Doe Science news source

The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-04-11 13:05:26
  • Article ID: 672945

Brookhaven Lab-Led Research Aims to Develop Protections Against Chemical Warfare Agents

  • Credit: Brookhaven National Lab photo

    Anatoly Frenkel

  • Members of the project team are, from left, Anatoly Frenkel (Stony Brook University, BNL), John Morris (Virginia Tech), Gregory Peterson (ECBC), Robert Botto (DTRA), Jamal Musaev (Emory University), Robert Chapleski (Virginia Tech), Diego Troya (Virginia Tech), Chris Karwacki (ECBC), Conor Sharp (Virginia Tech), Craig Hill (Emory University), Sanjaya Senanayake (BNL), Wesley Gordon (ECBC), Mark Mitchell (Kennesaw State University), and Weiwei Guo (Emory University).

Chemical warfare agents that could be deployed against both soldiers and civilians have been a grave concern since World War I, when they were first used. Research on methods to defeat these weapons has been a focus of scientists since that time. Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are participating in a collaborative effort to study how the use of zirconium (Zr)-based metal organic frameworks (MOFs) and niobium (Nb)-based polyoxometalates (POMs) may be effectively used in gas masks to capture and decompose dangerous chemical agents like Sarin, notably used in a subway terrorist attack in Japan in 1995.

Results of the research were recently published in two separate scientific papers published in the December 30, 2016 issue of the Journal of the American Chemical Society and in the April 10, 2017 issue of the journal Scientific Reports.

Both investigations were carried out by collaborative teams led by Anatoly Frenkel, a joint appointee in Brookhaven Lab’s Chemistry Division and the Materials Science and Chemical Engineering Department at Stony Brook University. The teams used Brookhaven Lab’s National Synchrotron Light Source (NSLS) and its successor, NSLS-II, the Stanford Synchrotron Radiation Lightsource (SSRL), and Argonne National Laboratory’s Advanced Photon Source (APS)—all DOE Office of Science User Facilities—to conduct probes on how the MOFs and POMs interact with dimethyl methyl-phosphonate (DMMP), a low-toxicity simulant of Sarin.

“As shown in previous studies—notably by the groups of J. Hupp and O. Farha in Nature Materials (2015) 14, 512—MOFs can be effective for the degradation of nerve agents and their simulants,” said Frenkel. “Our team developed an in situ, multimodal approach, using synchrotron diffraction and absorption facilities, that allowed us to investigate the uptake of the simulant into the MOF pores and the simulant decomposition by the MOF. In the case of POMs, we uncovered the mechanism of DMMP decomposition and the specific roles of niobium-oxygen bonds for this process.”

The MOF is somewhat like a sponge that not only uptakes DMMP but also decomposes it and keeps it from reentering the airstream. In the case of POMs, the polyoxoniobate also breaks down the DMMP, but the products of decomposition remain strongly bound to the POMs. Frenkel says this research highlights the need for new approaches that address product inhibition, and may lead to innovations in the new design of protective materials for gas masks.

“Three years ago, a group of scientists got together and decided to investigate the mechanisms of filtration at a new level of detail — at the level of single atoms and molecules — and this is where Brookhaven’s facilities were uniquely useful,” Frenkel said. “We have the ability to study the geometric structural environment of atoms and molecules at a broad range of scales and times. And we can do it under conditions similar to those in which these filtration materials operate.”

"Such a complex problem requires a highly interdisciplinary approach to the science," said John Morris, a professor of chemistry at Virginia Tech, surface scientist, and lead PI on the grant that supports this work.

This interdisciplinary approach is evident in both papers. MOFs are a novel class of materials with a very porous structure and a large surface area that enables them to act as sponges, taking in chemicals or any ambient molecules from the airstream. Prior research showed that zirconium oxides had enhanced adsorption qualities and the ability to bind chemicals, so it was chosen as the main element. Four different MOFs were tested, each with different structural details that would allow researchers to better understand which might make a good filtration material. Differences included pore size and number of connections.

