Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-12 12:00:58
  • Article ID: 682810

International Team Reconstructs Nanoscale Virus Features from Correlations of Scattered X-rays

Team uses Berkeley Lab CAMERA's M-TIP algorithm to enable new X-ray science

  • Credit: Photo Credit: Marilyn Chung, Berkeley Lab

    CAMERA members (from left) Peter Zwart, Jeff Donatelli and Kanupriya Pande, co- authors of a paper describing how the group’s M-TIP algorithm determined 3D virus structures from single-particle diffraction data. Donatelli holds a 3D-printed model of one of the viruses reconstructed by M-TIP.

As part of an international research team, Jeff Donatelli, Peter Zwart and Kanupriya Pande of the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory (Berkeley Lab) contributed key algorithms which helped achieve a goal first proposed more than 40 years ago – using angular correlations of X-ray snapshots from non-crystalline molecules to determine the 3D structure of important biological objects. This technique has the potential to allow scientists to shed light on biological structure and dynamics that were previously impossible to observe with traditional X-ray methods. 

The breakthrough resulted from a single-particle diffraction experiment conducted at the Department of Energy’s (DOE’s) Linac Coherent Light Source (LCLS) by the Single-Particle Initiative organized by the SLAC National Accelerator Laboratory. As part of this initiative, the CAMERA team combined efforts with Ruslan Kurta, a physicist at the European XFEL (X-ray free electron laser) facility in Germany, to analyze angular correlations from the experimental data and use CAMERA’s multi-tiered iterative phasing (M-TIP) algorithm to perform the first successful 3D virus reconstructions from experimental correlations. The results were described in a paper published Oct. 12 in Physical Review Letters.

“For the past 40 years, this was considered a problem that could not be solved,” said Peter Zwart, co-author on the paper and a physical bioscientist who is a member of CAMERA based out of the Molecular Biophysics and Integrated Imaging Division at Berkeley Lab. “But it turns out that the mathematical tools that we developed are able to leverage extra information hidden in the problem that had been previously overlooked. It is gratifying to see our theoretical approach lead to a practical tool.”

New Research Opportunities Enabled by XFELs

For much of the last century, the go-to technique for determining high-resolution molecular structure has been X-ray crystallography, where the sample of interest is arranged into a large periodic lattice and exposed to X-rays which scatter off and form diffraction patterns that are collected on a detector. Even though crystallography has been successful at determining many high-resolution structures, it is challenging to use this technique to study structures which are not susceptible to crystallization or structural changes that do not naturally occur within a crystal. 

The creation of XFEL facilities, including the Linac Coherent Light Source (LCLS) and the European X-FEL, have created opportunities for conducting new experiments which can overcome the limitations of traditional crystallography. In particular, XFEL beams are several orders of magnitude brighter than and have much shorter pulse lengths than traditional X-ray light sources, which allow them to collect measurable diffraction signal from smaller uncrystallized samples and also study fast dynamics. Single-particle diffraction is one such emerging experimental technique enabled by XFELS, where one collects diffraction images from single molecules instead of crystals. These single-particle techniques can be used to study molecular structure and dynamics that have been difficult to study with traditional imaging techniques. 

Overcoming Limitations in Single-Particle Imaging via Angular Correlations

One major challenge of single-particle imaging is that of orientation determination. “In a single-particle experiment, you don’t have control over rotation of the particles as they are hit by the X-ray beam, so each snapshot from a successful hit will contain information about the sample from a different orientation,” said co-author Jeff Donatelli, an applied mathematician in CAMERA who developed many of the algorithms in the new framework. “Most approaches to single-particle analysis have so far been based on trying to determine these particle orientations from the images; however, the best resolution achievable from these analyses is restricted by how precisely these orientations can be determined from noisy data.” 

Instead of trying to directly determine these orientations, the team took a different approach based on idea originally proposed in the 1970s by Zvi Kam. “Rather than examine the individual data intensities in an attempt to find the correct orientation for each measured frame, we eliminate this step altogether by using so-called cross-correlation functions,” Kurta said. 

