Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-06 09:05:08
  • Article ID: 682436

Columbia Researchers Observe Exotic Quantum Particle in Bilayer Graphene

Physicists prove a 30-year-old theory--the even-denominator fractional quantum Hall state--and establish bilayer graphene as a promising platform that could lead to quantum computation.

  • Credit: Cory Dean/Columbia University

    The so-called 5/2 state has confounded scientists for several decades. While all known particles in the universe are classified as either bosons or fermions, the 5/2 state, which emerges only in a 2D electron gas under large magnetic fields, is thought to be an exotic new type of particle that doesn’t fit either description. Previously this state has been observed only in the highest mobility semiconductor heterostructures when cooled to milikelvin temperatures, making it challenging to confirm its expected properties. Recently however, researchers at Columbia found evidence of an equivalent state in bilayer graphene, appearing at temperatures more than 10 times larger than in conventional systems.

Columbia Researchers Observe Exotic Quantum Particle in Bilayer Graphene 

Physicists prove a 30-year-old theory—the even-denominator fractional quantum Hall state—and establish bilayer graphene as a promising platform that could lead to quantum computation. 

New York, NY—October 5, 2017—A team led by Cory Dean, assistant professor of physics at Columbia University, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has definitively observed an intensely studied anomaly in condensed matter physics—the even-denominator fractional quantum Hall (FQH) state—via transport measurement in bilayer graphene. The study is published online today in Science (October 6 issue). 

“Observing the 5/2 state in any system is a remarkable scientific opportunity, since it encompasses some of the most perplexing concepts in modern condensed matter physics, such as emergence, quasi-particle formation, quantization, and even superconductivity,” Dean says. “Our observation that, in bilayer graphene, the 5/2 state survives to much higher temperatures than previously thought possible not only allows us to study this phenomenon in new ways, but also shifts our view of the FQH state from being largely a scientific curiosity to now having great potential for real-world applications, particularly in quantum computing.”

First discovered in the 1980s in gallium arsenide (GaAs) heterostructures, the 5/2 fractional quantum hall state remains the singular exception to the otherwise strict rule that says fractional quantum hall states can only exist with odd denominators. Soon after the discovery, theoretical work suggested that this state could represent an exotic type of superconductor, notable in part for the possibility that such a phase could enable a fundamentally new approach to quantum computation. However, confirmation of these theories has remained elusive, largely due to the fragile nature of the state; in GaAs it is observable only in the highest quality samples and even then appearing only at milikelvin temperaures (as much as 10,000 times colder than the freezing point of water). 

The Columbia team has now observed this same state in bilayer graphene and appearing at much higher temperatures--reaching several Kelvin. “While it’s still 100 times colder than the freezing point of water, seeing the even-denominator state at these temperatures opens the door to a whole new suite of experimental tools that previously were unthinkable,” says Dean. “After several decades of effort by researchers all over the world, we may finally be close to solving the mystery of the 5/2.” 

One of the outstanding problems in the field of modern condensed matter physics is understanding the phenomenon of “emergence,” the result of a large collection of quantum particles behaving in concert due to interactions between the particles and giving rise to new characteristics that are not a feature of the individual parts. For instance, in superconductors, a large number of electrons all collapse to a single quantum state, which can then propagate through a metal without any energy loss. The fractional quantum Hall effect is another state in which electrons collude with one another, in the presence of a magnetic field, resulting in quasiparticles with potentially exotic quantum properties. 

Very difficult to predict theoretically, emergence often challenges our foundational understanding of how particles behave. For example, since any two electrons have the same charge, we think of electrons as objects that want to repel each other. However, in a superconducting metal, electrons unexpectedly pair up, forming a new object known as a cooper pair. Individual electrons scatter when moving through a metal, giving rise to resistance, but spontaneously formed cooper pairs behave collectively in such a way that they move through the material with no resistance at all. 

“Think of trying to make your way through a crowd at a rock concert where everyone is dancing with a lot of energy and constantly bumping into you, compared to a ballroom dance floor where pairs of dancers are all moving in the same, carefully choreographed way, and it is easy to avoid each other,” says Dean. “One of the reasons that makes the even-denominator fractional quantum Hall effect so fascinating is that its origin is believed to be very similar to that of a superconductor, but, instead of simply forming cooper pairs, an entirely new kind of quantum particle emerges.” 

