Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-06-14 12:05:51
  • Article ID: 676412

New Research Finds a Missing Piece to High-Temperature Superconductor Mystery

Propagating "charge density wave" fluctuations are seen in superconducting copper oxides for the first time.

  • Credit: Wei-Sheng/SLAC National Accelerator Laboratory

    This sketch shows how resonant inelastic X-ray scattering (RIXS) helps scientists understand the electronic behavior of copper oxide materials. An X-ray photon aimed at the sample (blue arrow) is absorbed by a copper atom, which then emits a new, lower-energy photon (red arrow) as it relaxes. The amount of momentum transferred and energy lost in this process can induce changes in the charge density waves thought to be important in high-temperature superconductivity.

 

New Research Finds a Missing Piece to High-Temperature Superconductor Mystery

 

Propagating “charge density wave” fluctuations are seen in superconducting copper oxides for the first time.

 

By Mike Ross

 

June 14, 2017

 

An international team led by scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University has detected new features in the electronic behavior of a copper oxide material that may help explain why it becomes a perfect electrical conductor – a superconductor – at relatively high temperatures.

Using an ultrahigh-resolution X-ray instrument in France, the researchers for the first time saw dynamic behaviors in the material’s charge density wave (CDW) – a pattern of electrons that resembles a standing wave – that lend support to the idea that these waves may play a role in high-temperature superconductivity.

Data taken at low (20 kelvins) and high (240 kelvins) temperatures showed that as the temperature increased, the CDW became more aligned with the material’s atomic structure. Remarkably, at the lower temperature, the CDW also induced an unusual increase in the intensity of the oxide’s atomic lattice vibrations, indicating that the dynamic CDW behaviors can propagate through the lattice.

“Previous research has shown that when the CDW is static, it competes with and diminishes superconductivity,” said co-author Wei-Sheng Lee, a SLAC staff scientist and investigator with the Stanford Institute for Materials and Energy Sciences (SIMES), which led the study published June 12 in Nature Physics. “If, on the other hand, the CDW is not static but fluctuating, theory tells us they may actually help form superconductivity.”

A Decades-long Search for an Explanation

The new result is the latest in a decades-long search by researchers worldwide for the factors that enable certain materials to become superconducting at relatively high temperatures.

Since the 1950s, scientists have known how certain metals and simple alloys become superconducting when chilled to within a few degrees of absolute zero: Their electrons pair up and ride waves of atomic vibrations that act like a virtual glue to hold the pairs together. Above a certain temperature, however, the glue fails as thermal vibrations increase, the electron pairs split up and superconductivity disappears.

In 1986, complex copper oxide materials were found to become superconducting at much higher – although still quite cold – temperatures. This discovery was so unexpected it caused a worldwide scientific sensation. By understanding and optimizing how these materials work, researchers hope to develop superconductors that work at room temperature and above.

At first, the most likely glue holding superconducting electron pairs together at higher temperatures seemed to be strong magnetic excitations created by interactions between electron spins. But in 2014, a theoretical simulation and experiments led by SIMES researchers concluded that these high-energy magnetic interactions are not the sole factor in copper oxide’s high-temperature superconductivity. An unanticipated CDW also appeared to be important.

The latest results continue the SIMES collaboration between experiment and theory. Building upon previous theories of how electron interactions with lattice vibrations can be probed with resonant inelastic X-ray scattering, or RIXS, the signature of CDW dynamics was finally identified, providing additional support for the CDW’s role in determining the electronic structure in superconducting copper oxides.

The Essential New Tool: RIXS

The new results are enabled by the development of more capable instruments employing RIXS. Now available at ultrahigh resolution at the European Synchrotron Radiation Facility (ESRF) in France, where the team performed this experiment, RIXS will also be an important feature of SLAC’s upgraded Linac Coherent Light Source X-ray free-electron laser, LCLS-II. The combination of ultrahigh energy resolution and a high pulse repetition rate at LCLS-II will enable researchers to see more detailed CDW fluctuations and perform experiments aimed at revealing additional details of its behavior and links to high-temperature superconductivity. Most importantly, researchers at LCLS-II will be able to use ultrafast light-matter interactions to control CDW fluctuations and then take femtosecond-timescale snapshots of them.

