Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-08-28 09:05:18
  • Article ID: 680133

A Low-Cost Method for Solar-Thermal Conversion That's Simpler and Greener

Columbia Engineers and colleagues create a "dip-and-dry" approach for selective solar absorbers that exhibit high-performance and durability

  • Credit: Jyotirmoy Mandal and Yuan Yang / Columbia Engineering

    Figure 1: The selective solar absorber (SSA) developed by the researchers appears black and thus absorptive under sunlight (as shown on the photograph on the left). However, for thermal radiation, it behaves like a non-emissive metal mirror (reflecting the dark blue sky, as shown on the thermograph on the right), and prevents the absorbed solar energy from being radiated away and lost.

  • Credit: Jyotirmoy Mandal and Yuan Yang / Columbia Engineering

    Figure 2: The researchers make their SSAs using a dip-and-dry technique which is considerably simpler than common manufacturing methods for SSAs.

  • Credit: Jyotirmoy Mandal and Yuan Yang / Columbia Engineering

    Figure 1: The selective solar absorber (SSA) developed by the researchers appears black and thus absorptive under sunlight (as shown on the photograph on the left). However, for thermal radiation, it behaves like a non-emissive metal mirror (reflecting the dark blue sky, as shown on the thermograph on the right), and prevents the absorbed solar energy from being radiated away and lost.

  • Credit: Jyotirmoy Mandal and Yuan Yang / Columbia Engineering

    Figure 2: The researchers make their SSAs using a dip-and-dry technique which is considerably simpler than common manufacturing methods for SSAs.

 

A Low-Cost Method for Solar-Thermal Conversion That’s Simpler and Greener

Columbia Engineers and colleagues create a “dip-and-dry” approach for selective solar absorbers that exhibit high-performance and durability 

New York, NY—August 28, 2017—Researchers led by Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, along with colleagues at the Department of Chemistry at Columbia University and at Stanford University have developed a new, scalable, and low-cost “dip and dry” method for fabricating a highly efficient selective solar absorber (SSA) that can harness and convert sunlight to heat for use in a wide range of energy-related applications, from heating water and generating steam to residential heating.

The team’s method is outlined in a new paper, “Scalable, ‘Dip-and-dry’ Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-efficiency Solar-thermal Energy Conversion,” published in Advanced Materials on August 28. 

The authors determined that the plasmonic-nanoparticle-coated foils created by their method perform as well or better than existing SSAs and maintain high efficiency throughout the day, regardless of the angle of the sun, due to the wide-angle design. They propose that the simple, inexpensive, and environmentally friendly process provides an appealing alternative to current SSA fabrication methods. 

“We saw an unmet need for a facile, inexpensive, and sustainable method for fabricating high-performance SSAs,” said Yuan Yang. “We were pleased that our relatively simple process produced SSAs that performed on par with commercial SSAs and designs reported in other research. To our knowledge, this is the first time a plasmonic SSA has been made using such a process, and the scalability and cost of this approach brings us closer to making solar energy a practical reality for more people.”

Harvesting sunlight for renewable energy remains a primary objective for scientists. Solar-thermal converters, which can absorb light across the entire solar spectrum and convert it to heat at remarkably high efficiencies, offer a highly promising pathway for solar-energy harvesting. However, attaining high-efficiency solar-thermal conversion at low cost remains a challenge. 

As a surface component of solar-thermal converters, SSAs are ideal because they have contrasting optical properties for solar and thermal radiation. They are very black across all colors of sunlight (from UV, to visible, to near infrared light) and can therefore absorb almost all the light and become very hot. However, unlike common black surfaces, they are metallic, i.e. non-emissive, when it comes to thermal radiation (mid- to far-infrared light). Heat is therefore not lost as radiation and can be used, for example, to heat water or generate steam. 

Most SSAs are made using more sophisticated, energy-expensive, or hazardous manufacturing processes such as vacuum deposition or electroplating. This increases both the environmental footprint and cost while limiting their accessibility. As a basis for manufacturing SSAs, the dip-and-dry process is an attractive option, as it yields SSAs that are highly efficient, while bypassing the costs and environmental hazards associated with other approaches. 

Working with instruments and facilities in Columbia Engineering laboratory space and the Columbia Nano Initiative (CNI), the researchers were able to fabricate metal-based plasmonic SSAs using an inexpensive process that can tune the SSAs to suit different operating conditions, and is compatible with industrial manufacturing methods. 

By dipping strips coated with a reactive metal (zinc) into a solution containing ions of a less reactive metal (copper), solar-absorbing nanoparticles of copper can be easily formed on the zinc strips by a galvanic displacement reaction.

“The beauty of the process is that it can be done very simply,” said Jyotirmoy Mandal, lead author of the study and a doctoral student in Yuan Yang’s group. “We only needed strips of metals, scissors – to cut the strips to size, a salt solution in a beaker, and a stopwatch to time the dipping process.” 

