Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-07-03 10:05:49
  • Article ID: 677374

Electron Orbitals May Hold Key to Unifying Concept of High-Temperature Superconductivity

First experimental evidence of "orbital-selective" electron pairing in an iron-based high-temperature superconductor

  • Credit: Brookhaven National Laboratory and Cornell University

    Iron-based superconductivity occurs in materials such as iron selenide (FeSe) that contain crystal planes made up of a square array of iron (Fe) atoms, depicted here. In these iron layers, each Fe atom has two active electron "clouds," or orbitals—dxz (red) and dyz (blue)—each containing one electron. By directly visualizing the electron states in the iron planes of FeSe, the researchers revealed that that electrons in the dxz orbitals (red) do not form Cooper pairs or contribute to the superconductivity, but instead form an incoherent metallic state along the horizontal (x) axis. In contrast, all electrons in the dyz orbitals (blue) form strong Cooper pairs with neighboring atoms to generate superconductivity. Searching for other materials with this exotic "orbital-selective" pairing may lead to the discovery of new superconductors.

  • Credit: Brookhaven National Laboratory and Cornell University

    This image produced by the Spectroscopic Imaging Scanning Tunneling Microscope reveals the location of every atom on the surface, as well as every single atomic defect in the field of view. The white dots making up squares arrayed 45-degrees to the x/y-axis are selenium (Se) atoms, while the defects—missing Fe atoms in the Fe plane, about a quarter of a nanometer below the Se surface—show up as butterfly-shaped perturbations produced by quantum interference of electrons scattering from the defects. These scattering interference patterns led to the discovery of orbital selective Cooper pairing in FeSe.

Electron Orbitals May Hold Key to Unifying Concept of High-Temperature Superconductivity

 

First experimental evidence of "orbital-selective" electron pairing in an iron-based high-temperature superconductor

 

EMBARGOED for release on Thursday, July 6, 2017, 2 p.m. U.S. Eastern Time

 

UPTON, NY-A team of scientists has found evidence for a new type of electron pairing that may broaden the search for new high-temperature superconductors. The findings, described in the journal Science, provide the basis for a unifying description of how radically different "parent" materials-insulating copper-based compounds and metallic iron-based compounds-can develop the ability to carry electrical current with no resistance at strikingly high temperatures.

 

According to the scientists, the materials' dissimilar electronic characteristics actually hold the key to commonality.

 

"Scientists have thought that because the starting point for superconductivity in these two classes of materials is so different, you need different theoretical approaches to describe them," said J.C. Séamus Davis, a physicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University, who led the team of experimental scientists. "Instead, we've been motivated to explore what is universal about these two systems. Ideally, there should be just one explanation."

 

Scientists have generally understood that the mechanism of superconductivity in copper oxide compounds depends on the ability of electrons on adjacent copper atoms to pair up. Each copper atom has a single, unpaired electron in its outermost energy shell, or orbital. While the outermost electrons on adjacent copper atoms interact with one another strongly, they ordinarily stay locked in place, stuck in a "quantum mechanical traffic jam" with nowhere to go, Davis said. With no electrons moving, the material acts as a "strongly correlated" electrical insulator.

 

Removing some of the electrons that reside on copper atoms results in electron vacancies known as holes. This alleviates the quantum traffic jam so that, when the material is cooled to a certain temperature, oppositely aligned electrons (magnetic partners where the "spin" of one electron points up and the adjacent one points down) form pairs and then become free to zip through the material unimpeded-a superconductor.

 

Iron atoms, which have a nucleus with smaller positive charge than copper, exert less pull on the circulating electrons. So instead of filling up electron orbitals, electrons in several outer energy orbitals remain unpaired, yet aligned with one another and electronically active. The alignment of unpaired electrons in multiple orbitals gives simple iron its strong magnetic and metal properties, so it's easy to see why iron compounds would be good conductors. But it's not really clear how they could become zero-resistance superconductors at high temperatures without the strong interactions that create a correlated insulating state in the copper based materials.

 

To address this conundrum, theoretical physicists began to consider the possibility that the unpaired electrons in iron's different orbitals could take on very different roles. Perhaps unpaired electrons in one particular orbital could pair up with electrons in the same orbital on an adjacent atom to carry the supercurrent, while electrons in the other orbitals provide the insulating, magnetic, and metallic properties.

 

"The challenge is to find a way to see that some of the electrons are superconducting and some are insulating in the same crystal," Davis said.

