Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-07-31 14:05:38
  • Article ID: 678786

Argonne Goes Deep to Crack Cancer Code

  • Credit: Argonne National Laboratory

    Rick Stevens is Associate Laboratory Director for Computing, Environment and Life Sciences. Stevens is helping to develop the CANDLE computer architecture on the patient level which is meant to help guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

  • Credit: David Kashatus/ National Cancer Institute / Univ. of Virginia Cancer Center

    Ras-Driven Cancer. About a third of all human cancers are driven by mutations in RAS genes. When Ras genes are mutated, cells grow uncontrollably and evade death signals. Argonne is part of a multi-institutional effort advancing an exascale computing framework focused on the development of the deep neural network code called CANDLE, to help understand these mutations.

  • Credit: National Institutes of Health

    Eric Stahlberg is director of the High Performance Computing Initiative at Frederick National Laboratory and Co-principal Investigator on the Exascale Computing Project.

  • Credit: Argonne National Laboratory

    Rick Stevens is Associate Laboratory Director for Computing, Environment and Life Sciences. Stevens is helping to develop the CANDLE computer architecture on the patient level which is meant to help guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

  • Credit: David Kashatus/ National Cancer Institute / Univ. of Virginia Cancer Center

    Ras-Driven Cancer. About a third of all human cancers are driven by mutations in RAS genes. When Ras genes are mutated, cells grow uncontrollably and evade death signals. Argonne is part of a multi-institutional effort advancing an exascale computing framework focused on the development of the deep neural network code called CANDLE, to help understand these mutations.

  • Credit: National Institutes of Health

    Eric Stahlberg is director of the High Performance Computing Initiative at Frederick National Laboratory and Co-principal Investigator on the Exascale Computing Project.

  • Credit: Argonne National Laboratory

    Rick Stevens is Associate Laboratory Director for Computing, Environment and Life Sciences. Stevens is helping to develop the CANDLE computer architecture on the patient level which is meant to help guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

  • Credit: David Kashatus/ National Cancer Institute / Univ. of Virginia Cancer Center

    Ras-Driven Cancer. About a third of all human cancers are driven by mutations in RAS genes. When Ras genes are mutated, cells grow uncontrollably and evade death signals. Argonne is part of a multi-institutional effort advancing an exascale computing framework focused on the development of the deep neural network code called CANDLE, to help understand these mutations.

  • Credit: National Institutes of Health

    Eric Stahlberg is director of the High Performance Computing Initiative at Frederick National Laboratory and Co-principal Investigator on the Exascale Computing Project.

  • Credit: Argonne National Laboratory

    Rick Stevens is Associate Laboratory Director for Computing, Environment and Life Sciences. Stevens is helping to develop the CANDLE computer architecture on the patient level which is meant to help guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

  • Credit: David Kashatus/ National Cancer Institute / Univ. of Virginia Cancer Center

    Ras-Driven Cancer. About a third of all human cancers are driven by mutations in RAS genes. When Ras genes are mutated, cells grow uncontrollably and evade death signals. Argonne is part of a multi-institutional effort advancing an exascale computing framework focused on the development of the deep neural network code called CANDLE, to help understand these mutations.

  • Credit: National Institutes of Health

    Eric Stahlberg is director of the High Performance Computing Initiative at Frederick National Laboratory and Co-principal Investigator on the Exascale Computing Project.

A cancer diagnosis is overwhelming, the treatment often complex and uncertain. Doctors have yet to understand how a specific cancer will affect an individual, and a drug that may hold promise for one patient, may not work for another.

But a melding of medical research and high-performance computing is taking a more personalized approach to treatment by creating precise therapy options based on genetics.

"We are trying to devise a means of automating the search through machine learning so that you’d start with an initial model and then automatically find models that perform better than the initial one."

“Precision medicine is the ability to fine tune a treatment for each patient based on specific variations, whether it’s their genetics, their environment or their history. To do that in cancer, demands large amounts of data, not only from the patient, but the tumor, as well, because cancer changes the genetics of the tissue that it surrounds,” said Rick Stevens, Associate Laboratory Director for Computing, Environment and Life Sciences for the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

In a typical cancer study today, more than eight million measurements are taken from the biopsy of a single tumor. But even as current technologies allow us to characterize the biological components of cancer with greater levels of accuracy, the massive amounts of data they produce have out-paced our ability to quickly and accurately analyze them.

To tackle these complicated and consequential precision medicine problems, researchers globally are looking toward the promise of exascale computing. Stevens is principal investigator of a multi-institutional effort advancing an exascale computing framework focused on the development of the deep neural network code CANDLE (CANcer Distributed Learning Environment).

Part of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C), a DOE and National Cancer Institute (NCI) collaboration, CANDLE will address three key cancer challenges to accelerate research at the molecular, cellular and population levels.

