X
X
X

Filters:

How a Single Chemical Bond Balances Cells Between Life and Death

With SLAC's X-ray laser and synchrotron, scientists measured exactly how much energy goes into keeping a crucial chemical bond from triggering a cell's death spiral.

New Efficient, Low-Temperature Catalyst for Converting Water and CO to Hydrogen Gas and CO2

Scientists have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO). The discovery could improve the performance of fuel cells that run on hydrogen fuel but can be poisoned by CO.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle's protein shell. This work can help provide important information for research in bioenergy, pathogenesis, and biotechnology.

A Single Electron's Tiny Leap Sets Off 'Molecular Sunscreen' Response

In experiments at the Department of Energy's SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it's hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

Researchers Find New Mechanism for Genome Regulation

The same mechanisms that separate mixtures of oil and water may also help the organization of an unusual part of our DNA called heterochromatin, according to a new study by Berkeley Lab researchers. They found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Illuminating a Better Way to Calculate Excitation Energy

In a new study appearing this week in The Journal of Chemical Physics, researchers demonstrate a new method to calculate excitation energies. They used a new approach based on density functional methods, which use an atom-by-atom approach to calculate electronic interactions. By analyzing a benchmark set of small molecules and oligomers, their functional produced more accurate estimates of excitation energy compared to other commonly used density functionals, while requiring less computing power.


Filters:

Chicago Quantum Exchange to Create Technologically Transformative Ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy's Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Cynthia Jenks Named Director of Argonne's Chemical Sciences and Engineering Division

Argonne has named Cynthia Jenks the next director of the laboratory's Chemical Sciences and Engineering Division. Jenks currently serves as the assistant director for scientific planning and the director of the Chemical and Biological Sciences Division at Ames Laboratory.

Argonne-Developed Technology for Producing Graphene Wins TechConnect National Innovation Award

A method that significantly cuts the time and cost needed to grow graphene has won a 2017 TechConnect National Innovation Award. This is the second year in a row that a team at Argonne's Center for Nanoscale Materials has received this award.

Honeywell UOP and Argonne Seek Research Collaborations in Catalysis Under Technologist in Residence Program

Researchers at Argonne are collaborating with Honeywell UOP scientists to explore innovative energy and chemicals production.

Follow the Fantastic Voyage of the ICARUS Neutrino Detector

The ICARUS neutrino detector, born at Gran Sasso National Lab in Italy and refurbished at CERN, will make its way across the sea to Fermilab this summer. Follow along using an interactive map online.

JSA Awards Graduate Fellowships for Research at Jefferson Lab

Jefferson Sciences Associates announced today the award of eight JSA/Jefferson Lab graduate fellowships. The doctoral students will use the fellowships to support their advanced studies at their universities and conduct research at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) - a U.S. Department of Energy nuclear physics laboratory managed and operated by JSA, a joint venture between SURA and PAE Applied Technologies.

Muon Magnet's Moment Has Arrived

On May 31, the 50-foot-wide superconducting electromagnet at the center of the Muon g-2 experiment saw its first beam of muon particles from Fermilab's accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists' picture of the universe and how it works.

Seven Small Businesses to Collaborate with Argonne to Solve Technical Challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE's Small Business Vouchers Program.

JSA Names Charles Perdrisat and Charles Sinclair as Co-Recipients of its 2017 Outstanding Nuclear Physicist Prize

Jefferson Science Associates, LLC, announced today that Charles Perdrisat and Charles Sinclair are the recipients of the 2017 Outstanding Nuclear Physicist Prize. The 2017 JSA Outstanding Nuclear Physicist Award is jointly awarded to Charles Perdrisat for his pioneering implementation of the polarization transfer technique to determine proton elastic form factors, and to Charles Sinclair for his crucial development of polarized electron beam technology, which made such measurements, and many others, possible.


Filters:

Oxygen: The Jekyll and Hyde of Biofuels

Scientists are devising ways to protect plants, biofuels and, ultimately, the atmosphere itself from damage caused by an element that sustains life on earth.

The Rise of Giant Viruses

Research reveals that giant viruses acquire genes piecemeal from others, with implications for bioenergy production and environmental cleanup.

Grasses: The Secrets Behind Their Success

Researchers find a grass gene affecting how plants manage water and carbon dioxide that could be useful to growing biofuel crops on marginal land.

New Perspectives Into Arctic Cloud Phases

Teamwork provides insight into complicated cloud processes that are important to potential environmental changes in the Arctic.

Mountaintop Plants and Soils to Become Out of Sync

Plants and soil microbes may be altered by climate warming at different rates and in different ways, meaning vital nutrient patterns could be misaligned.

If a Tree Falls in the Amazon

For the first time, scientists pinpointed how often storms topple trees, helping to predict how changes in Amazonia affect the world.

Turning Waste into Fuels, Microbial Style

A newly discovered metabolic process linking different bacteria in a community could enhance bioenergy production.

Department of Energy Awards Six Research Contracts Totaling $258 Million to Accelerate U.S. Supercomputing Technology

Today U.S. Secretary of Energy Rick Perry announced that six leading U.S. technology companies will receive funding from the Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the nation's first exascale supercomputers.

Electrifying Magnetism

Researchers create materials with controllable electrical and magnetic properties, even at room temperature.

One Step Closer to Practical Fast Charging Batteries

Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.


