Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-05-10 09:05:50
  • Article ID: 674439

Low-Energy RHIC Electron Cooling Gets Green Light, Literally

New high-power green-light laser will generate beam-cooling electrons at the Relativistic Heavy Ion Collider (RHIC)

  • Credit: Brookhaven National Laboratory

    Zhi Zhao, Michiko Minty, and Patrick Inacker wearing protective goggles with the tabletop housing the components that create the green fiber laser in the foreground. Team member Brian Sheehy, now retired, was not present for the photo.

  • Credit: Brookhaven National Laboratory

    The laser must stay precisely aligned as it zigzags through amplification and frequency-doubling components on this tabletop—anchored for stability to a 50-ton steel block buried deep underground. The beam then travels through a 27-meter-long vacuum transfer line to strike its electron-generating target inside a photocathode electron gun.

  • Credit: Brookhaven National Laboratory

    View of the high-power green laser during a test after it has been transported into the vacuum chamber, deflected off the photocathode, and finally deflected back out of the vacuum chamber, confirming proper alignment.

Aligning a sequence of amplifiers and mirrors with hair-thin precision on a tabletop anchored to a steel block deep underground, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have produced a powerful green laser. The light—the highest average power green laser ever generated by a single fiber-based laser—will be crucial to experiments in nuclear physics at the Lab’s Relativistic Heavy Ion Collider (RHIC).

“When the green light strikes a target 27 meters downstream from this tabletop, it will generate pulses of electrons needed to cool the ion beams at RHIC to keep them colliding,” said Brookhaven physicist Zhi Zhao, who built the laser system and is lead author on a paper describing its attributes in Optics Express, a journal of the Optical Society of America. In addition to cooling ion beams at RHIC, such a high-power green laser could also have applications in materials processing, laser machining, and generating other lasers.

Using electrons to cool ion beams

High collision rates at RHIC generate reams of data for the 1,000 nuclear physicists who come to this DOE Office of Science User Facility to study the intricate details of the building blocks of matter. The collisions reduce the building blocks to their most primitive form—a soup of fundamental particles that mimics the conditions of the early universe. But as the ions circulate through RHIC’s 2.4-mile-circumference tunnels, they tend to heat up and spread apart, decreasing the chances that collisions will occur.

“Intra-beam scattering causes the ions to spread out and get lost, so the beam doesn’t survive,” said RHIC accelerator physicist Michiko Minty, a co-author on the paper and leader of the project to develop and integrate this laser into RHIC collider operations.

Heating is a particular problem when the ion beams are circulating at relatively low energies—in a range RHIC scientists are using to study interesting aspects of how the primordial soup transforms into more familiar protons and neutrons. So physicists at RHIC have been exploring ways to periodically inject a stream of relatively cool electrons to take away some of the ions’ heat.

“The whole point of electron cooling is to stop the spreading of the ion bunches to maximize the collision rate,” Minty said.

Electron cooling has been successful at other particle accelerators. But at RHIC physicists are exploring new strategies for generating electron beams at very high electron energies (billions of electron volts), which requires using linear radiofrequency acceleration of energetic bunches.

“We have to make bunches of electrons that overlap with the ion bunches, and the ion bunches repeat. So we want to generate a set of pulse trains of electrons that co-propagate with the ions so the energy of the ions can get transferred to the electrons, making the ion beam shrink,” Minty said.

The idea is to use pulses of a laser to strike a photo-emissive material—a material that emits electrons when struck with just the right wavelength, or color, of light—inside a photocathode electron gun. In the case of the photocathode installed in the electron gun at RHIC, the magic color is green.

(Infra)red light, green light, 1, 2, 3!

To make the green light, the Brookhaven team started with something invisible, an infrared (IR) “seed” laser at relatively low power. They send modulated pulses of that invisible IR light through a series of optical fibers to amplify the power.

As the light from an additional IR “pump” laser enters the fiber, it excites electrons in the material lining the fiber. When these electrons relax back to their “ground state,” they emit photons of light at the IR wavelength, perfectly in sync with the seed IR waves, gradually increasing the signal strength in multiple fiber amplifier stages.

Once the desired power is reached, the infrared laser strikes a “frequency-doubling” crystal.

“When two photons of infrared light strike the crystal, it emits one photon of a shorter wavelength,” Zhao explained. “Frequency doubling essentially cuts the wavelength in half, changing the IR input to green visible light.”

The green laser light then zigzags along pathways guided by mirrors on the tabletop through various optical components to optimize the net laser output.  These include multiple crystals used to convert short laser pulses into a train of multiple pulses (temporal shaping), a variety of lenses to produce the desired transverse profile of the laser pulses (spatial shaping), and so-called half-wave plates used to pass or reject passage of the laser beam to control the overall laser intensity. 

