Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-05-18 10:05:21
  • Article ID: 674970

A 'Wearable' Brain Scanner Inspired by Brookhaven Technology

Building on a Brookhaven Lab innovation designed for brain imaging in moving rats, a team in Virginia and West Virginia designs a device for studies of human interaction, dementia, movement disorders, and more

  • Nora Volkow, who led a world-renowned brain-imaging program at Brookhaven Lab, came up with the idea for RatCAP. She is now the director of the National Institute on Drug Abuse.

  • Julie Brefczynski-Lewis, a neuroscientist at West Virginia University, places a helmet-like PET scanner on a research subject. The mobile scanner—designed for studies of human interaction, movement disorders, and more—is based on a scanner developed at Brookhaven Lab for brain-imaging studies in freely moving animals.

  • The Brookhaven-developed scanner, dubbed "RatCAP," made it possible to scan animals without anesthesia. Members of the RatCAP team in 2011 showing a brain scan and the apparatus holding the ring-shaped detector: (front row, from left) Paul Vaska, Craig Woody, Daniela Schulz, Srilalan Krishnamoorthy, Bosky Ravindranath, (back row, from left) Sean Stoll, David Schlyer, Sri Harsha Maramraju, Martin Purschke, Fritz Henn, and Paul O'Connor.

  • Stan Majewski, once a physicist at Jefferson Lab, now at the University of Virginia, and Julie Brefczynski-Lewis, a neuroscientist at West Virginia University—co-developers of an Ambulatory Microdose Positron Emission Tomography (AMPET) scanner—display a mockup of their device at a scientific conference. AMPET is based on a smaller mobile scanner designed for studies in rats that was developed at Brookhaven Lab

A 'Wearable' Brain Scanner Inspired by Brookhaven Technology

Building on a Brookhaven Lab innovation designed for brain imaging in moving rats, a team in Virginia and West Virginia designs a device for studies of human interaction, dementia, movement disorders, and more

By Lida Tunesi

Patients undergoing a positron emission tomography (PET) scan in today’s bulky, donut-shaped machines must lie completely still. Because of this, scientists cannot use the scanners to unearth links between movement and brain activity. What goes on up there when we nod in agreement or shake hands? How are the brains of people struggling to walk after a stroke different from those who can?

To tackle questions like these, Julie Brefczynski-Lewis, a neuroscientist at West Virginia University (WVU), has partnered with Stan Majewski, a physicist at WVU and now at the University of Virginia, to develop a miniaturized PET brain scanner. The scanner can be “worn” like a helmet, allowing research subjects to stand and make movements as the device scans. This Ambulatory Microdose Positron Emission Tomography (AMPET []) scanner could launch new psychological and clinical studies on how the brain functions when affected by diseases from epilepsy to addiction, and during ordinary and dysfunctional social interactions.


“There are so many possibilities,” said Brefczynski-Lewis, “Scientists could use AMPET to study Alzheimer’s or traumatic brain injuries, or even our sense of balance. We want to push the limits of imaging mobility with this device.”

The idea was sparked by a scanner developed for studying rats, a project started in 2002 at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. Majewski, a high-energy physicist by training, originally caught wind of Brookhaven’s “RatCAP []” project because he ran in the same physicist circles as several of the RatCAP team members.

“I learned about what my friends and colleagues at Brookhaven were doing,” said Majewski, “and decided to build the same type of device for humans.”

Brookhaven beginnings

The Rat Conscious Animal PET, or RatCAP, scanner is a 250-gram ring that fits around the head of a rat, suspended by springs to support its weight and let the rat scurry about as the device scans. Nora Volkow, head of Brookhaven’s Life Sciences division at the time, came up with the idea to image the brains of awake and moving animals.

“I wanted to do PET scans on animals without having to use anesthesia,” said Volkow, who is now the Director of the National Institute on Drug Abuse. Unlike humans, animals can’t be told to simply lie still in a scanner. But the anesthesia required to make them lie still muddies the results. “It affects the distribution of the PET radiotracer and inhibits neurons,” Volkow said. A wearable scanner, however, would move with the animal’s brain and eliminate the need for anesthesia (see HOW PET WORKS). Volkow enlisted the help of Brookhaven scientists and engineers to make the idea a reality.

Tracking particles

Fortunately, there is a large overlap between medical imaging and nuclear physics, a subject in which Brookhaven Lab is a world leader. Today, physicists at the Lab use technology similar to PET scanners at the Relativistic Heavy Ion Collider [] (RHIC), where they must track the particles that fly out of near-light speed collisions of charged nuclei. PET research at the Lab dates back to the early 1960s and includes the creation of the first single-plane scanner [] as well as various tracer molecules []. 

