X
X
X

Filters:

Printed, Flexible and Rechargeable Battery Can Power Wearable Sensors

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials.

Neutrons Provide the First Nanoscale Look at a Living Cell Membrane

A research team from the Department of Energy's Oak Ridge National Laboratory has performed the first-ever direct nanoscale examination of a living cell membrane. In doing so, it also resolved a long-standing debate by identifying tiny groupings of lipid molecules that are likely key to the cell's functioning.

How X-Rays Helped to Solve Mystery of Floating Rocks

Experiments at Berkeley Lab's Advanced Light Source have helped scientists to solve a mystery of why some rocks can float for years in the ocean, traveling thousands of miles before sinking.

Special X-Ray Technique Allows Scientists to See 3-D Deformations

In a new study published last Friday in Science, researchers at Argonne used an X-ray scattering technique called Bragg coherent diffraction imaging to reconstruct in 3-D the size and shape of grain defects. These defects create imperfections in the lattice of atoms inside a grain that can give rise to interesting material properties and effects.

Neptune: Neutralizer-Free Plasma Propulsion

The most established plasma propulsion concepts are gridded-ion thrusters that accelerate and emit a larger number of positively charged particles than those that are negatively charged. To enable the spacecraft to remain charge-neutral, a "neutralizer" is used to inject electrons to exactly balance the positive ion charge in the exhaust beam. However, the neutralizer requires additional power from the spacecraft and increases the size and weight of the propulsion system. Researchers are investigating how the radio-frequency self-bias effect can be used to remove the neutralizer altogether, and they report their work in this week's Physics of Plasmas.

Report Sheds New Insights on the Spin Dynamics of a Material Candidate for Low-Power Devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

Researchers Find Computer Code That Volkswagen Used to Cheat Emissions Tests

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act. During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test.

Physicists Discover That Lithium Oxide on Tokamak Walls Can Improve Plasma Performance

A team of physicists has found that a coating of lithium oxide on the inside of fusion machines known as tokamaks can absorb as much deuterium as pure lithium can.

Scientists Perform First Basic Physics Simulation of Spontaneous Transition of the Edge of Fusion Plasma to Crucial High-Confinement Mode

PPPL physicists have simulated the spontaneous transition of turbulence at the edge of a fusion plasma to the high-confinement mode that sustains fusion reactions. The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team.

Green Fleet Technology

New research at Penn State addresses the impact delivery trucks have on the environment by providing green solutions that keep costs down without sacrificing efficiency.


Filters:

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Describing the dizzying pace of technological innovation, former United States Secretary of Energy Ernest J. Moniz urged graduates to "anticipate career change, welcome it, and manage it to your and your society's benefit" at the 211th Commencement at Rensselaer Polytechnic Institute (RPI) Saturday.

ORNL Welcomes Innovation Crossroads Entrepreneurial Research Fellows

Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Department of Energy Secretary Recognizes Argonne Scientists' Work to Fight Ebola, Cancer

Two groups of researchers at Argonne earned special awards from the office of the U.S. Secretary of Energy for addressing the global health challenges of Ebola and cancer.

Jefferson Science Associates, LLC Recognized for Leadership in Small Business Utilization

Jefferson Lab/Jefferson Science Associates has a long-standing commitment to doing business with and mentoring small businesses. That commitment and support received national recognition at the 16th Annual Dept. of Energy Small Business Forum and Expo held May 16-18, 2017 in Kansas City, Mo.

Rensselaer Polytechnic Institute President's Commencement Colloquy to Address "Criticality, Incisiveness, Creativity"

To kick off the Rensselaer Polytechnic Institute Commencement weekend, the annual President's Commencement Colloquy will take place on Friday, May 19, beginning at 3:30 p.m. The discussion, titled "Criticality, Incisiveness, Creativity," will include the Honorable Ernest J. Moniz, former Secretary of Energy, and the Honorable Roger W. Ferguson Jr., President and CEO of TIAA, and will be moderated by Rensselaer President Shirley Ann Jackson.

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

The Tennessee Higher Education Commission has approved a new doctoral program in data science and engineering as part of the Bredesen Center for Interdisciplinary Research and Graduate Education.

