Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-02-08 11:05:17
  • Article ID: 689242

Particle Interactions Calculated on Titan Support the Search for New Physics Discoveries

MIT researchers and collaborators model fundamental processes related to the Sun's energy production and the search for a neutrino antiparticle.

  • Credit: Image courtesy of William Detmold

    A conceptual illustration of proton-proton fusion in which two protons fuse to form a deuteron.

Nuclear physicists are using the nation’s most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility (OLCF) to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries. OLCF is a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory.

Direct calculations of these nuclear processes can contribute new and fundamental information to the fields of high-energy physics, nuclear science, and astrophysics, including how matter formed in the early universe and its relation to dark matter and the large-scale structure of the universe.

The research team using Titan, including principal investigator William Detmold of the Massachusetts Institute of Technology (MIT), is calculating proton-proton fusion—a process that powers the Sun and other stars in which two protons fuse to form a deuteron—and double beta decay, a rare process which occurs when an unstable nucleus decays by emitting two electrons with or without neutrinos (subatomic particles with near-zero mass).

Although double beta decay with neutrinos has been observed in experiment, the team is focused on neutrinoless double beta decay—a type of double beta decay predicted by theory in which no neutrinos are emitted, only electrons. Yet to be observed, this neutrinoless process is of great interest to physicists because it could lead to new discoveries beyond the current model of particle physics known as the Standard Model.

The Standard Model, a description of all the known subatomic particles and fundamental forces in the universe except for gravity, has held up in experiments time and again. However, the Standard Model is not complete because it cannot fully explain what scientists observe at the cosmic scale.

Based on observations of galaxies, supernova, and other phenomena, researchers estimate that the universe consists of very little ordinary matter (only about 5 percent) and is mostly unseen dark matter that exerts a gravitational pull on ordinary matter (about 25 percent) and dark energy (about 70 percent). Yet scientists do not know what makes up dark matter or in what ways it may interact with ordinary matter other than gravitationally.

To help answer these and other cosmic questions, experiments are being built around the world to probe particle interactions at new scales and energies, and supercomputers are being used to simulate rare or theoretical interactions. By modeling the interactions of simple nuclei, physicists can understand the kind of experiments they need to build and what they may expect from experimental data.

On Titan, Detmold’s team used complex lattice quantum chromodynamics (QCD) calculations to predict the reaction rate—the probability that nuclear fusion or decay will occur—of proton-proton fusion and an important part of the theoretical rate of neutrinoless double beta decay.

“We’re showing that you can see the bound states of nuclei using quantum chromodynamics,” Detmold said. “From there, we’re calculating the simplest nuclear processes that happen.”

Modeling space-time

Nuclear fusion of hydrogen—the lightest element consisting only of a proton and electron—powers stars for millions to billions of years. Detmold’s team calculated the proton-proton fusion cross section on supercomputers because this interaction plays a critical role in solar energy production.

“We can’t experimentally probe proton-proton fusion that well,” Detmold said. “Even if you take a proton target and irradiate it with a beam of protons, the protons will just scatter, not fuse, so this fusion process is very rare in the laboratory.”

In this process, two protons overcome their electromagnetic repulsion between like charges and interact through the short-range, subatomic force known as the weak force.

Lattice QCD calculations represent how the fundamental particles that make up protons—quarks and gluons—interact in the volume of space-time in which proton-proton fusion occurs. Quarks are the smallest known constituents of matter, and gluons are the force-carrying particles that bind them. Named for the 4D grid (the lattice) that represents space-time and the unique “color charge” (chromo), which refers to how quarks and gluons combine rather than to actual colors, lattice QCD calculations are intensive computations that can require supercomputing power.

Efficiently using Titan’s GPU-accelerated architecture, Detmold’s team used the Chroma lattice QCD library (developed primarily by Robert Edwards and Balint Joò of Thomas Jefferson National Accelerator Facility) with a new algorithm to include weak interactions important to proton-proton fusion and QUDA, a lattice QCD library for GPUs (developed primarily by Kate Clark of NVIDIA). The calculations generated more than 1,000 snapshots of the 4D lattice with 10 million points of calculation per snapshot.

“These are the first QCD calculations of the proton-proton fusion rate,” Detmold said.

Researchers used the same lattice QCD algorithms to calculate another weak interaction process, tritium beta decay, which has been studied experimentally and was used to verify the calculations.

Narrowing the search

Researchers also calculated subprocesses that contribute to double beta decay rates, including theoretical rates for neutrinoless double beta decay.

A rare particle event, double beta decay was first predicted in 1935 but not observed in experiments until the 1980s. This type of decay can occur naturally when two neutrons decay into two protons inside a nucleus, emitting two electrons and two neutrinos in the process. Although rare, double beta decay occurs in some isotopes of heavy elements as a way for the nucleus to stabilize its number of protons and neutrons.