With its wide angle, the SSA addressed another long-standing problem faced by solar-absorbing surfaces:  the ability to absorb sunlight throughout the day from sunrise to sunset. In tests, the resulting SSAs showed a significantly higher solar absorption at all angles (~97% absorption when the sun is above, ~80% when near the horizon) than existing designs.

Ronggui Yang, a professor and S.P. Chip and Lori Johnson Faculty Fellow in the Department of Mechanical Engineering at the University of Colorado at Boulder, who was not involved in the study, noted that significant challenges exist in obtaining wide-angle high solar absorptance materials with low thermal emittance.

“A low-cost and scalable approach is much sought after by various researchers,” he said. “I am excited that Yang's research team demonstrated a scalable and environment-friendly process based on the ‘dip-and-dry’ technique. Their durable and high performance plasmonic solar absorber will find immediate applications in solar-thermal systems.”

The team plans to test other combinations of metals besides zinc-copper and zinc-silver and explore ways to further increase efficiencies. They are especially excited about the potential for the simple and affordable process to be utilized for solar conversion in developing countries.

“It is crucial for scientists to find practical ways to address energy and environment-related problems in communities where they are most acute, like in South Asia,” said Mandal. 

”This is a promising instance of how novel optical surfaces for energy-related applications can be developed relatively simply, cheaply, and sustainably,” said Yang. “Easy-to-manufacture solar absorbers could play an important role in bringing about a renewable energy future.” 

The research was conducted by researchers from Columbia Engineering, the Department of Chemistry at Columbia University, and Stanford University. 

This work was supported by startup funding from Columbia University, NSF IGERT program (grant # DGE-1069240), AFORSR MURI (Multidisciplinary University Research Initiative) program (grant # FA9550-14-1-0389), and AFOSR DURIP (Defense University Research Instrumentation Program) program (grant # FA9550-16-1-0322).

The authors would also like to thank Cheng-Chia Tsai of the Department of Applied Physics at Columbia University for his help on this study and Sagar Mandal of the Department of Computer Engineering at Georgia Institute of Technology for guidance on figure design. 

###

About the Study

The study is titled “Scalable, ‘Dip-and-dry’ Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-efficiency Solar-thermal Energy Conversion.” 

The other contributors are Katayun Barmak, Qian Cheng, Adam Overvig, Norman Shi, Nanfang Yu, and Amirali Zangiabadi (Columbia Engineering); Daniel Paley (Columbia University); Derek Wang (Stanford University). 

The study was funded by startup funding from Columbia University, NSF IGERT program (grant # DGE-1069240), AFORSR MURI (Multidisciplinary University Research Initiative) program (grant # FA9550-14-1-0389), and AFOSR DURIP (Defense University Research Instrumentation Program) program (grant # FA9550-16-1-0322).

The authors declare no competing financial interest. 

### 

LINKS:

Paper: http://onlinelibrary.wiley.com/doi/10.1002/adma.201702156/full

Yang Research Group http://blogs.cuit.columbia.edu/yanggroup/

Columbia Engineering http://engineering.columbia.edu/ 

### 

Columbia Engineering

Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering’s nine departments offer 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research initiatives, from the Columbia Nano Initiative to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas. 

X
X
X
  • Filters

  • × Clear Filters

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

A Shortcut to Modeling Sickle Cell Disease

Using Oak Ridge National Laboratory's Titan supercomputer, a team led by Brown University's George Karniadakis devised a multiscale model of sickle cell disease that captures what happens inside a red blood cell affected by the disease.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

Conservation Mind Game

A new study led by Kathryn Caldwell, an assistant professor of psychology at Ithaca College, demonstrates that homeowners can be encouraged to make changes to their energy use with a simple education plan and some helpful tricks from the world of social psychology.

X-Rays Reveal 'Handedness' in Swirling Electric Vortices

Scientists used spiraling X-rays at Berkeley Lab to observe, for the first time, a property that gives left- or right-handedness to swirling electric patterns - dubbed polar vortices - in a layered material called a superlattice.

Breaking Bad Metals with Neutrons

By combining the latest developments in neutron scattering and theory, researchers are close to predicting phenomena like superconductivity and magnetism in strongly correlated electron systems. It is likely that the next advances in superconductivity and magnetism will come from such systems, but they might also be used in completely new ways such as quantum computing.

ORNL Researchers Use Titan to Accelerate Design, Training of Deep Learning Networks

For deep learning to be effective, existing neural networks to be modified, or novel networks designed and then "trained" so that they know precisely what to look for and can produce valid results. This is a time-consuming and difficult task, but one that a team of ORNL researchers recently demonstrated can be dramatically expedited with a capable computing system.