SurfTec Receives $1.2 Million Energy Award to Develop Novel Coating

The Department of Energy has awarded $1.2 million to SurfTec LLC, a company affiliated with the U of A Technology Development Foundation, to continue developing a nanoparticle-based coating to replace lead-based journal bearings in the next generation of electric machines.

Ames Laboratory Scientist Inducted Into National Inventors Hall of Fame

Iver Anderson, senior metallurgist at Ames Laboratory, has been inducted into the National Inventors Hall of Fame.

DOE HPC4Mfg Program Funds 13 New Projects to Improve U.S. Energy Technologies Through High Performance Computing

A U.S. Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance U.S. manufacturing is funding 13 new industry projects for a total of $3.9 million.

Penn State Wind Energy Club Breezes to Victory in Collegiate Wind Competition

The Penn State Wind Energy Club breezed through the field at the U.S. Department of Energy Collegiate Wind Competition 2017 Technical Challenge, held April 20-22 at the National Wind Technology Center near Boulder, Colorado--earning its third overall victory in four years at the Collegiate Wind Competition.


Filters:

Casting a Wide Net

Designed molecules will provide positive impacts in energy production by selectively removing unwanted ions from complex solutions.

New Software Tools Streamline DNA Sequence Design-and-Build Process

Enhanced software tools will accelerate gene discovery and characterization, vital for new forms of fuel production.

The Ultrafast Interplay Between Molecules and Materials

Computer calculations by the Center for Solar Fuels, an Energy Frontier Research Center, shed light on nebulous interactions in semiconductors relevant to dye-sensitized solar cells.

Supercapacitors: WOODn't That Be Nice

Researchers at Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center, take advantage of nature-made materials and structure for energy storage research.

Groundwater Flow Is Key for Modeling the Global Water Cycle

Water table depth and groundwater flow are vital to understanding the amount of water that plants transmit to the atmosphere.

Finding the Correct Path

A new computational technique greatly simplifies the complex reaction networks common to catalysis and combustion fields.

Opening Efficient Routes to Everyday Plastics

A new material from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, facilitates the production of key industrial supplies.

Fight to the Top: Silver and Gold Compete for the Surface of a Bimetallic Solid

It's the classic plot of a buddy movie. Two struggling bodies team up to drive the plot and do good together. That same idea, when it comes to metals, could help scientists solve a big problem: the amount of energy consumed by making chemicals.

Saving Energy Through Light Control

New materials, designed by researchers at the Center for Excitonics, an Energy Frontier Research Center, can reduce energy consumption with the flip of a switch.

Teaching Perovskites to Swim

Scientists at the ANSER Energy Frontier Research Center designed a two-component layer protects a sunlight-harvesting device from water and heat.


New Effort by Argonne Helps Power Utilities and Others Better Plan for the Future

Article ID: 674090

Released: 2017-05-04 15:05:56

Source Newsroom: Argonne National Laboratory

  • Credit: Shutterstock/leungchopan

    Electrical power plants are often built near bodies of water because the water can be used for cooling, but this proximity to water can also leave plants vulnerable to natural threats, such as flooding. Argonne is helping utilities better manage this dynamic by supplying them with superior climate data and world-class infrastructure planning and decision support.

  • Credit: Argonne National Laboratory

    A snapshot of the surface air temperature (K) predictions from 10-year high-resolution regional climate model simulations Argonne conducted recently for a California fire risk mapping project. The outermost domain (D1) has a spatial resolution of 18 kilometers. The two inner domains have resolutions of 6 kilometers (D2) and 2 kilometers (D3), respectively.

  • Credit: Argonne National Laboratory

    In another project, Argonne coupled projected changes in mid-century air temperatures with regional electrical power generation and transmission models to identify that, under a projected 9° F temperature increase by 2055, electrical transmission line capacity would decrease by as much as 8 percent, while demand would increase by as much as 10 percent as more residents demand more air conditioning.

If you’re an electric utility planning a new power plant by a river, it would be nice to know what that river will look like 20 years down the road. Will it be so high that it might flood the new facility? Will the water be so low that it can’t be used to cool the plant?

