Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-04-19 14:50:57
  • Article ID: 673270

Rare Supernova Discovery Ushers in New Era for Cosmology

Berkeley Lab Astrophysicists Develop Novel Method for Finding Gravitationally Lensed Type Ia Supernovae

  • Credit: (Image Credit: Joel Johansson, Stockholm University)

    This composite image shows the gravitationally lensed type Ia supernova iPTF16geu, as seen with different telescopes. The background image shows a wide-field view of the night sky as seen with the Palomar Observatory located on Palomar Mountain, California. Far Left Image: Captured by the Sloan Digital Sky Survey, this optical light observation shows the lens galaxy and its surrounding environment in the sky. Center Left Image: Captured by the Hubble Space Telescope, this is a 20x zoom infrared image of the lens galaxy. Center Right Image: Captured by the Hubble Space Telescope, this 5x optical light zoom reveals the four gravitationally lensed images of iPTF16geu. Far Right Image: Captured by the Keck Telescope, this infrared observation features the four gravitationally lensed images of iPTF16geu and the gravitational “arc” of its host galaxy.

With the help of an automated supernova-hunting pipeline and a galaxy sitting 2 billion light years away from Earth that’s acting as a “magnifying glass,’’ astronomers have captured multiple images of a Type Ia supernova—the brilliant explosion of a star—appearing in four different locations on the sky. So far this is the only Type Ia discovered that has exhibited this effect.

 This phenomenon called ‘gravitational lensing’ is an effect of Einstein’s Theory of Relativity—mass bends light. This means that the gravitational field of a massive object—like a galaxy—can bend light rays that pass nearby and refocus them somewhere else, causing background objects to appear brighter and sometimes in multiple locations. Astrophysicists believe that if they can find more of these magnified Type Ia’s, they may be able to measure the rate of the Universe’s expansion to unprecedented accuracy and shed some light on the distribution of matter in the cosmos.

 Fortunately, by taking a closer look at the properties of this rare event, two Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have come up with a method—a pipeline— for identifying more of these so-called “strongly lensed Type Ia supernovae” in existing and future wide-field surveys. A paper describing their approach was recently published in the Astrophysical Journal Letters. Meanwhile, a paper detailing the discovery and observations of the 4 billion year old Type Ia supernova, iPTF16geu, will be published in Science on April 21.

“It is extremely difficult to find a gravitationally lensed supernova, let alone a lensed Type Ia. Statistically, we suspect that there may be approximately one of these in every 50,000 supernovae that we identify,” says Peter Nugent, an astrophysicist in Berkeley Lab’s Computational Research Division (CRD) and an author on both papers. “But since the discovery of iPTF16geu, we now have some thoughts on how to improve our pipeline to identify more of these events.”

Cosmic Surprise Sheds New Light on Cosmology

For many years, the transient nature of supernovae made them extremely difficult to detect. Thirty years ago, the discovery rate was about two per month. But thanks to the Intermediate Palomar Transient Factory (iPTF), a new survey with an innovative pipeline, these events are being detected daily, some within hours of when their initial explosions appear.

The process of identifying transient events, like supernovae, begins every night at the Palomar Observatory in Southern California, where a wide-field camera mounted on the robotic Samuel Oschin Telescope scans the sky. As soon as observations are taken, the data travel more than 400 miles to the Department of Energy’s (DOE’s) National Energy Research Scientific Computing Center (NERSC), which is located at Berkeley Lab. At NERSC, machine learning algorithms running on the facility’s supercomputers sift through the data in real-time and identify transients for researchers to follow up on.

On September 5, 2016, the pipeline identified iPTF16geu as a supernova candidate. At first glance, the event didn’t look particularly out of the ordinary. Nugent notes that many astronomers thought it was just a typical Type Ia supernova sitting about 1 billion light years away from Earth.