The challenges will test CANDLE’s advanced machine learning approach—deep learning—that, in combination with novel data acquisition and analysis techniques, model formulation and simulation, will help arrive at a prognosis and treatment plan designed specifically for an individual patient.

“Deep learning is the use of multi-layered neural networks to do machine learning, a program that gets smarter or more accurate as it gets more data to make predictions. It’s very successful at learning to solve problems,” said Stevens.

The model stores data that has already been observed and uses it later to quickly infer the solution to similar or recurring events or problems. Speech recognition, image recognition and text translation are examples of machine learning that many of us utilize every day without realizing it.

“Every time you talk to SIRI or Alexa, you’re encountering deep learning,” he added.

This framework will be built upon available open-source deep learning platforms that can be adapted to address different aspects of the cancer process as represented by JDACS4C’s challenge topics: 1) understand the molecular basis of key protein interactions; 2) develop predictive models for drug response; and 3) automate the extraction and analysis of information from millions of cancer patient records to determine optimal cancer treatment strategies.

The process begins by compiling all the known data on how cancer functions, reacts to drugs and behaves within individuals, and creating a virtual approximation of it. While the numbers of molecular configurations, drug combinations and patient datasets are staggering, the exascale-anticipating framework will progressively “learn” to manage it.

For example, the goal of the drug response challenge is to predict how a tumor will respond to a drug based on the characteristics of both the tumor and the drug, the information for which is identified through previously available data, such as tumor samples and previous drug screens.

The CANDLE network code will be trained to assimilate millions of previous drug screen results. An open-source content management system then would search through upwards of a billion drug combinations to find those with the greatest potential to inhibit a given tumor, or a billion hypothetical compounds to identify candidates for new drug development.

Through another technique called data mining, researchers working on the treatment strategy problem can train the network to sift through and automatically interpret millions of clinical reports and patient records. From those, it can pull data related directly to a specific patient and build predictive models of treatment and outcome trajectories for that individual.

Until now, cancer researchers have been doing this in small teams, maintaining massive databases of different factors characteristic of the cancer’s growth. But much of this information is peripheral. The most helpful information is buried within and among the millions of data points collected.

“This is a huge part of the challenge, because humans do this now, but by hand,” explained Stevens. “We are trying to devise a means of automating the search through machine learning so that you’d start with an initial model and then automatically find models that perform better than the initial one. We then could repeat this process for each individual patient.”

While the computational solutions for these training problems alone will require the largest available high-performance computers, Stevens and his team believe that the resulting models are likely to require exascale or near-exascale systems to advance each of the cancer problem areas.

CANDLE is one of three unique Argonne National Laboratory programs funded by the DOE’s Exascale Computing Project (ECP), launched in 2015 to promote the design and integration of application, software and hardware technologies into exascale systems.

These systems will be able to run applications such as CANDLE 50 to 100 times faster than today’s most powerful supercomputers, like those housed at the Argonne Leadership Computing Facility (ALCF) a DOE Office of Science User Facility. Theta, ALCF’s new 9.65 petaflops Intel-Cray system, delivers high performance on traditional modeling and simulation applications and was developed to more quickly and efficiently handle advanced software and data analysis methods.

“The types of things researchers would like to accomplish now require a lot more data, capacity and computing power than we have. That’s why there is this effort to build a whole new framework, one focused more on data,” said Paul Messina, director of ECP. “CANDLE will play an essential role in the development of applications that drive this framework, creating the ability to analyze hundreds of millions of items of data to come up with individual cancer treatments.”

With the unique collaboration of JDACS4C, the CANDLE team has immediate access to NCI’s formidable subject matter and domain experts on cancer. And as partners with the DOE and, specifically, CORAL (a collaboration comprising Oak Ridge, Argonne and Lawrence Livermore National Laboratories), CANDLE enlists some of the nation’s leading computational scientists to provide the computational and data science expertise.

Vendors involved with the labs and ECP are among the leading designers of high-performance computing architecture in the world. Companies like Intel, Nvidia, IBM, and Cray are interested in collaborating on cancer research, and are fully vested in the idea that the convergence between simulation, data and machine learning is the future, noted Stevens.

“There is a tremendous level of team work and sharing across the enterprise. Cancer is something that people can relate to personally, so having the opportunity to develop a capability that will eventually help somebody else can be very motivating,” said Eric Stahlberg, director of the Frederick National Laboratory for Cancer Research’s strategic and data science initiatives.

“It’s a Herculean task. But even incremental progress toward that goal will have a significant impact on many more people affected by cancer, as a result.”

