Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-07-05 09:05:42
  • Article ID: 677403

Brookhaven Lab Hosts "Brookathon," a Five-Day GPU Hackathon

Teams of researchers, students, and software developers accelerate their scientific applications with graphics processing units (GPUs) for high-performance computing

  • Credit: Brookhaven National Laboratory

    From June 5 through 9, Brookhaven Lab's Computational Science Initiative hosted "Brookathon"—a hackathon (a combination of the words "hack" and "marathon" that describes the nonstop and exploratory nature of the programming event) focused on graphics processing units (GPUs). By offloading computationally intensive portions of an application code from the main central processing unit (CPU), GPUs allow applications to run much faster—an important capability for analyzing large data sets and running large numerical simulations. The 10 teams that attended Brookathon brought their own science codes to accelerate and were each mentored by two GPU experts.

  • Credit: Brookhaven National Laboratory

    Nicholas D'Imperio, chair of Brookhaven Lab's Computational Science Laboratory, holds a graphics processing unit (GPU) made by NVIDIA.

  • Credit: Brookhaven National Laboratory

    The MUSIC code package helps scientists simulate what happens when two nuclei collide at nearly the speed of light, as illustrated in the above figure. Immediately following the collision, the system is heated to an extremely high temperature, resulting in the creation of a state of matter that behaves as an almost-perfect liquid: the quark-gluon plasma (QGP) that was thought to have filled our universe microseconds after the Big Bang. As the system expands and cools, the nuclear matter evolves from the QGP phase to the hadron (a kind of composite particle composed of quarks and gluons) gas phase and eventually freezes out into particles that fly to detectors, where various properties of the particles are measured. MUSIC's numerical simulations allow scientists to "rewind" these measurements to the early stage of the collisions and study the QGP's transport properties (e.g., viscosity, heat conductivity). Programming MUSIC on GPUs will enable more quantitative comparisons with experimental data from Brookhaven's Relativistic Heavy Ion Collider.

  • Credit: Brookhaven National Laboratory

    Each of the teams participating in the hackathon sat at a large round table to facilitate collaboration.

  • Credit: Brookhaven National Laboratory

    The Brookathon mentors came from as close as Brookhaven Lab and as far away as the Swiss National Supercomputing Center. Fernanda Foertter (standing, leftmost) from Oak Ridge National Laboratory helped organize and host Brookathon and nine other hackathons since 2014. Brookhaven computational scientist Meifeng Lin (sitting, frontmost) coordinated Brookathon with the help of Foertter and the rest of the organizing committee, which consisted of Sunita Chandrasekaran (University of Delaware), Barbara Chapman (Brookhaven Lab/Stony Brook University), and Tony Curtis (Stony Brook University).

  • Credit: Brookhaven National Laboratory

    From June 5 through 9, Brookhaven Lab's Computational Science Initiative hosted "Brookathon"—a hackathon (a combination of the words "hack" and "marathon" that describes the nonstop and exploratory nature of the programming event) focused on graphics processing units (GPUs). By offloading computationally intensive portions of an application code from the main central processing unit (CPU), GPUs allow applications to run much faster—an important capability for analyzing large data sets and running large numerical simulations. The 10 teams that attended Brookathon brought their own science codes to accelerate and were each mentored by two GPU experts.

  • Credit: Brookhaven National Laboratory

    Nicholas D'Imperio, chair of Brookhaven Lab's Computational Science Laboratory, holds a graphics processing unit (GPU) made by NVIDIA.

  • Credit: Brookhaven National Laboratory

    The MUSIC code package helps scientists simulate what happens when two nuclei collide at nearly the speed of light, as illustrated in the above figure. Immediately following the collision, the system is heated to an extremely high temperature, resulting in the creation of a state of matter that behaves as an almost-perfect liquid: the quark-gluon plasma (QGP) that was thought to have filled our universe microseconds after the Big Bang. As the system expands and cools, the nuclear matter evolves from the QGP phase to the hadron (a kind of composite particle composed of quarks and gluons) gas phase and eventually freezes out into particles that fly to detectors, where various properties of the particles are measured. MUSIC's numerical simulations allow scientists to "rewind" these measurements to the early stage of the collisions and study the QGP's transport properties (e.g., viscosity, heat conductivity). Programming MUSIC on GPUs will enable more quantitative comparisons with experimental data from Brookhaven's Relativistic Heavy Ion Collider.