 Like most supernovae that are discovered relatively early on, this event got brighter with time. Shortly after it reached peak brightness (19th magnitude) Stockholm University Professor in Experimental Particle Astrophysics Ariel Goobar decided to take a spectrum—or detailed light study—of the object. The results confirmed that the object was indeed a Type Ia supernova, but they also showed that, surprisingly, it was located 4 billion light years away. A second spectrum taken with the OSIRIS instrument on the Keck telescope on Mauna Kea, Hawaii, showed without a doubt that the supernova was 4 billion light years away, and also revealed its host galaxy and another galaxy located about 2 billion light years away that was acting as a gravitational lens, which amplified the brightness of the supernova and caused it to appear in four different places on the sky.

“I’ve been looking for a lensed supernova for about 15 years. I looked in every possible survey, I’ve tried a variety of techniques to do this and essentially gave up, so this result came as a huge surprise,” says Goobar, who is lead author of the Science paper. “One of the reasons I’m interested in studying gravitational lensing is that it allows you to measure the structure of matter—both visible and dark matter—at scales that are very hard to get.”

According to Goobar, the survey at Palomar was set up to look at objects in the nearby Universe, about 1 billion light years away. But finding a distant Type Ia supernova in this survey allowed researchers to follow up with even more powerful telescopes that resolved small-scale structures in the supernova host galaxy, as well as the lens galaxy that is magnifying it.

 “There are billions of galaxies in the observable universe and it takes a tremendous effort to look in a very small patch of the sky to find these kind of events. It would be impossible to find an event like this without a magnified supernova directing you where to look,” says Goobar. “We got very lucky with this discovery because we can see the small scale structures in these galaxies, but we won’t know how lucky we are until we find more of these events and confirm that what we are seeing isn’t an anomaly.”

 Another benefit of finding more of these events is that they can be used as tools to precisely measure the expansion rate of the Universe. One of the keys to this is gravitational lensing. When a strong gravitational lens produces multiple images of a background object, each image's light travels a slightly different path around the lens on its way to Earth. The paths have different lengths, so light from each image takes a different amount of time to arrive at Earth.

 “If you measure the arrival times of the different images, that turns out to be a good way to measure the expansion rate of the Universe,” says Goobar. “When people measure the expansion rate of the Universe now locally using supernovae or Cepheid stars they get a different number from those looking at early universe observations and the cosmic microwave background. There is tension out there and it would be neat if we could contribute to resolving that quest.”

New Methods Sniff Out Lensed Supernovae

 According to Danny Goldstein, a UC Berkeley astronomy graduate student and an author of the Astrophysical Journal letter, there have only been a few gravitationally lensed supernovae of any type ever discovered, including iPTF16geu, and they’ve all been discovered by chance.

“By figuring out how to systematically find strongly lensed Type Ia supernovae like iPTF16geu, we hope to pave the way for large-scale lensed supernova searches, which will unlock the potential of these objects as tools for precision cosmology,” says Goldstein, who worked with Nugent to devise a method of for finding them in existing and upcoming wide-field surveys.  

 The key idea of their technique is to use the fact that Type Ia supernovae are “standard candles”—objects with the same intrinsic brightness—to identify ones that are magnified by lensing. They suggest starting with supernovae that appear to go off in red galaxies that have stopped forming stars. These galaxies only host Type Ia supernovae and make up the bulk of gravitational lenses. If a supernova candidate that appears to be hosted in such a galaxy is brighter than the "standard" brightness of a Type Ia supernova, Goldstein and Nugent argue that there is a strong chance the supernova does not actually reside in the galaxy, but is instead a background supernova lensed by the apparent host.

“One of the innovations of this method is that we don’t have to detect multiple images to infer that a supernova is lensed,” says Goldstein. “This is a huge advantage that should enable us to find more of these events than previously thought possible."

 Using this method, Nugent and Goldstein predict that the upcoming Large Synoptic Survey Telescope should be able to detect about 500 strongly lensed Type Ia supernovae over the course of 10 years—about 10 times more than previous estimates. Meanwhile, the Zwicky Transient Facility, which begins taking data in August 2017 at Palomar, should find approximately 10 of these events in a three-year search. Ongoing studies show that each lensed Type Ia supernova image has the potential to make a four percent, or better, measurement of the expansion rate of the universe. If realized, this could add a very powerful tool to probe and measure the cosmological parameters.  