After this, the laser light is guided to a series of electrical optical modulators—“devices that chop out sections of the laser light to produce the desired sequence of laser pulses—a sequence which matches the structure of the ion beams to be cooled,” Minty explained.

The goal is to time the pulses to match to the frequency of the electron gun so the resulting electrons can be accelerated to perfectly match the accelerated ions circulating in RHIC.

“In the end it’s the velocity of the ion beam that ‘decides’ what we need, and everything has to be matched to that. We get a signal from the ion accelerating cavities that is used to generate the timing signals for the components generating the laser pulse structure,” Minty said.

Anchoring and testing the light

Fiber lasers are especially well suited for generating high-brightness electron bunches in photocathode electron injectors. The high surface-to-volume ratio of the fiber supports the generation and delivery of laser pulses at high repetition rate and high average laser power. Also, the dynamics of the laser light propagating through the fiber leads to excellent laser profiles, low variations in the laser’s position, and maintenance-free operation. Taken together these properties result in long-term operation of a highly stable laser, which is essential for the RHIC physics programs.

Two key factors the scientists need to control are the laser’s extinction ratio—the difference between the laser being on and off—and its stability.

“If you have light present when it’s not supposed to be there, you’ll get residual electrons, which can produce unwanted effects,” Minty said. “We’re aiming for a factor of 10-6, which means when we say it’s off it’s off, and only one in a million electrons will come through.”

For stability, the scientists need to ensure that the path of the light doesn’t deviate more than 10 microns from its starting point to the photocathode gun in the RHIC tunnel, even with all the amplification steps and zigzag pathways on the tabletop.

“Overall, the path is about 30 meters—3 meters on the tabletop with 40 mirrors creating the zigzag path and 27 meters in the transfer line,” said Zhao, standing inside the mobile trailer housing the laser outside the RHIC ring.  

“We stabilized the table by digging a big hole and burying a 50-ton steel block down at the level of Long Island’s water table, and drilled holes in the trailer to secure the laser table to that block,” Minty said. “You can jump up and down on the floor in here and the table won’t move,” she added, pointing out super stable posts that hold mirrors and other key components on the motion-isolated table. 

Also, the long evacuated pipes through which the laser travels are decoupled from multiple smaller optical tables between the trailer and the electron gun located inside the RHIC enclosure.  These tables house optics and mirrors with supports likewise designed for thermal and vibrational stability.

The team—which also included Brian Sheehy (recently retired) and a new addition, Patrick Inacker—has already achieved two significant milestones for the Low-Energy Electron Cooling Experiment. On March 9, 2017, they successfully transported an alignment laser through the entire laser transport system, followed on April 5 by the first successful transport using the green laser light. First tests of electron cooling are anticipated to begin during RHIC operations in late 2018 and early 2019.

This work was funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Nanoparticle Supersoap Creates 'Bijel' With Potential as Sculptable Fluid

A new type of "bijel" created by Berkeley Lab scientists could one day lead to applications in soft robotics, liquid circuitry, and energy conversion.

With Extra Sugar, Leaves Get Fat Too

Eat too much without exercising and you'll probably put on a few pounds. As it turns out, plant leaves do something similar. In a new study at the U.S. Department of Energy's Brookhaven National Laboratory, scientists show that retaining sugars in plant leaves can make them get fat too. In plants, this extra fat accumulation could be a good thing.

High-Speed Movie Aids Scientists Who Design Glowing Molecules

In a recent experiment conducted at the Department of Energy's SLAC National Accelerator Laboratory, a research team used bright, ultrafast X-ray pulses from SLAC's X-ray free-electron laser to create a high-speed movie of a fluorescent protein in action. With that information, the scientists began to design a marker that switches more easily, a quality that can improve resolution during biological imaging.

Biomass-Produced Electricity in the US Possible, but It'll Cost

If the U.S. wants to start using wood pellets to produce energy, either the government or power customers will have to pay an extra cost, a new University of Georgia study has found.

Scientists Make Atoms-Thick Post-It Notes for Solar Cells and Circuits

In a study published Sept. 20 in Nature, UChicago and Cornell University researchers describe an innovative method to make stacks of semiconductors just a few atoms thick. The technique offers scientists and engineers a simple, cost-effective method to make thin, uniform layers of these materials, which could expand capabilities for devices from solar cells to cell phones.

Titan Helps Researchers Suck Mystery Out of Cell's 'Vacuum Cleaners'

In cancer cells, a membrane transport protein called P-glycoprotein, or Pgp, actively pumps anticancer drugs out of the cell, contributing to multidrug resistance. Recently, a team led by computational biophysicist Emad Tajkhorshid from the University of Illinois at Urbana-Champaign (UIUC) used the Titan supercomputer to uncover new details about Pgp that could help the drug discovery community manipulate Pgp function.