Neutrinoless double beta decay, also predicted over half a century ago, has never been observed. However, this potential process has gained much more significance in recent years since physicists discovered that neutrinos have a small mass. Because the neutrino has a neutral charge, it is theoretically possible that it is its own antiparticle—a particle of the same mass but opposite charge. Antiparticles exist in nature and have been created and observed in experiment, but matter particles are much more dominant in nature.

A particle that is its own antiparticle, known as a Majorana particle, could help explain the mechanism by which matter took precedence over antimatter in the universe, which is one of the great outstanding questions in cosmology.

Many experiments across the globe are trying to observe neutrinoless double beta decay, which would confirm the existence of a Majorana neutrino. Such a discovery would, for the first time, provide an unambiguous signature of the violation of lepton number conservation—the principle that describes balance between certain types of matter particles and their antiparticles.

Experiments such as the MAJORANA Demonstrator at the Sanford Underground Research Facility cool heavy elements in underground laboratories to temperatures colder than empty space. In their remote locations with heavy shielding, neutrino detectors like the MAJORANA Demonstrator are enabling scientists to narrow their search for rare neutrino interactions.

Because neutrinoless double beta decay is theoretical and, if real, still very rare, researchers must make extremely refined predictions of its reaction rate. The smaller the reaction rate, the less likely experiments will be able to capture the process and the bigger the experimental detector needs to be. The Titan calculations help researchers understand potential decay rates.

“Ultimately, what we are trying to determine is how likely an experiment of a given size is going to be able to see this process, so we need to know the reaction rate,” Detmold said.

Current neutrino experiments are pilot scale, using tens of kilograms of a heavy element medium (germanium crystals in the case of MAJORANA). Future detectors could be built at ton scale, and it is important to know that such an experiment would be sensitive enough to see neutrinoless double beta decay if it exists.

The team’s calculations of double beta decay on Titan provide the kind of theoretical support experimentalists need to develop experiments and analyze data.

But proton-proton fusion and neutrinoless double beta decay are only two nuclear processes of many that can be gateways to new discoveries in physics.

With next-generation systems like the OLCF’s Summit supercomputer, which will come online later this year, these calculations will be taken to a new level of accuracy, and researchers can begin to study the decays and interactions of more complex nuclei.

“Now that we’ve shown that we can control these few nucleon processes, we can start calculating more complicated processes,” Detmold said.

This research was conducted by the Nuclear Physics with Lattice Quantum Chromo Dynamics, or NPLQCD, collaboration, with team members at MIT, University of Washington, University of California, City College of New York, City University of New York, College of William and Mary, Brookhaven National Laboratory, Jefferson Laboratory, and the Institute for Nuclear Theory.

Related Publications:

Savage, P. Shanahan, B. Tiburzi, M. Wagman, F. Winter, S. Beane, E. Chang, Z. Davoudi, W. Detmold, and K. Orginos, “Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics.” Physical Review Letters 119 (2017), doi: 10.1103/PhysRevLett.119.062002.

Shanahan, B. Tiburzi, M. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, and M. Savage,” Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.” Physical Review Letters 119 (2017), doi: 10.1103/PhysRevLett.119.062003.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

X
X
X
  • Filters

  • × Clear Filters

Large Outdoor Study Shows Biodiversity Improves Stability of Algal Biofuel Systems

A diverse mix of species improves the stability and fuel-oil yield of algal biofuel systems, as well as their resistance to invasion by outsiders, according to the findings of a federally funded outdoor study by University of Michigan researchers.

SLAC, Stanford Scientists Discover How a Hardy Microbe's Crystalline Shell Helps it Reel in Food

SLAC and Stanford scientists have discovered how some archaea thrive where other organisms would starve: Their crystalline shells not only protect them from the environment, but they also draw in nutrients through nanosized pores. Those nutrients concentrate in the space between the shell and the microbial cell, so what looks like a famine turns into a feast.

Critical plant gene takes unexpected detour that could boost biofuel yields

For decades, biologists have believed a key enzyme in plants had one function--produce amino acids, which are vital to plant survival and also essential to human diets. But for Wellington Muchero, Meng Xie and their colleagues, this enzyme does more than advertised. They had run a series of experiments on poplar plants that consistently revealed mutations in a structure of the life-sustaining enzyme that was not previously known to exist.

How Microgrids Could Boost Resilience in New Orleans

In a year-long project, researchers at Sandia and Los Alamos national laboratories teamed up with the City of New Orleans to analyze ways to increase community resilience and improve the availability of critical lifeline services during and after severe weather. The team used historical hurricane scenarios to model how storms cause localized flooding, disrupt the electrical system and cut off parts of the community from lifeline services. Sandia researchers then developed a tool to analyze and identify existing clusters of businesses and community resources in areas less prone to inundation -- such as gas stations, grocery stores and pharmacies that could be outfitted with microgrids to boost resilience.