“We are just now getting to the point where our transient surveys are big enough, our pipelines are efficient enough, and our external data sets are rich enough that we can weave through the data and get at these rare events,” adds Goldstein. “It’s an exciting time to be working in this field.”

iPTF is a scientific collaboration between Caltech; Los Alamos National Laboratory; the University of Wisconsin, Milwaukee; the Oskar Klein Centre in Sweden; the Weizmann Institute of Science in Israel; the TANGO Program of the University System of Taiwan; and the Kavli Institute for the Physics and Mathematics of the Universe in Japan. NERSC is a DOE Office of Science User Facility.

X
X
X
  • Filters

  • × Clear Filters

Tiny Lasers from a Gallery of Whispers

Whispering gallery mode resonators rely on a phenomenon similar to an effect observed in circular galleries, and the same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week in APL Photonics, investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths.

Copper Catalyst Yields High Efficiency CO2-to-Fuels Conversion

Berkeley Lab scientists have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of a creating a clean chemical manufacturing system that can put carbon dioxide to good use.

Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene

Berkeley Lab scientists have harnessed the power of photosynthesis to convert carbon dioxide into fuels and alcohols at efficiencies far greater than plants. The achievement marks a significant advance in the effort to move toward sustainable sources of fuel.

New Evidence for Small, Short-Lived Drops of Early Universe Quark-Gluon Plasma?

UPTON, NY--Particles emerging from even the lowest energy collisions of small deuterons with large heavy nuclei at the Relativistic Heavy Ion Collider (RHIC)--a U.S. Department of Energy Office of Science User Facility for nuclear physics research at DOE's Brookhaven National Laboratory--exhibit behavior scientists associate with the formation of a soup of quarks and gluons, the fundamental building blocks of nearly all visible matter.

New Insights Into Nanocrystal Growth in Liquid

PNNL researchers have measured the forces that cause certain crystals to assemble, revealing competing factors that researchers might be able to control. The work has a variety of implications in both discovery and applied science. In addition to providing insights into the formation of minerals and semiconductor nanomaterials, it might also help scientists understand soil as it expands and contracts through wetting and drying cycles.

Discovery Could Reduce Nuclear Waste with Improved Method to Chemically Engineer Molecules

A new chemical principle discovered by scientists at Indiana University has the potential to revolutionize the creation of specially engineered molecules whose uses include the reduction of nuclear waste and the extraction of chemical pollutants from water and soil.

Biologist Reaches Into Electric Eel Tank, Comes Out with Equation to Measure Shocks

Vanderbilt University researcher Ken Catania stuck his arm into a tank with small electric eel 10 times -- the only way to get accurate measurements of the circuit created by animal, arm and water.

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

New Study on Graphene-Wrapped Nanocrystals Makes Inroads Toward Next-Gen Fuel Cells

A new Berkeley Lab-led study provides insight into how an ultrathin coating can enhance the performance of graphene-wrapped nanocrystals for hydrogen storage applications.

Getting to the Point (Mutations) in Re-Engineering Biofuel-Producing Bacterial Enzymes

Helping bacteria become more efficient when breaking down fibrous plant waste into biofuel could result in more affordable biofuels for our gas tanks and sustainable products such as bioplastics. One way to achieve this goal is to re-engineer the bacterial enzyme complexes, called cellulosomes, which serve as catalysts in the degradation process. Researchers discuss one method to produce cellulosomes in The Journal of Chemical Physics.


  • Filters

  • × Clear Filters

Tulane Receives Grant to Reduce Auto Emissions

Members of Tulane University's Shantz Lab will work with industrial scientists to assist in the development of next-generation materials designed to reduce harmful automotive emissions. The three-year old lab and its group of students have received a grant and equipment resources from SACHEM, Inc., a chemical science company.