According to quantum mechanics, elementary particles fall into two categories, Fermions and Bosons, and behave in very different ways. Two Fermions, such as electrons, cannot occupy the same state, which is why, for example, the electrons in atoms fill successive orbitals. Bosons, such as photons, or particles of light, can occupy the same state, allowing them to act coherently as in the light emission from a laser. When two identical particles are interchanged, the quantum mechanical wave-function describing their combined state is multiplied by a phase factor of 1 for Bosons, and -1 for Fermions. 

Soon after the discovery of the fractional quantum hall effect, it was suggested on theoretical grounds that the quasiparticles associated with this state behave neither as Bosons nor Fermions but instead what is called an anyon: when anyon quasiparticles are interchanged, the phase factor is neither 1 nor -1 but is fractional. Despite several decades of effort, there still is no conclusive experimental proof confirming that these quasiparticles are anyons. The 5/2 state-a non-abelian anyon-is thought to be even more exotic. In theory, non-abelian anyons obey anyonic statistics as in other fractional quantum Hall states, but with the special feature that this phase cannot simply be undone by reversing the process. This inability to simply unwind the phase would make any information stored in the system uniquely stable, and is why many people believe the 5/2 could be a great candidate for quantum computation. 

“Demonstration of the predicted 5/2 statistics would represent a tremendous achievement,” says Dean. “In many regards, this would confirm that, by fabricating a material system with just the right thickness and just the right number of electrons, and then applying just the right magnetic fields, we could effectively engineer fundamentally new classes of particles, with properties that do not otherwise exist among known particles naturally found in the universe. We still have no conclusive evidence that the 5/2 state exhibits non-abelian properties, but our discovery of this state in bilayer graphene opens up exciting new opportunities to test these theories.”  

Until now, all of those conditions have needed to be not only just right but also extreme. In conventional semi-conductors, the even-denominator states are very difficult to isolate, and exist only for ultra-pure materials, at extremely low temperatures and high magnetic fields. While certain features of the state have been observable devising experiments that could investigate the state without destroying it, has been challenging. 

“We needed a new platform,” says Hone. “With the successful isolation of graphene, these atomically thin layers of carbon atoms emerged as a promising platform for the study of electrons in 2D in general. One of the keys is that electrons in graphene interact even more strongly than in conventional 2D electron systems, theoretically making effects such as the even-denominator state even more robust. But while there have been predictions that bilayer graphene could host the long-sought even-denominator states, at higher temperatures than seen before, these predictions have not been realized due mostly the difficulty of making graphene clean enough.” 

The Columbia team built on many years of pioneering work to improve the quality of graphene devices, creating ultra-clean devices entirely from atomically flat 2D materials: bilayer graphene for the conducting channel, hexagonal boron nitride as a protective insulator, and graphite used for electrical connections and as a conductive gate to change the charge carrier density in the channel. 

A crucial component of the research was having access to the high magnetic fields tools available at the National High Magnetic Field Laboratory in Tallahassee, Fla., a nationally funded user facility with which Hone and Dean have had extensive collaborations. They studied the electrical conduction through their devices under magnetic fields up to 34 Tesla, and achieved clear observation of the even-denominator states. 

“By tilting the sample with respect to the magnetic field, we were able to provide new confirmation that this FQH state has many of the properties predicted by theory, such as being spin-polarized,” says Jia Li, the paper’s lead author and post-doctoral researcher working with Dean and Hone. “We also discovered that in bilayer graphene, this state can be manipulated in ways that are not possible in conventional materials.” 

The Columbia team’s result, which demonstrates measurement in transport—how electrons flow in the system—is a crucial step forward towards confirming the possible exotic origin of the even denominator state. Their findings are reported contemporaneously with a similar report by a research group at University of California, Santa Barbara. The UCSB study observed the even denominator state by capacitance measurement, which probes the existence of an electrical gap associated with the onset of the  state. 