Seeing the Forest and the Trees to Find Parasitic Reactions That Lead to Battery Failures

Article ID: 675927

Released: 2017-06-06 07:05:51

Source Newsroom: Pacific Northwest National Laboratory

  • Credit: Nathan Johnson, PNNL

    Researchers built a new stage and created a designer electrolyte to obtain both detailed and broad overviews of a troubling layer that causes promising lithium-sulfur batteries to fail.

Everyone's heard the phrase about seeing both the details and the big picture, and that struggle comes into sharp relief for those studying how to create batteries that hold more energy and cost less. It's difficult to see the details of atomic and topographical changes that lead to battery failure. For DOE's Joint Center for Energy Storage Research (JCESR), Vijay Murugesan and his colleagues at Pacific Northwest National Laboratory and Texas A&M University found a way. The result? They saw reactions that led to a layer that smothers the electrode in energy-dense -- but-short-lived -- lithium-sulfur batteries.

This research is thanks, in part, to a new device that let the team track the progression of sulfur in a vacuum inside a powerful scientific instrument and to the ability to model the reaction using advanced software and computing resources. "We can now realistically probe the reactions happening and view how the products actually spread," said Murugesan, researcher at PNNL.

Why It Matters: Better batteries affect everything from how you get to work to how long you can work on your laptop computer before finding an outlet. The results from this fundamental study benefit energy storage in two ways. First, to do the work, the team created a new "stage." This device let scientists determine the atomic composition and electronic and chemical state of the atoms on the electrode while the battery was running. Scientists can use this device to obtain a detailed view of other batteries.

"Doing this measurement is challenging," said Vaithiyalingam Shutthanandan, a PNNL scientist who worked on the research. "This is the first time we could access these levels of quantity and quality data while batteries were charging and discharging."

The second benefit of this study is the potential to solve the fading issue in lithium-sulfur batteries. "Sulfur is significantly cheaper than current cathode materials in lithium-ion batteries," said Murugesan. "So the total cost of a lithium-sulfur battery will be low. Simultaneously, the energy density will be a huge advantage-approximately five times more than lithium-ion batteries."

Methods: The team achieved the results thanks to a combination of scientific innovation and serendipity. The innovation came in building the unique stage for the X-ray photoelectron spectroscopy (XPS) instrument. The researchers needed to track the sulfur in the battery, but sulfur volatilizes in a vacuum. All samples in an XPS are studied under vacuum. Combining the newly designed stage and ionic liquids as electrolyte media let the team operate the battery inside the XPS and monitor the growth of sulfur-based compounds to see the parasitic reactions.

"We designed a completely new capability for the XPS system," said Ashleigh Schwarz, who performed many of the XPS scans on the battery and helped determine the electrolyte to use on the stage.

The electrolyte's composition is crucial, as it must survive the vacuum used by XPS. Schwarz and her colleagues tested different compositions to see how well the electrolyte performed in the XPS. The team's choice contained 20 percent of the traditional solvent (DOL/DME) combined with an ionic solvent.

Using the XPS in analysis or spectroscopy mode, the team obtained the atomic information, including the atoms present and the chemical bonds between them. Switching over to an imaging or microscopic mode, the researchers acquired topological views of the solid-electrolyte interphase (SEI) layer forming. This view let them see where the elements were on the surface and more. The combination of views let them obtain critical information over a wide range of spatial resolutions, spanning from angstroms to micrometers as the battery drained and charged.

The XPS resides in EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility at PNNL.

In addition, the team benefited from a serendipitous meeting at a national scientific conference. Murugesan was talking with Perla Balbuena, Texas A&M University, about her research into lithium-sulfur batteries. The pair quickly realized that her work on ab initio molecular dynamics modeling would benefit the experiments. Balbuena and her colleague Luis Camacho-Forero worked with the experimentalists to interpret the results and test new ideas about how the SEI layer forms. Knowing how the layer forms could lead to options that stop its formation altogether and greatly extend the battery life cycle.

What's Next? As part of JCESR, the team is continuing to answer tough questions necessary to create the next generation of energy storage technologies.

Acknowledgments

Sponsors: The in situ X-ray photoelectron spectroscopy cell designs were funded by the Chemical Imaging Initiative as part of the Laboratory Directed Research and Development effort at Pacific Northwest National Laboratory. The lithium-sulfur battery materials and measurements were funded through the Joint Center for Energy Storage Research (JCESR) sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. LECF and PBB acknowledge financial support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research Program.

Facilities: The in situ X-ray photoelectron spectroscopy characterization was done in the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL. Supercomputer resources from Texas A&M University's High-Performance Computer Center and the Texas Advanced Computing Center were also used.

Research Team: Manjula Nandasiri, Ashleigh Schwarz, Vaithiyalingam Shutthanandan and Suntharampillai Thevuthasan, Pacific Northwest National Laboratory; Luis Camacho-Forero and Perla Balbuena, Texas A&M University; Karl Mueller and Vijayakumar Murugesan, Pacific Northwest National Laboratory and Joint Center for Energy Storage Research

Reference: Nandasiri MI, LE Camacho-Forero, AM Schwarz, V Shutthanandan, S Thevuthasan, PB Balbuena, KT Mueller, and V Murugesan. 2017. "In-Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li-S Batteries." Chemistry of Materials. Article ASAP. DOI: 10.1021/acs.chemmater.7b00374