Generally, such projections have been based on records of past precipitation, temperature, flooding and other historical data. But in an era when temperature and precipitation are changing rapidly, historical patterns won’t do you much good. That’s where a new initiative by the U.S. Department of Energy’s (DOE) Argonne National Laboratory, which combines climate data and analysis with infrastructure planning and decision support, promises real help.

“What we’re doing is combining expertise and tools that are available only within Argonne to take something that is incredibly complex — understanding what’s going on with climate — and distilling it down to something that is really actionable for the energy provider or the engineer,” said John Harvey, a business development executive at Argonne who acts as a liaison between power utility companies and the Argonne research team.

The initiative offers power utilities and other customers access to extremely localized climate models run on supercomputers, as well as the expertise of the climate scientists who run them. Other experts include the lab’s environmental modelers (who can, for example, model how changes in precipitation translate into changes in flooding) as well as infrastructure modelers and risk assessment experts (who can forecast how that flooding will affect electric infrastructure and the grid).

Together, they help utilities make informed decisions about how to improve infrastructure to avoid future outages. Advance planning can help utilities both protect themselves and take advantage of new opportunities.

“This really helps utilities plan for their infrastructure investments,” said Ushma Kriplani, a business development executive who, like Harvey, helps customers work with the scientists and facilities at Argonne to ensure they get the information and advice they need to make more informed decisions. “Infrastructure investments are both huge in size and look out many years. When you need to plan on time scales that span 30 or 40 years, you need to factor in all the things that are going to change.”

Power lines can sag if temperatures rise, for example, becoming weaker, less efficient and prone to failing. Changes in air temperature and humidity can also affect power plant cooling. “These things have a real impact on the operations of a plant,” said Thomas Wall, an infrastructure and preparedness analyst in Argonne’s Risk and Infrastructure Science Center and one of the co-leads of the new initiative. “Maybe in the future I can’t generate as much power at that location because I can’t cool it as effectively.” 

After an unusually intense rain flooded one of its substations a year or so ago, a utility in the northeast approached Wall and his colleagues. The substation provides power to one of the largest employers in the state; the utility wanted to know if it would be increasingly likely to flood in the future — and if so, how badly, and what could be done to mitigate it.

Wall’s team did an analysis that took into account factors such as sea level rise and storm surge from a hurricane. They looked at the flood vulnerability of six nearby substations and used a model of the electric transmission grid to see what would happen if those six substations failed simultaneously. Would there be cascading failures across the grid that would cause a much larger problem in the region?

“The good news was the answer was no, there wouldn’t,” Wall said. But there would be local blackouts, and the substation that motivated the analysis would indeed be increasingly prone to flooding. The team recommended that the utility build a new substation on higher ground and steered them to locations in the area that would be less vulnerable.

Climate modeling has only lately developed to the point where these kinds of studies are realistic. The models dice the world into a grid of cells and calculate the state of every cell repeatedly through time. With supercomputers, researchers have the ability to model smaller cells and shorter time steps, resulting in finer resolution. And the finer the resolution, the more specific the model can be about what will happen at a given location.

At the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, scientists can now simulate the climate at a resolution of a few kilometers. “It’s a huge improvement,” said Yan Feng, an Argonne climate scientist and the initiative’s other co-lead. “So it becomes easier for the climate model output to be used for decision-making.”

Feng and Argonne colleague John Krummel recently helped researchers from Nevada’s Desert Research Institute develop a high-resolution fire hazard map. The project, funded by the California Public Utilities Commission, will help utilities manage and site overhead utility infrastructure.

“They came to us because they needed to model the regional climate — winds, relative humidity and temperature — as a function of time for 10 years at a resolution of two square kilometers,” she said. “It’s not affordable for them to do that on their own computers.” The climate simulations used approximately 7 million core-hours on the Argonne Leadership Computing Facility’s Mira supercomputer.

Both Wall’s flood assessment project and the fire map effort would have been difficult to put together elsewhere, Wall said.

“There are lots of places that can do climate modeling or infrastructure modeling; there are places that have decision science and risk analysis capabilities. But what makes this unique is that we have all of these in one place and we’re all talking with one another,” he said.

John Harvey agrees: “The great thing about Argonne is we’re a multi-disciplinary lab,” he said. “Working together, we can provide a lot more value to utilities and become a wonderful resource for them. They really can’t get this information in one place anywhere else.”

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.