RIXS involves illuminating a sample with X-rays that have just enough energy to excite some electrons deep inside the target atoms to jump up into a specific higher orbit. When the electrons relax back down into their previous positions, a tiny fraction of them emit X-rays that carry valuable atomic-scale information about the material's electronic and magnetic configuration that is thought to be important in high-temperature superconductivity.

“To date, no other technique has seen evidence of propagating CDW dynamics,” Lee said.

RIXS was first demonstrated in the mid-1970s, but it could not obtain useful information to address key problems until 2007, when Giacomo Ghiringhelli, Lucio Braicovich at Milan Polytechnic in Italy and colleagues at Swiss Light Source made a fundamental change that improved its energy resolution to a level where significant details became visible – technically speaking to about 120 milli-electronvolts (meV) at the relevant X-ray wavelength, which is called a copper L edge. The new RIXS instrument at ESRF is three times better, routinely attaining an energy resolution down to 40 meV. Since 2014, the Milan group has collaborated with SLAC and Stanford scientists in their RIXS research.

“The new ultrahigh resolution RIXS makes a huge difference,” Lee said. “It can show us previously invisible details.”

Other researchers involved in this result were from Milan Polytechnic, European Synchrotron Radiation Facility, Japan’s National Institute of Advanced Industrial Science and Technology and Italy’s National Research Council Institute for Superconductors, Oxides and Other Innovative Materials and Devices (CNR-SPIN). Funding for this research came from the DOE Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

High-Speed Movie Aids Scientists Who Design Glowing Molecules

In a recent experiment conducted at the Department of Energy's SLAC National Accelerator Laboratory, a research team used bright, ultrafast X-ray pulses from SLAC's X-ray free-electron laser to create a high-speed movie of a fluorescent protein in action. With that information, the scientists began to design a marker that switches more easily, a quality that can improve resolution during biological imaging.

Biomass-Produced Electricity in the US Possible, but It'll Cost

If the U.S. wants to start using wood pellets to produce energy, either the government or power customers will have to pay an extra cost, a new University of Georgia study has found.

Scientists Make Atoms-Thick Post-It Notes for Solar Cells and Circuits

In a study published Sept. 20 in Nature, UChicago and Cornell University researchers describe an innovative method to make stacks of semiconductors just a few atoms thick. The technique offers scientists and engineers a simple, cost-effective method to make thin, uniform layers of these materials, which could expand capabilities for devices from solar cells to cell phones.

Titan Helps Researchers Suck Mystery Out of Cell's 'Vacuum Cleaners'

In cancer cells, a membrane transport protein called P-glycoprotein, or Pgp, actively pumps anticancer drugs out of the cell, contributing to multidrug resistance. Recently, a team led by computational biophysicist Emad Tajkhorshid from the University of Illinois at Urbana-Champaign (UIUC) used the Titan supercomputer to uncover new details about Pgp that could help the drug discovery community manipulate Pgp function.

Laser-Free Method of Ion Cooling Has Range of Potential Uses

Prof. Daniel Zajfman's universal ion trap cools to a tenth of a degree above absolute zero. The new method does not depend on the type or the weight of the ion and, thus, might be used to investigate the properties of large biological molecules or nanoparticles, among other things.

Tiny Lasers from a Gallery of Whispers

Whispering gallery mode resonators rely on a phenomenon similar to an effect observed in circular galleries, and the same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week in APL Photonics, investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths.

Copper Catalyst Yields High Efficiency CO2-to-Fuels Conversion

Berkeley Lab scientists have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of a creating a clean chemical manufacturing system that can put carbon dioxide to good use.

Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene

Berkeley Lab scientists have harnessed the power of photosynthesis to convert carbon dioxide into fuels and alcohols at efficiencies far greater than plants. The achievement marks a significant advance in the effort to move toward sustainable sources of fuel.

New Evidence for Small, Short-Lived Drops of Early Universe Quark-Gluon Plasma?

UPTON, NY--Particles emerging from even the lowest energy collisions of small deuterons with large heavy nuclei at the Relativistic Heavy Ion Collider (RHIC)--a U.S. Department of Energy Office of Science User Facility for nuclear physics research at DOE's Brookhaven National Laboratory--exhibit behavior scientists associate with the formation of a soup of quarks and gluons, the fundamental building blocks of nearly all visible matter.