 

The research published in Science provides the first direct proof that such "orbital-selective" electron pairing takes place.

 

The theory team for this project-Andreas Kreisel (University of Leipzig), Peter Hirschfeld (University of Florida), and Brian Anderson (University of Copenhagen)-defined the electronic signatures that should be associated with each orbital on the iron atoms. Then, experimentalists Peter Sprau and Andrey Kostin (both of Brookhaven Lab and Cornell) used a scanning tunneling microscope at the Center for Emergent Superconductivity-a DOE Energy Frontier Research Center at Brookhaven Lab-to measure the energy and momentum of electrons in iron-selenide samples that were synthesized by Anna Bohmer and Paul Canfield at DOE's Ames Laboratory. Comparing the measurements with the predicted electronic signatures allowed the scientists to identify which electrons were associated with each orbital.

 

With this information, "We can measure the binding energy and momentum of electrons in the 'Cooper pairs' responsible for superconductivity and identify which energy momentum characteristics they have-which orbital they're from," Davis said.

 

"We were able to show that almost all of the electrons in Cooper pairs in iron selenide were from a particular lower energy orbital (the d_yz orbital)," Davis said. The findings also imply that the electron in iron's outermost orbital in iron selenide exhibits virtually insulating properties, just as it does in the copper oxide compounds.

 

"Because iron selenide normally exhibits good metallic conductivity, how would one ever know that the electrons in this orbital are acting as they are in correlated insulators? This strongly interacting and virtually insulating state was hiding in plain sight!" he said.

 

With this outer-orbital insulating state, the iron compound has all the same requirements for superconductivity that the copper oxides do-a strong magnetic interaction (up/down pairing) of the almost localized electrons, and a metallic state that allows those pairs to move. The big difference is that in iron selenide, these contributions come from different electrons in three separate active orbitals, instead of the single electron in one active orbital in copper.

 

"In iron you have the conductivity for free. And you have the magnetism for free, but it's based on a different electron. Both coexist in the same atom," Davis said. So once you have Cooper pairs, it seems there's no need to add holes to get the current flowing.

 

This realization may broaden the search for new superconductors that can potentially operate under warmer conditions. Such higher high-temperature superconductors would be more practical for real world, energy-saving applications such as power lines or energy storage devices.

 

"Instead of searching for new single-electron antiferromagnetic insulators like copper oxide to make high-temperature superconductors, maybe we should be searching for new highly magnetic, metallic materials that have properties like iron but in an orbitally selective arrangement," Davis said. "This opens the world of materials science to many new types of materials that could be high-temperature superconductors."

 

This research was funded by the DOE Office of Science, the Moore Foundation's EPiQS Initiative, and a Lundbeckfond Fellowship.

 

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

 

Follow @BrookhavenLab on Twitter [http://twitter.com/BrookhavenLab] or find us on Facebook [http://www.facebook.com/BrookhavenLab/].

 

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

 

An electronic version of this news release with related graphics is available in Brookhaven Lab's electronic newsroom: https://www.bnl.gov/newsroom/news.php?a=112309

 

Media contacts: Karen McNulty Walsh [kmcnulty@bnl.gov], (631) 344-8350, or Peter Genzer [genzer@bnl.gov], (631) 344-3174

X
X
X
  • Filters

  • × Clear Filters

Rutgers Scientists Discover 'Legos of Life'

Rutgers scientists have found the "Legos of life" - four core chemical structures that can be stacked together to build the myriad proteins inside every organism - after smashing and dissecting nearly 10,000 proteins to understand their component parts. The four building blocks make energy available for humans and all other living organisms, according to a study published online today in the Proceedings of the National Academy of Sciences.

Small Hydroelectric Dams Increase Globally with Little Research, Regulations

University of Washington researchers have published the first major assessment of small hydropower dams around the world -- including their potential for growth -- and highlight the incredibly variability in how dams of varying sizes are categorized, regulated and studied.

Researchers Reveal How Microbes Cope in Phosphorus-Deficient Tropical Soil

A team led by the Department of Energy's Oak Ridge National Laboratory has uncovered how certain soil microbes cope in a phosphorus-poor environment to survive in a tropical ecosystem. Their novel approach could be applied in other ecosystems to study various nutrient limitations and inform agriculture and terrestrial biosphere modeling.

Scientists Discover Material Ideal for Smart Photovoltaic Windows

Researchers at Berkeley Lab discovered that a form of perovskite, one of the hottest materials in solar research due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

Biofuels Feedstock Study Supports Billion-Ton Estimate

Can farmers produce at least 1 billion tons of biomass per year that can be used as biofuels feedstock? The answer is yes.