The team expects that the robust measurements they have now observed in bilayer graphene will enable new experiments that could definitively prove its non-abelian nature. Once this is established, the team hopes to begin demonstrating computation using the even denominator state. 

“For many decades now it has been thought that if the 5/2 state does indeed represent a non-abelian anyon, it could theoretically revolutionize efforts to build a quantum computer,” Dean observes. “In the past, however, the extreme conditions necessary to see the state at all, let alone use it for computation, were always a major concern of practicality. Our results in bilayer graphene suggest that this dream may now not actually be so far from reality.”

About the Study 

The study is titled “Even denominator fractional quantum Hall states in bilayer graphene.”

The other authors include: J.I.A. Li and Y. Zeng (Department of Physics, Columbia University), C. Tan (Department of Mechanical Engineering, Columbia Engineering), S. Chen, Department of Applied Physics and Applied Mathematics, Columbia Engineering), and T. Taniguchi and K. Watanabe (National Institute for Materials Science, Japan).

This work was supported by the National Science Foundation (DMR-1507788). C.R.D acknowledges partial support by the David and Lucille Packard Foundation. T.C is supported by INDEX. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

The authors declare no financial or other conflicts of interest. 

LINKS:

Paper: http://science.sciencemag.org/lookup/doi/10.1126/science.aao2521

DOI: 10.1126/science.aao2521

http://science.sciencemag.org/

http://physics.columbia.edu/people/profile/646

http://hone.mech.columbia.edu/

http://engineering.columbia.edu/ 

###

Columbia Engineering

Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering’s nine departments offer 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research initiatives, from the Columbia Nano Initiative to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas. 

###

 

 

X
X
X
  • Filters

  • × Clear Filters

Putting Molten History on the Map

Focused x-ray beam revealed structural changes from laser heating, pinning down elusive melting point.

Theorists Propose Conditions Needed to Search for New Form of Matter

UPTON, NY-- As scientists have explored the structure and properties of matter at ever deeper levels they've discovered many exotic new materials, including superconductors that carry electric current with no resistance, liquid crystals that align to produce brilliant dynamic displays, and materials exhibiting various forms of magnetism.

Getting Under Graphite's Skin:

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered a new process to sheathe metal under a single layer of graphite which may lead to new and better-controlled properties for these types of materials.

Columbia Engineers Develop Floating Solar Fuels Rig for Seawater Electrolysis

Chemical Engineering Prof Daniel Esposito has developed a novel photovoltaic-powered electrolysis device that can operate as a stand-alone platform that floats on open water. His floating PV-electrolyzer can be thought of as a "solar fuels rig" that bears some resemblance to deep-sea oil rigs--but it would produce hydrogen fuel from sunlight and water instead of extracting petroleum from beneath the sea floor. (International Journal of Hydrogen Energy)

National MagLab's Latest Magnet Snags World Record, Marks New Era of Scientific Discovery

The Florida State University-headquartered National High Magnetic Field Laboratory has shattered another world record with the testing of a 32-tesla magnet -- 33 percent stronger than what had previously been the world's strongest superconducting magnet used for research and more than 3,000 times stronger than a small refrigerator magnet.

Clearing the Air

A greater understanding of the dynamics of chemical reactions is leading to better models of atmospheric chemistry. Through this work, scientists are gaining insight into a key chemical able to break down some major air pollutants.

The Wet Road to Fast and Stable Batteries

An international team of scientists --- including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory -- - has discovered an anode battery material with superfast charging and stable operation over many thousands of cycles.

Light Perfects Interfaces

Shining light on a growing semiconductor modifies its interface with the surface and could improve the optical properties of each.

Advance in Light Filtering Technology Has Implications for LCD Screens, Lasers and Beyond

Vector polarizers are a light filtering technology hidden behind the operation of many optical systems. They can be found, for instance, in sunglasses, LCD screens, microscopes, microprocessors, laser machining and more. Optical physicists published details of their new vector polarizer design this week in APL Photonics. The newly proposed design is a major advance in polarization technology because it enables flexible filtering of a wide range of light sources and generation of new light states.

