable power.

UAH leads effort that secures $20 million grant from the National Science Foundation

A partnership comprising nine universities in Alabama, including The University of Alabama in Huntsville (UAH) as the lead institution, has been awarded a $20 million, five-year grant by the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR).

Sandia Labs Wins 5 Regional Technology Transfer Awards

Sandia National Laboratories won five awards from the 2017 Federal Laboratory Consortium for its work to develop and commercialize innovative technologies.

Tulane Receives Grant to Reduce Auto Emissions

Members of Tulane University's Shantz Lab will work with industrial scientists to assist in the development of next-generation materials designed to reduce harmful automotive emissions. The three-year old lab and its group of students have received a grant and equipment resources from SACHEM, Inc., a chemical science company.

Lab Leads New Effort in Materials Development

Lawrence Livermore National Lab will be part of a multi-lab effort to apply high-performance computing to US-based industry's discovery, design, and development of materials for severe environments under a new initiative announced by the Department of Energy (DOE) on Sept. 19.

ORNL Innovation Crossroads Program Opens Second Round of Energy Entrepreneurial Fellowships

Entrepreneurs are invited to apply for the second round of Oak Ridge National Laboratory's Innovation Crossroads program.

Los Alamos Recognized as Top Diversity Employer

For the second straight year, Los Alamos National Laboratory was recognized as a top diversity employer by LATINA Style and STEM Workforce Diversity magazine.

SLAC-Led Project Will Use Artificial Intelligence to Prevent or Minimize Electric Grid Failures

A project led by the Department of Energy's SLAC National Accelerator Laboratory will combine artificial intelligence with massive amounts of data and industry experience from a dozen U.S. partners to identify places where the electric grid is vulnerable to disruption, reinforce those spots in advance and recover faster when failures do occur.

Chaudhuri named Director of Manufacturing Science and Engineering at Argonne National Laboratory

Argonne National Laboratory announces the appointment of Santanu Chaudhuri, Ph.D., as the Director of the Laboratory's new Manufacturing Science and Engineering initiative, effective Sept. 14, 2017

Boise State Researchers Earn Grants to Manufacture Sensors for Nuclear Reactors, Space

National grants will be used to purchase advanced manufacturing equipment needed to build sensors suitable for extreme environments.


  • Filters

  • × Clear Filters

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

First Look at a Living Cell Membrane

Neutrons provide the solution to nanoscale examination of living cell membrane and confirm the existence of lipid rafts.

High Yield Biomass Conversion Strategy Ready for Commercialization

Researchers convert 80 percent of biomass into high-value products with strategy that's ready for commercialization.

Consequences of Drought Stress on Biofuels

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation and resulting biofuel production.

Clay Minerals and Metal Oxides Change How Uranium Travels Through Sediments

Montmorillonite clays prevent uranium from precipitating from liquids, letting it travel with groundwater.

Tundra Loses Carbon with Rapid Permafrost Thaw

Seven-year-study shows plant growth does not sustainably balance carbon losses from solar warming and permafrost thaw.

Crystals Grow by Twisting, Aligning and Snapping Together

Van der Waals force, which that enables tiny crystals to grow, could be used to design new materials.

Vitamin B12 Fuels Microbial Growth

Scarce compound, vitamin B12, is key for cellular metabolism and may help shape microbial communities that affect environmental cycles and bioenergy production.

Carbon in Floodplain Unlikely to Cycle into the Atmosphere

Microbes leave a large fraction of carbon in anoxic sediments untouched, a key finding for understanding how watersheds influence Earth's ecosystem.

Bacterial Cell Wall Changes Produce More Fatty Molecules

New strategy greatly increases the production and secretion of biofuel building block lipids in bacteria able to grow at industrial scales.


Spotlight

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215