Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-06 09:05:08
  • Article ID: 682436

Columbia Researchers Observe Exotic Quantum Particle in Bilayer Graphene

Physicists prove a 30-year-old theory--the even-denominator fractional quantum Hall state--and establish bilayer graphene as a promising platform that could lead to quantum computation.

  • Credit: Cory Dean/Columbia University

    The so-called 5/2 state has confounded scientists for several decades. While all known particles in the universe are classified as either bosons or fermions, the 5/2 state, which emerges only in a 2D electron gas under large magnetic fields, is thought to be an exotic new type of particle that doesn’t fit either description. Previously this state has been observed only in the highest mobility semiconductor heterostructures when cooled to milikelvin temperatures, making it challenging to confirm its expected properties. Recently however, researchers at Columbia found evidence of an equivalent state in bilayer graphene, appearing at temperatures more than 10 times larger than in conventional systems.

Columbia Researchers Observe Exotic Quantum Particle in Bilayer Graphene 

Physicists prove a 30-year-old theory—the even-denominator fractional quantum Hall state—and establish bilayer graphene as a promising platform that could lead to quantum computation. 

New York, NY—October 5, 2017—A team led by Cory Dean, assistant professor of physics at Columbia University, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has definitively observed an intensely studied anomaly in condensed matter physics—the even-denominator fractional quantum Hall (FQH) state—via transport measurement in bilayer graphene. The study is published online today in Science (October 6 issue). 

“Observing the 5/2 state in any system is a remarkable scientific opportunity, since it encompasses some of the most perplexing concepts in modern condensed matter physics, such as emergence, quasi-particle formation, quantization, and even superconductivity,” Dean says. “Our observation that, in bilayer graphene, the 5/2 state survives to much higher temperatures than previously thought possible not only allows us to study this phenomenon in new ways, but also shifts our view of the FQH state from being largely a scientific curiosity to now having great potential for real-world applications, particularly in quantum computing.”

First discovered in the 1980s in gallium arsenide (GaAs) heterostructures, the 5/2 fractional quantum hall state remains the singular exception to the otherwise strict rule that says fractional quantum hall states can only exist with odd denominators. Soon after the discovery, theoretical work suggested that this state could represent an exotic type of superconductor, notable in part for the possibility that such a phase could enable a fundamentally new approach to quantum computation. However, confirmation of these theories has remained elusive, largely due to the fragile nature of the state; in GaAs it is observable only in the highest quality samples and even then appearing only at milikelvin temperaures (as much as 10,000 times colder than the freezing point of water). 

The Columbia team has now observed this same state in bilayer graphene and appearing at much higher temperatures--reaching several Kelvin. “While it’s still 100 times colder than the freezing point of water, seeing the even-denominator state at these temperatures opens the door to a whole new suite of experimental tools that previously were unthinkable,” says Dean. “After several decades of effort by researchers all over the world, we may finally be close to solving the mystery of the 5/2.” 

One of the outstanding problems in the field of modern condensed matter physics is understanding the phenomenon of “emergence,” the result of a large collection of quantum particles behaving in concert due to interactions between the particles and giving rise to new characteristics that are not a feature of the individual parts. For instance, in superconductors, a large number of electrons all collapse to a single quantum state, which can then propagate through a metal without any energy loss. The fractional quantum Hall effect is another state in which electrons collude with one another, in the presence of a magnetic field, resulting in quasiparticles with potentially exotic quantum properties. 

Very difficult to predict theoretically, emergence often challenges our foundational understanding of how particles behave. For example, since any two electrons have the same charge, we think of electrons as objects that want to repel each other. However, in a superconducting metal, electrons unexpectedly pair up, forming a new object known as a cooper pair. Individual electrons scatter when moving through a metal, giving rise to resistance, but spontaneously formed cooper pairs behave collectively in such a way that they move through the material with no resistance at all. 

“Think of trying to make your way through a crowd at a rock concert where everyone is dancing with a lot of energy and constantly bumping into you, compared to a ballroom dance floor where pairs of dancers are all moving in the same, carefully choreographed way, and it is easy to avoid each other,” says Dean. “One of the reasons that makes the even-denominator fractional quantum Hall effect so fascinating is that its origin is believed to be very similar to that of a superconductor, but, instead of simply forming cooper pairs, an entirely new kind of quantum particle emerges.” 

According to quantum mechanics, elementary particles fall into two categories, Fermions and Bosons, and behave in very different ways. Two Fermions, such as electrons, cannot occupy the same state, which is why, for example, the electrons in atoms fill successive orbitals. Bosons, such as photons, or particles of light, can occupy the same state, allowing them to act coherently as in the light emission from a laser. When two identical particles are interchanged, the quantum mechanical wave-function describing their combined state is multiplied by a phase factor of 1 for Bosons, and -1 for Fermions. 