  • Credit: Brookhaven National Laboratory

    Each of the teams participating in the hackathon sat at a large round table to facilitate collaboration.

  • Credit: Brookhaven National Laboratory

    The Brookathon mentors came from as close as Brookhaven Lab and as far away as the Swiss National Supercomputing Center. Fernanda Foertter (standing, leftmost) from Oak Ridge National Laboratory helped organize and host Brookathon and nine other hackathons since 2014. Brookhaven computational scientist Meifeng Lin (sitting, frontmost) coordinated Brookathon with the help of Foertter and the rest of the organizing committee, which consisted of Sunita Chandrasekaran (University of Delaware), Barbara Chapman (Brookhaven Lab/Stony Brook University), and Tony Curtis (Stony Brook University).

On June 5, coding “sprinters”—teams of computational, theoretical, and domain scientists; software developers; and graduate and postdoctoral students—took their marks at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, beginning the first of five days of nonstop programming from early morning until night. During this coding marathon, or “hackathon,” they learned how to program their scientific applications on devices for accelerated computing called graphics processing units (GPUs). Guiding them toward the finish line were GPU programming experts from national labs, universities, and technology companies who donated their time to serve as mentors. The goal by the end of the week was for the teams new to GPU programming to leave with their applications running on GPUs—or at least with the knowledge of how to do so—and for the teams who had come with their applications already accelerated on GPUs to leave with an optimized version.

The era of GPU-accelerated computing 

GPU-accelerated computing—the combined use of GPUs and central processing units (CPUs)—is increasingly being used as a way to run applications much faster. Computationally intensive portions of an application are offloaded from the CPU, which consists of a few cores optimized for serial processing (tasks execute one at a time in sequential order), to the GPU, which contains thousands of smaller, more efficient cores optimized for parallel processing (multiple tasks are processed simultaneously).

However, while GPUs potentially offer a very high memory bandwidth (rate at which data can be stored in and read from memory by a processor) and arithmetic performance for a wide range of applications, they are currently difficult to program. One of the challenges is that developers cannot simply take the existing code that runs on a CPU and have it automatically run on a GPU; they need to rewrite or adapt portions of the code. Another challenge is efficiently getting data onto the GPUs in the first place, as data transfer between the CPU and GPU can be quite slow. Though parallel programming standards such as OpenACCand GPU advances such as hardware and software for managing data transfer make these processes easier, GPU-accelerated computing is still a relatively new concept.

A hackathon with a history

Here’s where “Brookathon,” hosted by Brookhaven Lab’s Computational Science Initiative (CSI) and jointly organized with DOE’s Oak Ridge National Laboratory, Stony Brook University, and the University of Delaware, came in.

“The architecture of GPUs, which were originally designed to display graphics in video games, is quite different from that of CPUs,” said CSI computational scientist Meifeng Lin, who coordinated Brookathon with the help of an organizing committee and was a member of one of the teams participating in the event. “People are not used to programming GPUs as much as CPUs. The goal of hackathons like Brookathon is to lessen the learning curve, enabling the use of GPUs on next-generation high-performance-computing (HPC) systems for scientific applications.”

Brookathon is the latest in a series of GPU hackathons that first began in 2014 at Oak Ridge Leadership Computing Facility (OLCF)—a DOE Office of Science User Facility that is home to the nation’s most powerful science supercomputer, Titan, and other hybrid CPU-GPU systems. So far, OLCF’s Fernanda Foertter, a HPC user support specialist and programmer, has helped organize and host 10 hackathons across the United States and abroad, including Brookathon and one at the Jülich Supercomputing Centre in Germany earlier this year.

“Hackathons are intense team-based training events,” said Foertter. “The hope is that the teams go home and continue to work on their codes.”

The idea to host at Brookhaven started in May 2016, when Lin and Brookhaven colleagues attended their first GPU hackathon, hosted at the University of Delaware. There, they worked on a code for lattice quantum chromodynamics (QCD) simulations, which help physicists understand the interactions between particles called quarks and gluons. But in using the OpenACC programming standard, they realized it did not sufficiently support the C++ programming language that their code library was written in. Around this time, Brookhaven became a member of OpenACC so that CSI scientists could help shape the standard to include the features needed to support their codes on GPUs. Through the University of Delaware hackathon and weekly calls with OpenACC members, Lin came into contact with Foertter and Sunita Chandrasekaran, an assistant professor of computer science at the University of Delaware who organized that hackathon, both of whom were on board with bringing a hackathon to Brookhaven.