“Both fields think about the same things—how the photodetectors work, how the scintillating crystals work, how the electronics work,” said Brookhaven physicist Craig Woody. “PET scanners, as well as CT [computed tomography] and MRI [magnetic resonance imaging], are used by doctors but they are built by detector physicists.”

Woody, who is now working on a new particle detector for RHIC, led the RatCAP project with David Schlyer and Paul Vaska. At the time, Schlyer and Vaska were heads of Brookhaven’s cyclotron operations and of PET physics, respectively. Schlyer is now a scientist emeritus at the Lab and Vaska is a professor of biomedical engineering at Stony Brook University.

In designing the small-scale scanner, the team used recent advances in detector technology. For instance, they used dense crystals to convert the gamma photons generated by positron-electron interactions into visible light, along with small light-detecting sensors called avalanche photodiodes. They also used special electronics developed at Brookhaven and built into the compact, lightweight PET detector. Suspending the structure on long springs helped support its weight so rats could “wear” the scanner while moving around easily.

“It was a very collaborative effort,” said Schlyer, who produced the radioisotopes needed for the scans. “We had people from physics, biology, chemistry, medicine, and electrical engineering.”

From rats to hats

Word got out about RatCAP as the scientists presented their progress at conferences and meetings. Stan Majewski, then at DOE’s Thomas Jefferson National Accelerator Facility (Jefferson Lab), took notice. He had been working on new methods of breast cancer imaging, applying his high-energy physics detector expertise to the medical field.

“I had known Stan for a long time—we worked together at CERN, the European nuclear physics laboratory,” said Woody. “I have to give him credit because he was constantly saying ‘you really ought to do medical physics.’”

Majewski noted that Jefferson Lab's management was very supportive of the project and provided some seed money even after he relocated to WVU to do more work on medical imaging. While there he expanded on the ideas of the RatCAP and built a prototype wearable PET brain imager for humans. 

“A mobile brain imaging tool has applications in psychology research and clinical uses,” Majewski said. “You could do bedside imaging of epilepsy, for example, and watch what happens in the brain during a seizure.”

Majewski’s “Helmet_PET” prototype, patented in 2011, used silicon photomultipliers—a newer, similarly compact but more efficient photodetector than the avalanche photodiodes used in RatCAP.

“Stan saw the potential in the RatCAP and took it further,” said Woody.

The patent drawing of the prototype was sitting on Majewski’s desk at WVU when Brefczynski-Lewis, a neuroscientist, walked in. The drawing of a helmet-shaped detector on an upright person caught her attention.

“I had always been bothered by this middle zone of the brain you couldn’t reach with other imaging technologies,” she said. “With electroencephalography (EEG) you can’t reach deep brain structures, but with PET and MRI you can’t have motion. I thought Stan’s device could fill this niche.”

After building the first prototype at WVU, the two scientists began using Helmet_PET to image the brains of volunteer patients. After Majewski transferred to the University of Virginia the team developed a newer model of the device, now known as AMPET. The current imaging cap is designed to scan a standing person and is attached to an overhead support, allowing for some motion.

AMPET bears great similarity to one of the first PET scanners [] built at Brookhaven, nicknamed the “hair dryer.”

“The ideas have sort of come full circle,” said Schlyer. “What has changed is the technology that makes these devices possible.”

The AMPET team hopes to start developing a full-brain scanner soon—one that covers the entire head rather than examining a horizontal five-centimeter section, like the current ring.

Microdose has big potential

Because AMPET sits so close to the brain, it can “catch” more of the photons stemming from the radiotracers used in PET than larger scanners can. That means researchers can administer a lower dose of radioactive material and still get a good biological snapshot. Catching more signals also allows AMPET to create higher resolution images than regular PET.

But most importantly, PET scans allow researchers to see further into the body than other imaging tools. This lets AMPET reach deep neural structures while the research subjects are upright and moving.

“A lot of the important things that are going on with emotion, memory, and behavior are way deep in the center of the brain: the basal ganglia, hippocampus, amygdala,” Brefczynski-Lewis said.

From a psychologist’s or neuroscientist’s perspective, AMPET could open doors to a variety of experiments, from exploring the brain’s reactions to different environments to the mechanisms involved in arguing or being in love.

Brefczynski-Lewis described ways to use AMPET to study the brain activity that underlies emotion. “Currently we are doing tests to validate the use of virtual reality environments in future experiments,” she said. In this “virtual reality,” volunteers would read from a script designed to make the subject angry, for example, as his or her brain is scanned.