Accelerating the Self-Assembly of Nanoscale Patterns for Next-Generation Materials

Scientists have come up with a way to massively speed up the ordering process for self-assembling materials. The resulting ultra-small, well-ordered patterns could be used in the fabrication of microelectronics, antireflective surfaces, magnetic data storage systems, and fluid-flow devices.


  • Filters

  • × Clear Filters

Supporting the Development of Offshore Wind Power Plants

Offshore wind is becoming a reality in the United States, especially in the northeast states. To support this development, the Center for Future Energy System (CFES) at Rensselaer Polytechnic Institute will present a webinar titled "Turbine and Transmission System Technologies for Offshore Wind (OSW) Power Plants." The program will be held on Wednesday, Dec. 20, from 2 to 4 p.m. Advance registration is required.

LLNL Releases Newly Declassified Nuclear Test Videos

Researchers at Lawrence Livermore National Laboratory (LLNL) released 62 newly declassified videos today of atmospheric nuclear tests films that have never before been seen by the public.

NAU Researchers Join DOE Project to Study the Soil Microbiome and Its Effect on Carbon Persistence

NAU Regents' Professor Bruce Hungate, director of the Center for Ecosystem Science and Society (Ecoss), recently joined a new initiative lead by LLNL to study how the soil microbiome controls the mechanisms that regulate the stabilization of the organic matter in soil.

Four Scientists Win the Los Alamos Medal

Los Alamos National Laboratory will award four former researchers with the Los Alamos Medal for their scientific contributions.

Stewart Prager Honored with FPA Distinguished Career Award

Announcement of Fusion Power Associates career award for Stewart Prager

WVU Physicists Among Collaborators Granted $7 Million to Form U.S. Department of Energy Center of Excellence

Scientists pause each afternoon at Kirtland Air Force Base in Sandia National Laboratories in Albuquerque, New Mexico, awaiting the daily lightning flash and unmistakable floor jolt that accompanies a Z shot

US Dept. Of Energy Grant to Advance Combined Heat and Power Systems in the Midwest

The University of Illinois at Chicago has received a five-year, $4.2 million grant from the U.S. Department of Energy to help industrial, commercial, institutional and utility entities evaluate and install highly efficient combined heat and power (CHP) technologies.CHP, also known as cogeneration, is a single system that produces both thermal energy and electricity.

Applications Open: ECS Toyota Young Investigator Fellowship 2018-2019

ECS, in a continued partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is requesting proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology.

Successful Startup Founder to Lead Entrepreneurship Program at Argonne

John Carlisle has been named the director of Chain Reaction Innovations (CRI), a program aimed at accelerating job creation through innovation, based at the U.S. Department of Energy's Argonne National Laboratory.

Department of Energy Supports Argonne Nuclear Technologies

This fall, U.S. Department of Energy Secretary Rick Perry announced nearly $4.7 million in funding for the department's Argonne National Laboratory across 16 projects in three divisions. Four of those TCF awards, representing more than $1 million in funds, are slated for Argonne's Nuclear Engineering division.


  • Filters

  • × Clear Filters

Putting Molten History on the Map

Focused x-ray beam revealed structural changes from laser heating, pinning down elusive melting point.

Is There Structure in Glass Disorder?

For one of the strongest known materials, calculations clarify a long-standing debate about how atoms pack together.

Bending a New Tool for Low Power Computing

Theory predicts that bending a film will control spin direction and create a spin current for next-generation electronics.

Molecular Mousetraps Capture More Nuclear Waste

Cage-like molecules with internal chemical hooks remove three times more hazardous radioactive iodine compounds than current methods.

New Quantum Liquid Crystal--In the Driver's Seat

Lasers reveal a new state of matter--the first 3-D quantum liquid crystal.

Chemical "Pressure" Tuning Magnetic Properties

Unexpectedly, a little chemical substitution stabilizes unusual magnetic phase of vortexes called skyrmions.

Stirring up a Quantum Spin Liquid with Disorder

New, unexpected paradigm discovered: Disorder may actually promote an exotic quantum state, with potential for ultrafast computing.

Light Perfects Interfaces

Shining light on a growing semiconductor modifies its interface with the surface and could improve the optical properties of each.

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.


Spotlight

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University





Showing results

0-4 Of 2215