“Brookhaven had just gotten a computing cluster with GPUs, so the timing was great,” said Lin. “In CSI’s Computational Science Laboratory, where I work, we get a lot of requests from scientists around Brookhaven to get their codes to run on GPUs. Hackathons provide the intense hands-on mentoring that helps to make this happen.”

Teams from near and far

A total of 22 applications were submitted for a spot at Brookathon, half of which came from Brookhaven Lab or nearby Stony Brook University teams. According to Lin, Brookathon received the highest number of applications of any of the hackathons to date. Ultimately, a review committee of OpenACC members accepted applications from 10 teams, each of which brought a different application to accelerate on GPUs:

  • Team AstroGPU from Stony Brook University: codes for simulating astrophysical fluid flows
  • Team Grid Makers from Brookhaven, Fermilab, Boston University, and the University of Utah (Lin’s team): a multigrid solver for linear equations and a general data-parallel library (called Grid), both related to application development for lattice QCD under DOE’s Exascale Computing Project
  • Team HackDpotato from Stony Brook University: a genetic algorithm for protein simulation 
  • Team Lightning Speed OCT (for optical coherence tomography) from Lehigh University: a program for real-time image processing and three-dimensional image display of biological tissues
  • Team MUSIC (for MUScl for Ion Collision) from Brookhaven and Stony Brook University: a code for simulating the evolution of the quark-gluon plasma produced at Brookhaven’s Relativistic Heavy Ion Collider (RHIC)—a DOE Office of Science User Facility
  • Team NEK/CEED from DOE’s Argonne National Laboratory, the University of Minnesota, and the University of Illinois Urbana-Champaign: fluid dynamics and electromagnetic codes (Nek5000 and NekCEM, respectively) for modeling small modular reactors (SMR) and graphene-based surface materials—related to two DOE Exascale Computing Projects, Center for Efficient Exascale Discretizations (CEED) and ExaSM
  • Team Stars from the STAR from Brookhaven, Central China Normal University, and Shanghai Institute of Applied Physics: an online cluster-finding algorithm for the energy-deposition clusters measured at Brookhaven’s Solenoidal Tracker at RHIC (STAR) detector, which searches for signatures of the quark-gluon plasma 
  • Team The Fastest Trigger of the East from the UK’s Rutherford Appleton Laboratory, Lancaster University, and Queen Mary University of London: software that reads out data in real time from 40,000 photosensors that collect light generated by neutrino particles, discards the useless majority of the data, and sends the useful bits to be written to disk for future analysis; the software will be used in a particle physics experiment in Japan (Hyper-Kamiokande)
  • Team UD-AccSequencer from the University of Delaware: a code for an existing next-generation-sequencing tool for aligning thousands of DNA sequences (BarraCUDA)
  • Team Uduh from the University of Delaware and the University of Houston: a code for molecular dynamics simulations, which scientists use to study the interactions between molecules

“The domain scientists—not necessarily computer science programmers—who come together for five days to migrate their scientific codes to GPUs are very excited to be here,” said Chandrasekaran. “From running into compiler and runtime errors during programming and reaching out to compiler developers for help to participating in daily scrum sessions to provide progress updates, the teams really have a hands-on experience in which they can accomplish a lot in a short amount of time.”  

An intense week of mentoring

Each team had at least three members and worked on porting their applications to GPUs for the first time or optimizing applications already running on GPUs. As is the case in all of the hackathons, participants did not need to have prior GPU programming experience to attend the event. Two mentors were assigned to each team in the weeks preceding the hackathon to help the participants prepare. In addition to Brookhaven, mentors represented Cornell University; DOE’s Los Alamos, Sandia, and Oak Ridge national laboratories; Mentor Graphics Corporation; NVIDIA Corporation (also the top sponsor of the event); the Swiss National Supercomputing Centre; the University of Delaware; the University of Illinois; and the University of Tennessee, Knoxville. 

“You meet GPU experts at conferences but here you sit with them for a whole week as they share their expertise in a hands-on setting,” said Lin. “Because GPU computing is still fairly new to Brookhaven, we did not have a lot of local experts that could serve as mentors. We were fortunate to have Fernanda and Sunita help recruit such a great group of mentors.”