On the Rebound

New research from the U.S. Department of Energy's Argonne National Laboratory and Stanford University has found that palladium nanoparticles can repair atomic dislocations in their crystal structure, potentially leading to other advances in material science.

Coupling Experiments to Theory to Build a Better Battery

A Berkeley Lab-led team of researchers has reported that a new lithium-sulfur battery component allows a doubling in capacity compared to a conventional lithium-sulfur battery, even after more than 100 charge cycles.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

A Shortcut to Modeling Sickle Cell Disease

Using Oak Ridge National Laboratory's Titan supercomputer, a team led by Brown University's George Karniadakis devised a multiscale model of sickle cell disease that captures what happens inside a red blood cell affected by the disease.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.


  • Filters

  • × Clear Filters

Theoretical Physicist Elena Belova Named to Editorial Board of Physics of Plasmas

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Superconducting X-Ray Laser Takes Shape in Silicon Valley

An area known for high-tech gadgets and innovation will soon be home to an advanced superconducting X-ray laser that stretches 3 miles in length, built by a collaboration of national laboratories. On January 19, the first section of the machine's new accelerator arrived by truck at SLAC National Accelerator Laboratory in Menlo Park after a cross-country journey that began in Batavia, Illinois, at Fermi National Accelerator Laboratory.

Kelsey Stoerzinger Earns Young Investigator Lectureship

Kelsey Stoerzinger, Pauling Fellow at Pacific Northwest National Laboratory, is one of the 2018 Caltech Young Investigator Lecturers in Engineering and Applied Physics.

North Dakota State University Joins Two National Distributed Computing Groups

The NDSU Center for Computationally Assisted Science and Technology (CCAST) joins OSG (Open Science Grid) and XSEDE (Extreme Science and Engineering Discovery Environment).

DOE Announces Funding for New HPC4Manufacturing Industry Projects

The Department of Energy's Advanced Manufacturing Office (AMO) today announced the funding of $1.87 million for seven new industry projects under an ongoing initiative designed to utilize DOE's high-performance computing (HPC) resources and expertise to advance U.S. manufacturing and clean energy technologies.

DOE Announces First Awardees for New HPC4Materials for Severe Environments Program

The Department of Energy's Office of Fossil Energy (FE) today announced the funding of $450,000 for the first two private-public partnerships under a brand-new initiative aimed at discovering, designing and scaling up production of novel materials for severe environments.

Two Argonne Scientists Recognized for a Decade of Breakthroughs

Two scientists with the U.S. Department of Energy's (DOE) Argonne National Laboratory have been named to the Web of Science's Highly Cited List of 2017, ranking in the top 1 percent of their peers by citations and subject area. Materials Scientist Khalil Amine and Energy and Environmental Policy Scientist David Streets say they are thrilled to see their work -- and the laboratory -- recognized in such a way.

Argonne Welcomes Department of Energy Secretary Perry

U.S. Department of Energy Secretary Rick Perry visited Argonne National Laboratory yesterday, getting a first-hand view of the multifaceted and interdisciplinary research program laboratory of the Department.

Argonne names John Quintana Deputy Laboratory Director for Operations and COO

John Quintana has been named Deputy Laboratory Director for Operations and Chief Operations Officer (COO) of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Developing Next-Generation Sensing Technologies

Recently, the Advanced Research Projects Agency-Energy (ARPA-E) announced $20 million in funding for 15 projects that will develop a new class of sensor systems to enable significant energy savings via reduced demand for heating and cooling in residential and commercial buildings.


  • Filters

  • × Clear Filters

Exploring Past, Present, and Future Water Availability Regionally, Globally

New open-source software simulates river and runoff resources.

Arctic Photosynthetic Capacity and Carbon Dioxide Assimilation Underestimated by Terrestrial Biosphere Models

New measurements offer data vital to projecting plant response to environmental changes.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

Superconducting Tokamaks Are Standing Tall

Plasma physicists significantly improve the vertical stability of a Korean fusion device.

Graphene Flexes Its Muscle

Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

What's the Noise Eating Quantum Bits?

The magnetic noise caused by adsorbed oxygen molecules is "eating at" the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.

Filtering Water Better than Nature

Water passes through human-made straws faster than the "gold standard" protein, allowing us to filter seawater.

Machine Learning Provides a Bridge to the Texture of the Quantum World

Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.


Spotlight

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215