Laser-Free Method of Ion Cooling Has Range of Potential Uses

Prof. Daniel Zajfman's universal ion trap cools to a tenth of a degree above absolute zero. The new method does not depend on the type or the weight of the ion and, thus, might be used to investigate the properties of large biological molecules or nanoparticles, among other things.

Tiny Lasers from a Gallery of Whispers

Whispering gallery mode resonators rely on a phenomenon similar to an effect observed in circular galleries, and the same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week in APL Photonics, investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths.

Copper Catalyst Yields High Efficiency CO2-to-Fuels Conversion

Berkeley Lab scientists have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of a creating a clean chemical manufacturing system that can put carbon dioxide to good use.

Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene

Berkeley Lab scientists have harnessed the power of photosynthesis to convert carbon dioxide into fuels and alcohols at efficiencies far greater than plants. The achievement marks a significant advance in the effort to move toward sustainable sources of fuel.


  • Filters

  • × Clear Filters

PPPL Physicist Francesca Poli Named ITER Scientist Fellow

Article describes new ITER Scientist Fellow.

Los Alamos Gains Role in High-Performance Computing for Materials Program

A new high-performance computing initiative announced this week by the U.S. Department of Energy will help U.S. industry accelerate the development of new or improved materials for use in severe environments.

UK Commits $88 Million to LBNF/DUNE in First-Ever Umbrella Science Agreement with U.S.

The UK has committed $88 million to the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment as part of an umbrella science and technology agreement with the United States.

Wayne State Receives $1.2 Million NSF Grant to Develop Autonomous Battery Operating System

Researchers at Wayne State University led by Nathan Fisher, associate professor of computer science in the College of Engineering, received a $1.2 million grant from the National Science Foundation to address the need for effective, integrative battery operating systems that provide sustained and reliable power.

UAH leads effort that secures $20 million grant from the National Science Foundation

A partnership comprising nine universities in Alabama, including The University of Alabama in Huntsville (UAH) as the lead institution, has been awarded a $20 million, five-year grant by the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR).

Sandia Labs Wins 5 Regional Technology Transfer Awards

Sandia National Laboratories won five awards from the 2017 Federal Laboratory Consortium for its work to develop and commercialize innovative technologies.

Tulane Receives Grant to Reduce Auto Emissions

Members of Tulane University's Shantz Lab will work with industrial scientists to assist in the development of next-generation materials designed to reduce harmful automotive emissions. The three-year old lab and its group of students have received a grant and equipment resources from SACHEM, Inc., a chemical science company.

Lab Leads New Effort in Materials Development

Lawrence Livermore National Lab will be part of a multi-lab effort to apply high-performance computing to US-based industry's discovery, design, and development of materials for severe environments under a new initiative announced by the Department of Energy (DOE) on Sept. 19.

ORNL Innovation Crossroads Program Opens Second Round of Energy Entrepreneurial Fellowships

Entrepreneurs are invited to apply for the second round of Oak Ridge National Laboratory's Innovation Crossroads program.

Los Alamos Recognized as Top Diversity Employer

For the second straight year, Los Alamos National Laboratory was recognized as a top diversity employer by LATINA Style and STEM Workforce Diversity magazine.


  • Filters

  • × Clear Filters

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

First Look at a Living Cell Membrane

Neutrons provide the solution to nanoscale examination of living cell membrane and confirm the existence of lipid rafts.

High Yield Biomass Conversion Strategy Ready for Commercialization

Researchers convert 80 percent of biomass into high-value products with strategy that's ready for commercialization.

Consequences of Drought Stress on Biofuels

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation and resulting biofuel production.

Clay Minerals and Metal Oxides Change How Uranium Travels Through Sediments

Montmorillonite clays prevent uranium from precipitating from liquids, letting it travel with groundwater.

Tundra Loses Carbon with Rapid Permafrost Thaw

Seven-year-study shows plant growth does not sustainably balance carbon losses from solar warming and permafrost thaw.

Crystals Grow by Twisting, Aligning and Snapping Together

Van der Waals force, which that enables tiny crystals to grow, could be used to design new materials.

Vitamin B12 Fuels Microbial Growth

Scarce compound, vitamin B12, is key for cellular metabolism and may help shape microbial communities that affect environmental cycles and bioenergy production.

Carbon in Floodplain Unlikely to Cycle into the Atmosphere

Microbes leave a large fraction of carbon in anoxic sediments untouched, a key finding for understanding how watersheds influence Earth's ecosystem.

Bacterial Cell Wall Changes Produce More Fatty Molecules

New strategy greatly increases the production and secretion of biofuel building block lipids in bacteria able to grow at industrial scales.


Spotlight

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215