Since Brookhaven Lab is not designed for handling real chemical warfare agents, the researchers used DMMP, a simulant that imitates Sarin’s chemical properties but without its biological toxicity, allowing it to be used safely in laboratory studies on the action of filtration materials.

 Anna Plonka, a member of Frenkel’s group and the first author in the first paper, used the XPD beamline at NSLS-II and 17-BM beamline at APS to conduct x-ray diffraction measurements. Those measurements provided evidence that DMMP entered the MOF, but the method did not have sufficient sensitivity to investigate the decomposition of DMMP.

“Using diffraction beamlines at APS and NSLS-II, we were able to answer two questions: First, did DMMP molecules enter MOFs or not?” Frenkel said. “By comparing the diffraction data before and after the MOFs were exposed to DMMP, we could see that the pore size increased after the exposure, but it was not direct evidence that DMMP entered the pores. So we asked the second question: Can we capture the image of DMMP molecules inside the pores—in other words, catching it red-handed?”

For that, the scientists used a technique called a Difference Density Map, which showed the crystallographic structure of the MOF with evidence of foreign objects inside.

“What we see using this method is, so to speak, ‘shadows’ of DMMP, signaling that it is inside the MOFs,” said Frenkel. “Furthermore, we noticed that the DMMP shadows were present near zirconium clusters. That fact, along with our knowledge that zirconium species may be catalytically active, pointed towards a possibility that the DMMP decomposition occurred as a result of interaction with Zr clusters.”

To verify this hypothesis, the scientists analyzed the local structure around zirconium atoms during the exposure of the MOFs to DMMP. For that they used EXAFS, a spectroscopy technique that is sensitive to very small scales of distance around each atomic species that absorb x-rays. This work, performed at SSRL, demonstrated that the Zr environment was perturbed when DMMP was added to the reaction volume, thus confirming the hypothesis. Overall, the research shows the important role of both the MOF porosity and the Zr centers in adsorbing and binding the DMMP, and provides guidance for the design of improved filtration materials based on MOF structures.

The second article, describing POMs, follows a similar approach – a combination of in situ EXAFS, in situ Raman spectroscopy, and calculations by Density Functional Theory. The EXAFS and Raman experiments were performed by Qi Wang, a scientist in Frenkel’s group and the first author in the paper.

Both projects involved collaboration with synthetic chemists in the Craig Hill group at Emory University, and Wesley Gordon and Alex Balboa, scientists at the U.S. Army’s Edgewood Chemical and Biological Center in Aberdeen, Maryland. Brookhaven chemist Sanjaya Senanayake and Nebojsa Marinkovic, a staff scientist at the Synchrotron Catalysis Consortium, also contributed to the in situ studies. In addition, collaboration with computational chemists at Virginia Tech, led by Diego Troya, provided insights on the molecular interactions with the MOF and POM materials.

“Obtaining atomic-level insight of any catalytic process is extremely challenging because changes occur very quickly and structural transformations during the reaction are very subtle,” said Troya. “The accuracy of current computational-chemistry approaches to catalysis is reasonable, but requires use of models that need careful calibration. The measurements performed at Brookhaven provided a unique set of experimental data with which the validity of the computational models for nerve-agent decomposition on POMs could be tested. From the synergy between the simulations and the measurements, the atom-level hydrolysis mechanism of toxic nerve agents with POMs was revealed for the first time. The mechanism describes not only the transformation of the nerve agent during reaction, but also structural and electronic changes to the few atoms of the catalyst that directly participate in the reaction.”

The interdisciplinary team also includes experts in infrared spectroscopy in the Mark Mitchell group at Kennesaw State University, and computational chemists at Emory University, led by Djamaladdin (Jamal) Musaev. They provided important insights on the molecular interactions with the MOF and POM materials. Together, the team is advancing the understanding of the use of MOFs and POMs in detoxification of gases.