This approach, known as fluctuation X-ray scattering, is based on analyzing the angular correlations of ultrashort, intense X-ray pulses scattered from non-crystalline biomolecules. ”The beauty of using correlation data is that it contains a comprehensive fingerprint of the 3D structure of an object that extends traditional solution scattering approaches,” Zwart said.

Reconstructing 3D Structure from Correlations with CAMERA’s M-TIP Algorithm

The team’s breakthrough in reconstructing 3D structure from correlation data was enabled by the multi-tiered iterative phasing (M-TIP) algorithm developed by CAMERA. “Among the prominent advantages of M-TIP is its ability to solve the structure directly from the correlation data without having to rely on any symmetry constraints, and, more importantly, without the need to solve the orientation determination problem,” Donatelli said.

 Donatelli, CAMERA director James Sethian and Zwart developed their M-TIP framework by developing a mathematical generalization of a class of algorithms known as iterative phasing techniques, which are used for determining structure in a simpler problem, known as phase retrieval. A paper describing the original M-TIP framework was published August 2015 in the Proceedings of the National Academy of Sciences.

“Advanced correlation analyses in combination with ab-initio reconstructions by M-TIP clearly define an efficient route for structural analysis of nanoscale objects at XFELs,” Zwart said.

Future Directions for Correlation Analysis and M-TIP

The team notes that methods used in this analysis can also be applied to analyze diffraction data when there is more than one particle per shot.

“Most algorithms for single-particle imaging can only handle one molecule at a time, thus limiting signal and resolution. Our approach, on the other hand, is scalable so that we should also be able to measure more than one particle at a time,” said Kurta. Imaging with more than one particle per shot will allow scientists to achieve much higher hit rates, since it is easier to use a wide beam and hit many particles at a time, and will also avoid the need to separate out single-particle hits from multiple-particle hits and blank shots, which is another challenging requirement in traditional single-particle imaging.

As part of CAMERA’s suite of computational tools, they have also developed a different version of M-TIP which solves the orientation problem and can classify the images into conformational states, and consequently can used to study small biological differences in the measured sample. This alternate version of M-TIP was described in a paper published June 26 2017 in the Proceedings of the National Academy of Sciences and is part of a new collaboration initiative between SLAC National Accelerator Laboratory, CAMERA, the National Energy Research Scientific Computing Center (NERSC) and Los Alamos National Laboratory as part of DOE’s Exascale Computing Project (ECP).

This work was supported by the offices of Advanced Scientific Computing Research and Basic Energy Sciences in the Department of Energy’s Office of Science and the National Institute of General Medical Sciences at the National Institutes of Health. LCLS and NERSC are both DOE Office of Science User Facilities.

The Office of Science supports Berkeley Lab. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Cool Roofs Have Water Saving Benefits Too

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study by the Department of Energy's Lawrence Berkeley National Laboratory has found that cool roofs can also save water by reducing how much is needed for urban irrigation.

The Blob That Ate the Tokamak: Physicists Gain Understanding of How Bubbles at the Edge of Plasmas Can Drain Heat and Reduce Fusion Reaction Efficiency

Scientists at PPPL have completed new simulations that could provide insight into how blobs at the plasma edge behave. The simulations, produced by a code called XGC1 developed by a national team based at PPPL, performed kinetic simulations of two different regions of the plasma edge simultaneously.

Scientists Solve a Magnesium Mystery in Rechargeable Battery Performance

A Berkeley Lab-led research team has discovered a surprising set of chemical reactions involving magnesium that degrade battery performance even before the battery can be charged up. The findings could steer the design of next-gen batteries.

Extreme Light Trapping

Shawn-Yu Lin, professor of physics, applied physics, and astronomy at Rensselaer Polytechnic Institute, has built a nanostructure whose crystal lattice bends light as it enters the material and directs it in a path parallel to the surface, known as "parallel to interface refraction."

Researchers Customize Catalysts to Boost Product Yields, Decrease Chemical Separation Costs

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy's Oak Ridge National Laboratory.