Lab Leads New Effort in Materials Development

Lawrence Livermore National Lab will be part of a multi-lab effort to apply high-performance computing to US-based industry's discovery, design, and development of materials for severe environments under a new initiative announced by the Department of Energy (DOE) on Sept. 19.

Los Alamos Recognized as Top Diversity Employer

For the second straight year, Los Alamos National Laboratory was recognized as a top diversity employer by LATINA Style and STEM Workforce Diversity magazine.

SLAC-Led Project Will Use Artificial Intelligence to Prevent or Minimize Electric Grid Failures

A project led by the Department of Energy's SLAC National Accelerator Laboratory will combine artificial intelligence with massive amounts of data and industry experience from a dozen U.S. partners to identify places where the electric grid is vulnerable to disruption, reinforce those spots in advance and recover faster when failures do occur.

Chaudhuri named Director of Manufacturing Science and Engineering at Argonne National Laboratory

Argonne National Laboratory announces the appointment of Santanu Chaudhuri, Ph.D., as the Director of the Laboratory's new Manufacturing Science and Engineering initiative, effective Sept. 14, 2017

Boise State Researchers Earn Grants to Manufacture Sensors for Nuclear Reactors, Space

National grants will be used to purchase advanced manufacturing equipment needed to build sensors suitable for extreme environments.

Hewlett Packard's Suhas Kumar Wins 2017 Klein Award

Suhas Kumar, a postdoctoral researcher at Hewlett Packard Enterprise (HPE), wants to develop next-generation information storage devices and better computers. His particular interest is a new type of electronic device, called a memristor, that could make future computer memories faster, more durable and more energy efficient than today's flash memory.

University of Arkansas Receives $3.2 Million From the Department of Energy

The U.S. Department of Energy's Advanced Research Projects Agency-Energy has awarded Distinguished Professor Alan Mantooth a total of $3.2 million for two projects that will accelerate the development and deployment of a new class of efficient, lightweight and reliable power converters.

Los Alamos Laboratory Director Charles F. McMillan to Retire at End of Year

Charles F. (Charlie) McMillan today informed employees of Los Alamos National Laboratory that he intends to step down as Laboratory Director at the end of this calendar year.

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University celebrated the grand opening of its new $70 million, 114,000 square-foot Smart Energy Building today, Thursday, Aug. 31, at the Innovative Technologies Complex, on campus.


  • Filters

  • × Clear Filters

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

First Look at a Living Cell Membrane

Neutrons provide the solution to nanoscale examination of living cell membrane and confirm the existence of lipid rafts.

High Yield Biomass Conversion Strategy Ready for Commercialization

Researchers convert 80 percent of biomass into high-value products with strategy that's ready for commercialization.

Consequences of Drought Stress on Biofuels

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation and resulting biofuel production.

Clay Minerals and Metal Oxides Change How Uranium Travels Through Sediments

Montmorillonite clays prevent uranium from precipitating from liquids, letting it travel with groundwater.

Tundra Loses Carbon with Rapid Permafrost Thaw

Seven-year-study shows plant growth does not sustainably balance carbon losses from solar warming and permafrost thaw.

Crystals Grow by Twisting, Aligning and Snapping Together

Van der Waals force, which that enables tiny crystals to grow, could be used to design new materials.

Vitamin B12 Fuels Microbial Growth

Scarce compound, vitamin B12, is key for cellular metabolism and may help shape microbial communities that affect environmental cycles and bioenergy production.

Carbon in Floodplain Unlikely to Cycle into the Atmosphere

Microbes leave a large fraction of carbon in anoxic sediments untouched, a key finding for understanding how watersheds influence Earth's ecosystem.

Bacterial Cell Wall Changes Produce More Fatty Molecules

New strategy greatly increases the production and secretion of biofuel building block lipids in bacteria able to grow at industrial scales.


Spotlight

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215