Dark Energy Survey Publicly Releases First Three Years of Data

At a special session held during the American Astronomical Society meeting in Washington, D.C., scientists on the Dark Energy Survey (DES) announced today the public release of their first three years of data. This first major release of data from the Survey includes information on about 400 million astronomical objects, including distant galaxies billions of light-years away as well as stars in our own galaxy.

Ingredients for Life Revealed in Meteorites That Fell to Earth

A detailed study of blue salt crystals found in two meteorites that crashed to Earth - which included X-ray experiments at Berkeley Lab - found that they contain both liquid water and a mix of complex organic compounds including hydrocarbons and amino acids.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.


  • Filters

  • × Clear Filters

Kelsey Stoerzinger Earns Young Investigator Lectureship

Kelsey Stoerzinger, Pauling Fellow at Pacific Northwest National Laboratory, is one of the 2018 Caltech Young Investigator Lecturers in Engineering and Applied Physics.

North Dakota State University Joins Two National Distributed Computing Groups

The NDSU Center for Computationally Assisted Science and Technology (CCAST) joins OSG (Open Science Grid) and XSEDE (Extreme Science and Engineering Discovery Environment).

DOE Announces Funding for New HPC4Manufacturing Industry Projects

The Department of Energy's Advanced Manufacturing Office (AMO) today announced the funding of $1.87 million for seven new industry projects under an ongoing initiative designed to utilize DOE's high-performance computing (HPC) resources and expertise to advance U.S. manufacturing and clean energy technologies.

DOE Announces First Awardees for New HPC4Materials for Severe Environments Program

The Department of Energy's Office of Fossil Energy (FE) today announced the funding of $450,000 for the first two private-public partnerships under a brand-new initiative aimed at discovering, designing and scaling up production of novel materials for severe environments.

Two Argonne Scientists Recognized for a Decade of Breakthroughs

Two scientists with the U.S. Department of Energy's (DOE) Argonne National Laboratory have been named to the Web of Science's Highly Cited List of 2017, ranking in the top 1 percent of their peers by citations and subject area. Materials Scientist Khalil Amine and Energy and Environmental Policy Scientist David Streets say they are thrilled to see their work -- and the laboratory -- recognized in such a way.

Argonne Welcomes Department of Energy Secretary Perry

U.S. Department of Energy Secretary Rick Perry visited Argonne National Laboratory yesterday, getting a first-hand view of the multifaceted and interdisciplinary research program laboratory of the Department.

Argonne names John Quintana Deputy Laboratory Director for Operations and COO

John Quintana has been named Deputy Laboratory Director for Operations and Chief Operations Officer (COO) of the U.S. Department of Energy's (DOE) Argonne National Laboratory.

Developing Next-Generation Sensing Technologies

Recently, the Advanced Research Projects Agency-Energy (ARPA-E) announced $20 million in funding for 15 projects that will develop a new class of sensor systems to enable significant energy savings via reduced demand for heating and cooling in residential and commercial buildings.

Supporting the Development of Offshore Wind Power Plants

Offshore wind is becoming a reality in the United States, especially in the northeast states. To support this development, the Center for Future Energy System (CFES) at Rensselaer Polytechnic Institute will present a webinar titled "Turbine and Transmission System Technologies for Offshore Wind (OSW) Power Plants." The program will be held on Wednesday, Dec. 20, from 2 to 4 p.m. Advance registration is required.

LLNL Releases Newly Declassified Nuclear Test Videos

Researchers at Lawrence Livermore National Laboratory (LLNL) released 62 newly declassified videos today of atmospheric nuclear tests films that have never before been seen by the public.


  • Filters

  • × Clear Filters

Arctic Photosynthetic Capacity and Carbon Dioxide Assimilation Underestimated by Terrestrial Biosphere Models

New measurements offer data vital to projecting plant response to environmental changes.

DRIFTing to Fast, Precise Data

Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.

Superconducting Tokamaks Are Standing Tall

Plasma physicists significantly improve the vertical stability of a Korean fusion device.

Graphene Flexes Its Muscle

Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.

Remotely Predicting Leaf Age in Tropical Forests

New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.

What's the Noise Eating Quantum Bits?

The magnetic noise caused by adsorbed oxygen molecules is "eating at" the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.

Rewritable Wires Could Mean No More Obsolete Circuitry

An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.

Filtering Water Better than Nature

Water passes through human-made straws faster than the "gold standard" protein, allowing us to filter seawater.

Machine Learning Provides a Bridge to the Texture of the Quantum World

Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.

A Rare Quantum State Realized in a New Material

A revolutionary material harbors magnetism and massless electrons that travel near the speed of light--for future ultrasensitive, high-efficiency electronics and sensors.


Spotlight

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)





Showing results

0-4 Of 2215