New Insights Into Nanocrystal Growth in Liquid

PNNL researchers have measured the forces that cause certain crystals to assemble, revealing competing factors that researchers might be able to control. The work has a variety of implications in both discovery and applied science. In addition to providing insights into the formation of minerals and semiconductor nanomaterials, it might also help scientists understand soil as it expands and contracts through wetting and drying cycles.


  • Filters

  • × Clear Filters

PPPL Physicist Francesca Poli Named ITER Scientist Fellow

Article describes new ITER Scientist Fellow.

Los Alamos Gains Role in High-Performance Computing for Materials Program

A new high-performance computing initiative announced this week by the U.S. Department of Energy will help U.S. industry accelerate the development of new or improved materials for use in severe environments.

UK Commits $88 Million to LBNF/DUNE in First-Ever Umbrella Science Agreement with U.S.

The UK has committed $88 million to the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment as part of an umbrella science and technology agreement with the United States.

Wayne State Receives $1.2 Million NSF Grant to Develop Autonomous Battery Operating System

Researchers at Wayne State University led by Nathan Fisher, associate professor of computer science in the College of Engineering, received a $1.2 million grant from the National Science Foundation to address the need for effective, integrative battery operating systems that provide sustained and reliable power.

UAH leads effort that secures $20 million grant from the National Science Foundation

A partnership comprising nine universities in Alabama, including The University of Alabama in Huntsville (UAH) as the lead institution, has been awarded a $20 million, five-year grant by the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR).

Sandia Labs Wins 5 Regional Technology Transfer Awards

Sandia National Laboratories won five awards from the 2017 Federal Laboratory Consortium for its work to develop and commercialize innovative technologies.

Tulane Receives Grant to Reduce Auto Emissions

Members of Tulane University's Shantz Lab will work with industrial scientists to assist in the development of next-generation materials designed to reduce harmful automotive emissions. The three-year old lab and its group of students have received a grant and equipment resources from SACHEM, Inc., a chemical science company.

Lab Leads New Effort in Materials Development

Lawrence Livermore National Lab will be part of a multi-lab effort to apply high-performance computing to US-based industry's discovery, design, and development of materials for severe environments under a new initiative announced by the Department of Energy (DOE) on Sept. 19.

ORNL Innovation Crossroads Program Opens Second Round of Energy Entrepreneurial Fellowships

Entrepreneurs are invited to apply for the second round of Oak Ridge National Laboratory's Innovation Crossroads program.

Los Alamos Recognized as Top Diversity Employer

For the second straight year, Los Alamos National Laboratory was recognized as a top diversity employer by LATINA Style and STEM Workforce Diversity magazine.


  • Filters

  • × Clear Filters

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

First Look at a Living Cell Membrane

Neutrons provide the solution to nanoscale examination of living cell membrane and confirm the existence of lipid rafts.

High Yield Biomass Conversion Strategy Ready for Commercialization

Researchers convert 80 percent of biomass into high-value products with strategy that's ready for commercialization.

Consequences of Drought Stress on Biofuels

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation and resulting biofuel production.

Clay Minerals and Metal Oxides Change How Uranium Travels Through Sediments

Montmorillonite clays prevent uranium from precipitating from liquids, letting it travel with groundwater.

Tundra Loses Carbon with Rapid Permafrost Thaw

Seven-year-study shows plant growth does not sustainably balance carbon losses from solar warming and permafrost thaw.

Crystals Grow by Twisting, Aligning and Snapping Together

Van der Waals force, which that enables tiny crystals to grow, could be used to design new materials.

Vitamin B12 Fuels Microbial Growth

Scarce compound, vitamin B12, is key for cellular metabolism and may help shape microbial communities that affect environmental cycles and bioenergy production.

Carbon in Floodplain Unlikely to Cycle into the Atmosphere

Microbes leave a large fraction of carbon in anoxic sediments untouched, a key finding for understanding how watersheds influence Earth's ecosystem.

Bacterial Cell Wall Changes Produce More Fatty Molecules

New strategy greatly increases the production and secretion of biofuel building block lipids in bacteria able to grow at industrial scales.


Spotlight

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University

Wednesday May 17, 2006, 06:45 PM

Time Use Expert's 7-Year Fight for Better Gas Mileage

University of Maryland, College Park





Showing results

0-4 Of 2215