Soon after the discovery of the fractional quantum hall effect, it was suggested on theoretical grounds that the quasiparticles associated with this state behave neither as Bosons nor Fermions but instead what is called an anyon: when anyon quasiparticles are interchanged, the phase factor is neither 1 nor -1 but is fractional. Despite several decades of effort, there still is no conclusive experimental proof confirming that these quasiparticles are anyons. The 5/2 state-a non-abelian anyon-is thought to be even more exotic. In theory, non-abelian anyons obey anyonic statistics as in other fractional quantum Hall states, but with the special feature that this phase cannot simply be undone by reversing the process. This inability to simply unwind the phase would make any information stored in the system uniquely stable, and is why many people believe the 5/2 could be a great candidate for quantum computation. 

“Demonstration of the predicted 5/2 statistics would represent a tremendous achievement,” says Dean. “In many regards, this would confirm that, by fabricating a material system with just the right thickness and just the right number of electrons, and then applying just the right magnetic fields, we could effectively engineer fundamentally new classes of particles, with properties that do not otherwise exist among known particles naturally found in the universe. We still have no conclusive evidence that the 5/2 state exhibits non-abelian properties, but our discovery of this state in bilayer graphene opens up exciting new opportunities to test these theories.”  

Until now, all of those conditions have needed to be not only just right but also extreme. In conventional semi-conductors, the even-denominator states are very difficult to isolate, and exist only for ultra-pure materials, at extremely low temperatures and high magnetic fields. While certain features of the state have been observable devising experiments that could investigate the state without destroying it, has been challenging. 

“We needed a new platform,” says Hone. “With the successful isolation of graphene, these atomically thin layers of carbon atoms emerged as a promising platform for the study of electrons in 2D in general. One of the keys is that electrons in graphene interact even more strongly than in conventional 2D electron systems, theoretically making effects such as the even-denominator state even more robust. But while there have been predictions that bilayer graphene could host the long-sought even-denominator states, at higher temperatures than seen before, these predictions have not been realized due mostly the difficulty of making graphene clean enough.” 

The Columbia team built on many years of pioneering work to improve the quality of graphene devices, creating ultra-clean devices entirely from atomically flat 2D materials: bilayer graphene for the conducting channel, hexagonal boron nitride as a protective insulator, and graphite used for electrical connections and as a conductive gate to change the charge carrier density in the channel. 

A crucial component of the research was having access to the high magnetic fields tools available at the National High Magnetic Field Laboratory in Tallahassee, Fla., a nationally funded user facility with which Hone and Dean have had extensive collaborations. They studied the electrical conduction through their devices under magnetic fields up to 34 Tesla, and achieved clear observation of the even-denominator states. 

“By tilting the sample with respect to the magnetic field, we were able to provide new confirmation that this FQH state has many of the properties predicted by theory, such as being spin-polarized,” says Jia Li, the paper’s lead author and post-doctoral researcher working with Dean and Hone. “We also discovered that in bilayer graphene, this state can be manipulated in ways that are not possible in conventional materials.” 

The Columbia team’s result, which demonstrates measurement in transport—how electrons flow in the system—is a crucial step forward towards confirming the possible exotic origin of the even denominator state. Their findings are reported contemporaneously with a similar report by a research group at University of California, Santa Barbara. The UCSB study observed the even denominator state by capacitance measurement, which probes the existence of an electrical gap associated with the onset of the  state. 

The team expects that the robust measurements they have now observed in bilayer graphene will enable new experiments that could definitively prove its non-abelian nature. Once this is established, the team hopes to begin demonstrating computation using the even denominator state. 

“For many decades now it has been thought that if the 5/2 state does indeed represent a non-abelian anyon, it could theoretically revolutionize efforts to build a quantum computer,” Dean observes. “In the past, however, the extreme conditions necessary to see the state at all, let alone use it for computation, were always a major concern of practicality. Our results in bilayer graphene suggest that this dream may now not actually be so far from reality.”

About the Study 

The study is titled “Even denominator fractional quantum Hall states in bilayer graphene.”

The other authors include: J.I.A. Li and Y. Zeng (Department of Physics, Columbia University), C. Tan (Department of Mechanical Engineering, Columbia Engineering), S. Chen, Department of Applied Physics and Applied Mathematics, Columbia Engineering), and T. Taniguchi and K. Watanabe (National Institute for Materials Science, Japan).

This work was supported by the National Science Foundation (DMR-1507788). C.R.D acknowledges partial support by the David and Lucille Packard Foundation. T.C is supported by INDEX. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

The authors declare no financial or other conflicts of interest. 

LINKS:

Paper: http://science.sciencemag.org/lookup/doi/10.1126/science.aao2521

DOI: 10.1126/science.aao2521

http://science.sciencemag.org/

http://physics.columbia.edu/people/profile/646

http://hone.mech.columbia.edu/

http://engineering.columbia.edu/ 

###

Columbia Engineering

Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering’s nine departments offer 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research initiatives, from the Columbia Nano Initiative to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas. 

###

 

 

X
X
X
  • Filters

  • × Clear Filters

Researchers Customize Catalysts to Boost Product Yields, Decrease Chemical Separation Costs

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy's Oak Ridge National Laboratory.