Many of the mentors who volunteered for Brookathon have developed GPU-capable compilers (computer programs that transform source code written in one programming language into instructions that computer processors can understand) and have helped define programming standards for HPC.

Yet they too can appreciate the difficulty in programming scientific applications on GPUs, as mentor Kyle Friedline, a research assistant in Chandrasekaran’s Computational Research and Programming Lab at the University of Delaware, noted: “My team’s code is really tough because of its large size and complex data structures that result in memory allocation problems.”

While most of the teams had prior experience in GPU programming, a few had to start with the basics. Especially for those novice teams, mentorship was key.

“All of our group members were new to GPU programming,” said MUSIC team member Chun Shen, a research associate in Brookhaven’s Nuclear Theory Group. “Our code was originally written in the C++ programming language with a rather complex class structure. We found that it was very hard to port the complex data structures to GPU with OpenACC, and the compiler did not provide us with useful error messages. Only with the support of our direct mentors and through fruitful discussions with other teams’ mentors were we able to simplify our code structure and successfully port our code to GPU within such a short amount of time.”

At the end of each day, team representatives gave presentations to the entire group so that anyone could chime in to offer advice, as many teams shared common challenges. On the last day, the teams gave final presentations describing their accomplishments over the week, lessons learned along the way, and plans going forward.

Continuing the GPU hackathon tradition

“The teams worked really hard with their mentors and accomplished a lot in five days,” said Lin. “By the end of the week, all 10 teams had their codes running on GPUs and eight of them achieved code speedups, as much as 150-fold, over the original codes. Even the mentors felt that they learned something, and some already expressed interest in serving again at future hackathons.”

To accommodate teams that were not admitted to Brookathon, Stony Brook University’s Institute for Advanced Computational Science, in partnership with NVIDIA, hosted a three-day mini GPU hackathon from June 26 through 28. And three more GPU hackathons in the regular series are already scheduled for 2017 so far—at the National Aeronautics and Space Administration in August, the Swiss National Supercomputing Center in September, and OLCF in October. In the meantime, the teams will continue porting their applications to GPUs.

Going forward, CSI plans to continue offering similar hands-on workshops as part of its initiative to tackle big data challenges.

“Brookhaven Lab faces tremendous challenges in processing and interpreting the increasing volumes of experimental, observational, and computational data that scientists are generating—this year, we expect to analyze more than 500 petabytes of scientific results,” said CSI Director Kerstin Kleese van Dam. “It is paramount to make optimal use of available novel architectures such as GPUs to meet these challenges. To help us in this endeavor, we are actively engaged in building communities of practice through events such as this hackathon and our annual New York Scientific Data Summit, which in 2017 will feature for the first time a session on performance for big data. We expect to host more events of this type in the future.”

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Rutgers Scientists Discover 'Legos of Life'

Rutgers scientists have found the "Legos of life" - four core chemical structures that can be stacked together to build the myriad proteins inside every organism - after smashing and dissecting nearly 10,000 proteins to understand their component parts. The four building blocks make energy available for humans and all other living organisms, according to a study published online today in the Proceedings of the National Academy of Sciences.

Small Hydroelectric Dams Increase Globally with Little Research, Regulations

University of Washington researchers have published the first major assessment of small hydropower dams around the world -- including their potential for growth -- and highlight the incredibly variability in how dams of varying sizes are categorized, regulated and studied.

Researchers Reveal How Microbes Cope in Phosphorus-Deficient Tropical Soil

A team led by the Department of Energy's Oak Ridge National Laboratory has uncovered how certain soil microbes cope in a phosphorus-poor environment to survive in a tropical ecosystem. Their novel approach could be applied in other ecosystems to study various nutrient limitations and inform agriculture and terrestrial biosphere modeling.

Scientists Discover Material Ideal for Smart Photovoltaic Windows

Researchers at Berkeley Lab discovered that a form of perovskite, one of the hottest materials in solar research due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

Biofuels Feedstock Study Supports Billion-Ton Estimate

Can farmers produce at least 1 billion tons of biomass per year that can be used as biofuels feedstock? The answer is yes.

On the Rebound

New research from the U.S. Department of Energy's Argonne National Laboratory and Stanford University has found that palladium nanoparticles can repair atomic dislocations in their crystal structure, potentially leading to other advances in material science.