In the medical sphere, the scanning helmet could help explain what happens during drug treatments, or shed light on movement disorders.

“There is a sub-population of Parkinson’s patients who have great difficulty walking, but can ride a bicycle with ease and without hesitation,” said Schlyer, who is also an adjunct professor in the Radiology department at Weill Cornell Medical College, where he studies Parkinson’s. “What is going on in their brains that makes these two activities so different? With this device we could monitor regional brain activation as patients walk and bike, and potentially answer that question.”

Brefczynski-Lewis noted, “We have successfully imaged the brain of someone walking in place. Now we’re ready to build a laboratory-ready version. It’s been an exciting journey—uncovering the needs of different neuroscientists and developing this device that we hope will someday meet those needs, and help in our quest to understand the brain.”

The RatCAP project at Brookhaven was funded by the DOE Office of Science. RHIC is a DOE Office of Science User Facility for nuclear physics research.



A patient or animal about to undergo a PET scan is injected with a low dose of a radiotracer—a radioactive form of a molecule that is regularly used in the body. One commonly used tracer is 18FDG, a radioactive version of glucose developed by Brookhaven scientists Joanna Fowler and Al Wolf in 1978. These molecules emit anti-matter particles called positrons, which then manage to only travel a tiny distance through the body. As soon as one of these positrons meets an electron in biological tissue, the pair annihilates and converts their mass to energy. This energy takes the form of two high-energy light rays, called gamma photons, that shoot off in opposite directions. PET machines detect these photons and track their paths backward to their point of origin—the tracer molecule. By measuring levels of 18FDG tracer, for instance, doctors can map areas of high metabolic activity. Mapping of different tracers helps researchers gain insight into different aspects of a patient’s health.


Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit

  • Filters

  • × Clear Filters

Scientists Create 'Diamond Rain' That Forms in the Interior of Icy Giant Planets

In an experiment designed to mimic the conditions deep inside the icy giant planets of our solar system, scientists were able to observe "diamond rain" for the first time as it formed in high-pressure conditions. Extremely high pressure squeezes hydrogen and carbon found in the interior of these planets to form solid diamonds that sink slowly down further into the interior.

Nanotechnology Moves From the Clean Room to the Classroom

The U.S. Department of Energy's Argonne National Laboratory and United Scientific Supplies, Inc. are introducing high school students to nanoscience with a new hands-on product.

Discovered: A Quick and Easy Way to Shut Down Instabilities in Fusion Devices

Article describes use of second neutral beam injector to suppress instabilities on the NSTX-U

Researchers Create Molecular Movie of Virus Preparing to Infect Healthy Cells

A research team has created for the first time a movie with nanoscale resolution of the three-dimensional changes a virus undergoes as it prepares to infect a healthy cell. The scientists analyzed thousands of individual snapshots from intense X-ray flashes, capturing the process in an experiment at the Department of Energy's SLAC National Accelerator Laboratory.

Nanotechnology Gives Green Energy a Green Color

Solar panels have tremendous potential to provide affordable renewable energy, but many people see traditional black and blue panels as an eyesore. Architects, homeowners and city planners may be more open to the technology if they could install colorful, efficient solar panels, and a new study, published this week in Applied Physics Letters, brings us one step closer. Researchers have developed a method for imprinting existing solar panels with silicon nanopatterns that scatter green light back toward an observer.

New 3-D Simulations Show How Galactic Centers Cool Their Jets

Scientists at Berkeley Lab and Purdue University developed new theories and 3-D simulations to explain what's at work in the mysterious jets of energy and matter beaming from the center of galaxies at nearly the speed of light.

Are Your Tweets Feeling Well?

Study finds opinion and emotion in tweets change when you get sick, a method public health workers could use to track health trends.

"Getting to 80%" on Energy Cutbacks Cannot Occur Unless Behaviors Change

California's plan to cut energy consumption by 80 percent by 2050 cannot be achieved with current proposed policy changes because most solutions focus on changing technologies rather than changing behavior, a new UC Davis study suggests.

New Battery Material Goes with the Flow

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have engineered a new material to be used in redox flow batteries, which are particularly useful for storing electricity for the grid. The material consists of carefully structured molecules designed to be particularly electrochemically stable in order to prevent the battery from losing energy to unwanted reactions.

Simulation Demonstrates How Exposure to Plasma Makes Carbon Nanotubes Grow

PPPL research performed with collaborators from Princeton University and the Institute for Advanced Computational Science at the State University of New York at Stony Brook has shown how plasma causes exceptionally strong, microscopic structures known as carbon nanotubes to grow.