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

X
X
X
  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Strain-Free Epitaxy of Germanium Film on Mica

Germanium was the material of choice in the early history of electronic devices, and due to its high charge carrier mobility, it's making a comeback. It's generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers demonstrate an epitaxy method that incorporates van der Waals' forces to grow germanium on mica. They discuss their work in the Journal of Applied Physics.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

Detailed View of Immune Proteins Could Lead to New Pathogen-Defense Strategies

Biologists at Berkeley Lab and UC Berkeley used cryo-EM to resolve the structure of a ring of proteins used by the immune system to summon support when under attack, providing new insight into potential strategies for protection from pathogens. The researchers captured the high-resolution image of a protein ring, called an inflammasome, as it was bound to flagellin, a protein from the whiplike tail used by bacteria to propel themselves forward.

Unlocking the Secrets of Ebola

Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease. The results come from one of the most in-depth studies ever of blood samples from patients with Ebola.

Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass

Studies at the Department of Energy's SLAC National Accelerator Laboratory have made the first real-time observations of how silica - an abundant material in the Earth's crust - easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

Replace or Wait? Study Says Swap All Incandescent Bulbs Now, but Hold on to CFLs, older LEDs

LED light bulbs are getting cheaper and more energy efficient every year. So, does it make sense to replace less-efficient bulbs with the latest light-emitting diodes now, or should you wait for future improvements and even lower costs?


  • Filters

  • × Clear Filters

Argonne to Install Comanche System to Explore ARM Technology for High-Performance Computing

Argonne National Laboratory is collaborating with Hewlett Packard Enterprise (HPE) to provide system software expertise and a development ecosystem for a future high-performance computing (HPC) system based on 64-bit ARM processors.

CANDLE Shines in 2017 HPCwire Readers' and Editors' Choice Awards

Argonne National Laboratory has been recognized in the annual <em>HPCwire</em> Readers' and Editors' Choice Awards, presented at the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis (SC17), in Denver, Colorado.

SLAC's Helen Quinn Honored with 2018 Benjamin Franklin Medal in Physics

Helen Quinn, a professor emerita at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, will receive the 2018 Benjamin Franklin Medal in Physics - one of eight prestigious Franklin Institute Awards that will be handed out in Philadelphia next April.

PPPL Honors Grierson and Greenough for Distinguished Research and Engineering Achievements

Article describes PPPL's presentation of 2017 Kaul Prize and Distinguished Engineering Fellow awards.

INCITE Grants of 5.95 Billion Hours Awarded to 55 Computational Research Projects

The U.S. Department of Energy's Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The projects will share 5.95 billion core-hours on three of America's most powerful supercomputers dedicated to capability-limited open science and support a broad range of large-scale research campaigns from infectious disease treatment to next-generation materials development.

Former SLAC Director Jonathan Dorfan Awarded Japan's Order of the Rising Sun

Former SLAC Director and Stanford University Professor Emeritus Jonathan Dorfan has been awarded Japan's Order of the Rising Sun, Gold and Silver Star for his contributions as founding president of the Okinawa Institute of Science and Technology Graduate University (OIST). It is the highest award Japan bestows on university presidents.

Jefferson Lab Staff Scientist Honored with APS Fellowship

Fulvia Pilat, a staff scientist at the Department of Energy's Thomas Jefferson National Accelerator Facility, has been named a fellow of the American Physical Society. The honor is bestowed by members of APS on their peers for exceptional contributions to their fields.

First Northwest Theoretical Chemistry Conference Is a Hit!

The first Northwest Theoretical Chemistry Conference was a success. The event offered ~50 early career theorists and students opportunities to present talks in a nurturing environment that developed and advanced collaborations.

Argonne Forms New Divisions to Focus on Computation and Data Science Strengths

Argonne has formed two new research divisions to focus its lab-wide foundational expertise on computational science and data science activities.

Hermann Grunder Recognized by IEEE Nuclear and Plasma Sciences Society

Dr. Hermann Grunder, Founding Director of Jefferson Lab, has been selected as one of two recipients of the 2018 IEEE NPSS Particle Accelerator Science and Technology (PAST) Award.


  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

The Effect of Hurricanes on Puerto Rico's Dry Forests

More frequent storms turn forests from carbon source to sink.

A Chemical Thermometer for Tropical Forests

Monoterpene measures how certain forests respond to heat stress.

Where a Leaf Lands and Lies Influences Carbon Levels in Soil for Years to Come

Whether carbon comes from leaves or needles affects how fast it decomposes, but where it ends up determines how long it's available.

Twisting Molecule Wrings More Power from Solar Cells

Readily rotating molecules let electrons last, resulting in higher solar cell efficiency.

Rules Are Only Suggestions in Heavy Elements

The arrangement of electrons in an exotic human-made element shows that certain properties of heavy elements cannot be predicted using lighter ones.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215