Coupling Experiments to Theory to Build a Better Battery

A Berkeley Lab-led team of researchers has reported that a new lithium-sulfur battery component allows a doubling in capacity compared to a conventional lithium-sulfur battery, even after more than 100 charge cycles.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

A Shortcut to Modeling Sickle Cell Disease

Using Oak Ridge National Laboratory's Titan supercomputer, a team led by Brown University's George Karniadakis devised a multiscale model of sickle cell disease that captures what happens inside a red blood cell affected by the disease.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.


  • Filters

  • × Clear Filters

Theoretical Physicist Elena Belova Named to Editorial Board of Physics of Plasmas

Theoretical physicist Elena Belova named to editorial board of Physics of Plasmas

Superconducting X-Ray Laser Takes Shape in Silicon Valley

An area known for high-tech gadgets and innovation will soon be home to an advanced superconducting X-ray laser that stretches 3 miles in length, built by a collaboration of national laboratories. On January 19, the first section of the machine's new accelerator arrived by truck at SLAC National Accelerator Laboratory in Menlo Park after a cross-country journey that began in Batavia, Illinois, at Fermi National Accelerator Laboratory.

Kelsey Stoerzinger Earns Young Investigator Lectureship

Kelsey Stoerzinger, Pauling Fellow at Pacific Northwest National Laboratory, is one of the 2018 Caltech Young Investigator Lecturers in Engineering and Applied Physics.

North Dakota State University Joins Two National Distributed Computing Groups

The NDSU Center for Computationally Assisted Science and Technology (CCAST) joins OSG (Open Science Grid) and XSEDE (Extreme Science and Engineering Discovery Environment).

DOE Announces Funding for New HPC4Manufacturing Industry Projects

The Department of Energy's Advanced Manufacturing Office (AMO) today announced the funding of $1.87 million for seven new industry projects under an ongoing initiative designed to utilize DOE's high-performance computing (HPC) resources and expertise to advance U.S. manufacturing and clean energy technologies.

DOE Announces First Awardees for New HPC4Materials for Severe Environments Program

The Department of Energy's Office of Fossil Energy (FE) today announced the funding of $450,000 for the first two private-public partnerships under a brand-new initiative aimed at discovering, designing and scaling up production of novel materials for severe environments.

Two Argonne Scientists Recognized for a Decade of Breakthroughs

Two scientists with the U.S. Department of Energy's (DOE) Argonne National Laboratory have been named to the Web of Science's Highly Cited List of 2017, ranking in the top 1 percent of their peers by citations and subject area. Materials Scientist Khalil Amine and Energy and Environmental Policy Scientist David Streets say they are thrilled to see their work -- and the laboratory -- recognized in such a way.

Argonne Welcomes Department of Energy Secretary Perry

U.S. Department of Energy Secretary Rick Perry visited Argonne National Laboratory yesterday, getting a first-hand view of the multifaceted and interdisciplinary research program laboratory of the Department.

Argonne names John Quintana Deputy Laboratory Director for Operations and COO

John Quintana has been named Deputy Laboratory Director for Operations and Chief Operations Officer (COO) of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Developing Next-Generation Sensing Technologies

Recently, the Advanced Research Projects Agency-Energy (ARPA-E) announced $20 million in funding for 15 projects that will develop a new class of sensor systems to enable significant energy savings via reduced demand for heating and cooling in residential and commercial buildings.


  • Filters

  • × Clear Filters

Exploring Past, Present, and Future Water Availability Regionally, Globally

New open-source software simulates river and runoff resources.

Arctic Photosynthetic Capacity and Carbon Dioxide Assimilation Underestimated by Terrestrial Biosphere Models

New measurements offer data vital to projecting plant response to environmental changes.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

Superconducting Tokamaks Are Standing Tall

Plasma physicists significantly improve the vertical stability of a Korean fusion device.

Graphene Flexes Its Muscle

Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

What's the Noise Eating Quantum Bits?

The magnetic noise caused by adsorbed oxygen molecules is "eating at" the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.

Filtering Water Better than Nature

Water passes through human-made straws faster than the "gold standard" protein, allowing us to filter seawater.

Machine Learning Provides a Bridge to the Texture of the Quantum World

Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.


Spotlight

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215