  • Filters

  • × Clear Filters

Kathryn Hastie Wins Spicer Award for Lassa Virus Work at SLAC's X-Ray Synchrotron

Kathryn Hastie, staff scientist at The Scripps Research Institute, has spent the last decade studying how the deadly Lassa virus - which causes up to half a million cases of Lassa fever each year in West Africa - enters human cells via a cell surface receptor.

Southern Research to Play Key Role in Low Cost Carbon Fiber Project

Southern Research's Energy & Environment division (E&E) will participate as a subcontractor to WRI to provide renewable acrylonitrile -- the key raw material needed to produce the highest quality carbon fibers -- produced from biomass-derived second generation sugars.

Newly Upgraded Laser Allows Scientists to Peer Further Into the Extreme Universe at SLAC's LCLS

Scientists at the Department of Energy's SLAC National Accelerator Laboratory recently upgraded a powerful optical laser system used to create shockwaves that generate high-pressure conditions like those found within planetary interiors. The laser system now delivers three times more energy for experiments with SLAC's ultrabright X-ray laser, providing a more powerful tool for probing extreme states of matter in our universe.

Three Brookhaven Lab Scientists Selected to Receive Early Career Research Program Funding

Three scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have been selected by DOE's Office of Science to receive significant research funding through its Early Career Research Program.

Upcoming 232nd ECS Meeting to Feature International Energy Summit, Nobel Laureate Lecture

The 232nd ECS Meeting will include 49 topical symposia and over 2,300 technical presentations, including the 7th International Electrochemical Energy Summit, the Society's inaugural OpenCon and Hack Day events, and plenary lecture delivered by former U.S. Secretary of Energy and Nobel Prize Laureate Steven Chu.

PNNL Scientist Jiwen Fan Receives DOE Early Career Research Award

Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory has been selected to receive a 2017 Early Career Research Program award from the U.S. Department of Energy. Fan will use the award to study severe thunderstorms in the central United States - storms that produce large hail, damaging winds, tornadoes, and torrential rainfall.

Three SLAC Scientists Receive DOE Early Career Research Grants

Three scientists at the Department of Energy's SLAC National Accelerator Laboratory will receive DOE Early Career Research Program grants for research to find evidence of cosmic inflation, understand how plasmas excite particles to high energies and develop a way to accelerate particles in much shorter distances with terahertz radiation.

Four ORNL Researchers Receive DOE Early Career Funding Awards

Four Oak Ridge National Laboratory researchers specializing in nuclear physics, fusion energy, advanced materials and environmental science are among 59 recipients of Department of Energy's Office of Science Early Career Research Program awards.

Missouri S&T Professor Earns Patent for Energy Storage Technology

ceramic engineering professor at Missouri University of Science and Technology has received a federal patent for his latest innovation, a multi-layer ceramic capacitor that could help boost energy storage in applications ranging from pulse power devices to military hardware.

James Peery Named Chief Scientist of the Global Security Directorate at Oak Ridge National Laboratory

James Peery, who has led critical national security programs at Sandia National Laboratories and Los Alamos National Laboratory, has been selected as the chief scientist of the Global Security Directorate at Oak Ridge National Laboratory.

  • Filters

  • × Clear Filters

A Traffic Cop for Molecules

Easily manufactured, rigid membranes with ultra-small pores provides to be ultra-selective in separating chemicals.

Creating a Molecular Super Sponge, From the Ground Up

A new uranium-based metal-organic framework, NU-1301, could aid energy producers and industry.

Physicists Move Closer to Listening in on Sub-Atomic Conversation

Calculations of a subatomic particle called the sigma provide insight into the communication between subatomic particles deep inside the heart of matter.

Meet the Director: Chuck Black

This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science User Facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Making an Ultra-small Silicon "Chip"

A new polymer, created with a structure inspired by crystalline silicon, may make it easier to build better computers and solar cells.

How to Keep a Vital Diagnostic Isotope in Stock

Researchers succeed in producing larger quantities of a long-lived radioisotope, titanium-44, that generates a needed isotope, scandium-44g, on demand.

When Strontium Is Away, Iridium Comes Out to Play

Developing a highly active and acid-stable catalyst for water splitting could significantly impact solar energy technologies.

On Track Towards a Zika Virus Vaccine

Antibody's molecular structure reveals how it recognizes the Zika virus

Quantum Computing Building Blocks

Scientists invented an approach to creating ordered patterns of nitrogen-vacancy centers in diamonds, a promising approach to storing and computing quantum data.

Scientists Program Yeast to Turn Plant Sugars into Biodiesel

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.


Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park

Showing results

0-4 Of 2215