The research was funded by the Defense Threat Reduction Agency. Operations at NSLS-II, APS, and SSRL are supported by DOE’s Office of Science (BES).

X
X
X
  • Filters

  • × Clear Filters

What's On Your Skin? Archaea, That's What

It turns out your skin is crawling with single-celled microorganisms - (break)and they're not just bacteria. A study by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with age.

Magnetic Particles that Flock Like Birds

Tracking movements of individual particles provides understanding of collective motions, synchronization and self-assembly.

'On Your Mark, Get Set' Neutrons Run Enzyme's Reactivity for Better Biofuel Production

Producing biofuels like ethanol from plant materials requires various enzymes to break down the cellulosic fibers. Researchers from ORNL and NC State used neutrons to identify the specifics of an enzyme-catalyzed reaction that could significantly reduce the total amount of enzymes used, improving production processes and lowering costs.

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

Microbe Mystery Solved: What Happened to the Deepwater Horizon Oil Plume

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 is one of the most studied spills in history, yet scientists haven't agreed on the role of microbes in eating up the oil. Now a research team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has identified all of the principal oil-degrading bacteria as well as their mechanisms for chewing up the many different components that make up the released crude oil.

New Class of 'Soft' Semiconductors Could Transform HD Displays

New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more. They have shown that a class of "soft" semiconductors can be used to emit multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers. The work could challenge quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light.

Could This Strategy Bring High-Speed Communications to the Deep Sea?

A new strategy for sending acoustic waves through water could potentially open up the world of high-speed communications to divers, marine research vessels, remote ocean monitors, deep sea robots, and submarines. By taking advantage of the dynamic rotation generated as the acoustic wave travels, also known as its orbital angular momentum, Berkeley Lab researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

2-D Material's Traits Could Send Electronics R&D Spinning in New Directions

Researchers created an atomically thin material at Berkeley Lab and used X-rays to measure its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as "spintronics."

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.


  • Filters

  • × Clear Filters

Yi Cui Named Blavatnik National Laureate

Pioneering nanoscientist Yi Cui, professor of materials science and engineering at Stanford University and of photon science at the Department of Energy's SLAC National Accelerator Laboratory, has been named a 2017 Blavatnik National Laureate. The $250,000 award recognizes the most promising researchers age 42 and younger at top U.S. academic and research institutions.

Protein Data Takes Significant Step Forward in Medicine

Scientists at the Pacific Northwest National Laboratory and Oregon Health & Science University are part of a nationwide effort to learn more about the role of proteins in cancer biology and to use that information to benefit cancer patients.

The Electrochemical Society and Toyota North America Announce 2017-2018 Fellowship Winners for Projects in Green Energy Technology

The ECS Toyota Young Investigator Fellowship Selection Committee has chosen three winners who will receive $50,000 fellowship awards each for projects in green energy technology. The awardees are Dr. Ahmet Kusoglu, Lawrence Berkeley National Laboratory; Professor Julie Renner, Case Western Reserve University; and Professor Shuhui Sun, Institut National de la Rechersche Scientifique (INRS).

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.


  • Filters

  • × Clear Filters

Magnetic Particles that Flock Like Birds

Tracking movements of individual particles provides understanding of collective motions, synchronization and self-assembly.

Graphene Ribbons Result in 100-Fold Increase in Gold Catalyst's Performance

Bottom-up synthesis of tunable carbon nanoribbons provides a new route to enhance industrial, automotive reactions.

Breaking the Rules to Make Electricity from Waste Heat

More atomic bonds is the key for performance in a newly discovered family of cage-structured compounds.

Magnetic Curve Balls

A twisted array of atomic magnets were driven to move in a curved path, a needed level of control for use in future memory devices.

New "Gold Standard" for Flexible Electronics

Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.

New Class of Porous Materials Better Separates Carbon Dioxide from Other Gases

Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.

Manipulating Earth-Abundant Materials to Harness the Sun's Energy

New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.


Spotlight

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215