Innovative Design Using Loops of Liquid Metal Can Improve Future Fusion Power Plants, Scientists Say

Article describes proposed design for production of steady-state plasma in future fusion power plants.

Scientists Create Most Powerful Micro-Scale Bio-Solar Cell Yet

Researchers at Binghamton University, State University of New York have created a micro-scale biological solar cell that generates a higher power density for longer than any existing cell of its kind.

ESnet's Science DMZ Design Could Help Transfer, Protect Medical Research Data

As medicine becomes more data-intensive, Berkeley Lab & ESnet's Medical Science DMZ eyed as secure solution for transferring data

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance

Chemical Treatment Improves Quantum Dot Lasers

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's Nanotech Team, the ~nanometer-sized dots are being doctored, or "doped," with additional electrons, a treatment that nudges the dots ever closer to producing the desired laser light with less stimulation and energy loss.

Neutrons Observe Vitamin B6-Dependent Enzyme Activity Useful for Drug Development

Scientists at the Department of Energy's Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant tuberculosis, malaria and diabetes. Specifically, the team used neutron crystallography to study the location of hydrogen atoms in aspartate aminotransferase, or AAT, an enzyme vital to the metabolism of certain amino acids.

Scientists Decode the Origin of Universe's Heavy Elements in the Light From a Neutron Star Merger

On Aug. 17, scientists around the globe were treated to near-simultaneous observations by separate instruments that would ultimately be confirmed as the first measurement of the merger of two neutron stars and its explosive aftermath.

PPPL Takes Detailed Look at 2-D Structure of Turbulence in Tokamaks

Article describes study of cross-correlation of turbulence in tokamaks.

New Method to Detect Spin Current in Quantum Materials Unlocks Potential for Alternative Electronics

A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.


  • Filters

  • × Clear Filters

Department of Energy Awards Flow Into Argonne

DOE Secretary Rick Perry awarded Argonne with nearly $4.7 million in projects as part of the DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) in September.

NIH Awards $6.5 Million to Berkeley Lab for Augmenting Structural Biology Research Experience

The NIH has awarded $6.5 million to Berkeley Lab to integrate existing synchrotron structural biology resources to better serve researchers. The grant will establish a center based at the Lab's Advanced Light Source (ALS) called ALS-ENABLE that will guide users through the most appropriate routes for answering their specific biological questions.

LIGO Announces Detection of Gravitational Waves From Colliding Neutron Stars

The U.S.-based Laser Interferometer Gravitational-Wave Observatory and the Virgo detector in Italy announced on Oct. 16 that all three of their detectors had picked up the ripples, or gravitational waves, from two neutron stars that collided 130 million years ago. Among other discoveries, the detection allowed scientists to use gravitational waves to directly calculate the rate at which the universe is expanding.

WVU Energy Conference to Address State's Economic Opportunities

West Virginia University will look at the state's emerging energy economy through industry experts, public policy organizations, environmental groups and academic institutions at the sixth annual National Energy Conference Oct. 20.

Exploring the Exotic World of Quarks and Gluons at the Dawn of the Exascale

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature's secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab) is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Matthew Latimer Receives 2017 Lytle Award

A staff member at the Department of Energy's SLAC National Acceleratory Laboratory, Matthew Latimer is in charge of seven spectroscopy beamlines at SSRL. He was recently selected for the 2017 Farrel W. Lytle Award, established by the SSRL Users' Organization Executive Committee. The award promotes accomplishments in synchrotron science and supports collaboration among visiting scientists and staff who conduct research at SSRL.

Jefferson Lab Completes 12 GeV Upgrade

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. The completion of the 12 GeV Upgrade Project of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) heralds this new era to image nuclei at their deepest level.

Sunderrajan to Lead Science and Technology Partnerships and Outreach Directorate

Suresh Sunderrajan has been named the associate laboratory director (ALD) for the Science and Technology Partnerships and Outreach (STPO) Directorate at the U.S. Department of Energy's Argonne National Laboratory.

Career Awards Advance Research for Jefferson Lab Researchers

Two researchers affiliated with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have received 2017 Early Career Research Program awards from the DOE's Office of Science.

U.S. Department of Energy Awards Danforth Center $16M to Enhance Sorghum for Bioenergy

This project aims to deliver stress-tolerant sorghum lines, addressing DOE's mission in the generation of renewable energy resources.


  • Filters

  • × Clear Filters

Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.

Explorations of the Universal Glue

The newly upgraded CEBAF Accelerator opens door to strong force studies.

Understanding the Rice Genome for Bioenergy Research

Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.

Bringing Visual "Magic" to Light

Scientists create widely controllable ultrathin optical components that allow virtual objects to be projected in real environments.

Speeding Materials Discovery Puts Solar Fuels on the Fast Track to Commercial Viability

In just two years, a process that was developed by Molecular Foundry staff and users has nearly doubled the number of materials with the potential for using sunlight to produce fuel.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215