Innovative Design Using Loops of Liquid Metal Can Improve Future Fusion Power Plants, Scientists Say

Article describes proposed design for production of steady-state plasma in future fusion power plants.

Scientists Create Most Powerful Micro-Scale Bio-Solar Cell Yet

Researchers at Binghamton University, State University of New York have created a micro-scale biological solar cell that generates a higher power density for longer than any existing cell of its kind.

ESnet's Science DMZ Design Could Help Transfer, Protect Medical Research Data

As medicine becomes more data-intensive, Berkeley Lab & ESnet's Medical Science DMZ eyed as secure solution for transferring data

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance

Breakthrough Cuttable, Flexible, Submersible and Ballistic-Tested Lithium-ion Battery Offers New Paradigm of Safety and Performance


  • Filters

  • × Clear Filters

Two ORNL-Led Research Teams Receive $10.5 Million to Advance Quantum Computing for Scientific Applications

DOE's Office of Science has awarded two research teams, each headed by a member of ORNL's Quantum Information Science Group, more than $10 million over 5 years to both assess the feasibility of quantum architectures in addressing big science problems and to develop algorithms capable of harnessing the massive power predicted of quantum computing systems. The two projects are intended to work in concert to ensure synergy across DOE's quantum computing research spectrum and maximize mutual benefits.

Department of Energy Awards Flow Into Argonne

DOE Secretary Rick Perry awarded Argonne with nearly $4.7 million in projects as part of the DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) in September.

NIH Awards $6.5 Million to Berkeley Lab for Augmenting Structural Biology Research Experience

The NIH has awarded $6.5 million to Berkeley Lab to integrate existing synchrotron structural biology resources to better serve researchers. The grant will establish a center based at the Lab's Advanced Light Source (ALS) called ALS-ENABLE that will guide users through the most appropriate routes for answering their specific biological questions.

LIGO Announces Detection of Gravitational Waves From Colliding Neutron Stars

The U.S.-based Laser Interferometer Gravitational-Wave Observatory and the Virgo detector in Italy announced on Oct. 16 that all three of their detectors had picked up the ripples, or gravitational waves, from two neutron stars that collided 130 million years ago. Among other discoveries, the detection allowed scientists to use gravitational waves to directly calculate the rate at which the universe is expanding.

WVU Energy Conference to Address State's Economic Opportunities

West Virginia University will look at the state's emerging energy economy through industry experts, public policy organizations, environmental groups and academic institutions at the sixth annual National Energy Conference Oct. 20.

Exploring the Exotic World of Quarks and Gluons at the Dawn of the Exascale

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature's secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab) is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Matthew Latimer Receives 2017 Lytle Award

A staff member at the Department of Energy's SLAC National Acceleratory Laboratory, Matthew Latimer is in charge of seven spectroscopy beamlines at SSRL. He was recently selected for the 2017 Farrel W. Lytle Award, established by the SSRL Users' Organization Executive Committee. The award promotes accomplishments in synchrotron science and supports collaboration among visiting scientists and staff who conduct research at SSRL.

Jefferson Lab Completes 12 GeV Upgrade

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. The completion of the 12 GeV Upgrade Project of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) heralds this new era to image nuclei at their deepest level.

Sunderrajan to Lead Science and Technology Partnerships and Outreach Directorate

Suresh Sunderrajan has been named the associate laboratory director (ALD) for the Science and Technology Partnerships and Outreach (STPO) Directorate at the U.S. Department of Energy's Argonne National Laboratory.

Career Awards Advance Research for Jefferson Lab Researchers

Two researchers affiliated with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have received 2017 Early Career Research Program awards from the DOE's Office of Science.


  • Filters

  • × Clear Filters

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.

Explorations of the Universal Glue

The newly upgraded CEBAF Accelerator opens door to strong force studies.

Understanding the Rice Genome for Bioenergy Research

Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.

Bringing Visual "Magic" to Light

Scientists create widely controllable ultrathin optical components that allow virtual objects to be projected in real environments.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215