NIF Experiments Blast Previous Record and Double Fusion Yield

An experimental campaign conducted at the National Ignition Facility (NIF) - the world's largest and most energetic laser - has achieved a total fusion neutron yield of 1.9e16 (1.9x1016) and 54 KJ of fusion energy output - double the previous record. The experiments utilized a diamond capsule - a layer of ultra-thin high-density carbon containing the deuterium-tritium (DT) fusion fuel. In addition to increased yield, the experiments achieved unprecedented pressures, exceeding those found at the center of the Sun.

PNNL Technology Clears Way for Ethanol-Derived Jet Fuel

News Release RICHLAND, Wash. -- ASTM International recently revised ASTM D7566 Annex A5 -- the Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons -- to add ethanol as an approved feedstock for producing alcohol-to-jet synthetic paraffinic kerosene (ATJ-SPK). The revision of ASTM D7566 Annex A5 clears the way for increased adoption of sustainable aviation fuels because ethanol feedstocks can be made from so many different low-cost sources.

Experiments at Berkeley Lab Help Trace Interstellar Dust Back to Solar System's Formation

Experiments conducted at the Department of Energy's Lawrence Berkeley National Laboratory helped to confirm that samples of interplanetary particles - collected from Earth's upper atmosphere and believed to originate from comets - contain dust leftover from the initial formation of the solar system.

Designing a better superconductor with geometric frustration

Notre Dame study shows a magnet-controlled "switch" in superconductor configuration provides unprecedented flexibility in managing the location of vortex filaments, altering the properties of the superconductor.

Robust MOF Material Exhibits Selective, Fully Reversible and Repeatable Capture of Toxic Atmospheric Gas

Scientists have developed a metal-organic framework material offering selective, reversible and repeatable capture of nitrogen dioxide from ambient air. This could lead to cost-effective capture of greenhouse gases, to facilitate sequestration and help mitigate air pollution and global warming.

Diamond Dust Shimmering Around Distant Stars

Some of the tiniest diamonds in the universe - bits of crystalline carbon hundreds of thousands of times smaller than a grain of sand - have been detected swirling around three infant star systems in the Milky Way. These microscopic gemstones are neither rare nor precious; they are, however, exciting for astronomers who identified them as the source of a mysterious cosmic microwave "glow" emanating from several protoplanetary disks in our galaxy.


  • Filters

  • × Clear Filters

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Li (Emily) Liu, associate professor of nuclear engineering and engineering physics in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has been selected by the U.S. Department of Energy Solar Energy Technologies Office (SETO) to receive a $1.8 million award to study high-temperature molten-salt properties and corrosion mechanisms.

Vasilis Fthenakis Receives IEEE's William R. Cherry Award

UPTON, NY; Vasilis Fthenakis, a Senior Scientist Emeritus at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Founder and Director of the Center for Life Cycle Analysis at Columbia University, will receive the 2018 William R. Cherry Award from the Institute of Electrical & Electronics Engineers (IEEE).

New PPPL director Steve Cowley is honored with knighthood by Queen Elizabeth II

Steven Cowley, newly named director of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) effective July 1, has received a knighthood from Queen Elizabeth "for services to science and the development of nuclear fusion."

UVA Darden Releases Policy Playbook Identifying Six Actions to Catalyze Clean-Tech Innovation

Moving the needle on climate change will require substantive and disruptive innovation across multiple industry sectors. Public and private investment focused on a few key areas could have a significant impact, according to a new policy playbook released by the Batten Institute for Entrepreneurship and Innovation on 8 June.

Work Begins on New SLAC Facility for Revolutionary Accelerator Science

The Department of Energy's SLAC National Accelerator Laboratory has started to assemble a new facility for revolutionary accelerator technologies that could make future accelerators 100 to 1,000 times smaller and boost their capabilities.

Oak Ridge National Laboratory Launches America's New Top Supercomputer for Science

The U.S. Department of Energy's Oak Ridge National Laboratory unveiled Summit as the world's most powerful and smartest scientific supercomputer.

Takeuchi Receives European Inventor Award 2018 in the Non-EPO Countries Category

Prolific patent-holder won for inventing battery that increases the lifespan of implantable defibrillators fivefold, greatly reducing need for reoccurring surgery

Steve Kevan Named Next Director of Berkeley Lab's Advanced Light Source

After an international search, Stephen D. "Steve" Kevan has been named the new director of the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory.

International corrosion society elects first Sandia fellow

Sandia National Laboratories materials scientist David Enos has been elected a fellow of NACE International, the chief professional society for corrosion engineering. He is the first Sandia employee to receive the honor.

Power to the People

The University of Utah College of Engineering has received a $2 million grant to create a laboratory and develop new technology for communities with backup power sources, known as microgrids, so they can quickly and more securely operate in the event of a massive power outage due to a natural disaster or cyberattack.


  • Filters

  • × Clear Filters

Simulations of Magnetically Confined Plasmas Reveal a Self-Regulating Stabilizing Mechanism

A mysterious mechanism that prevents instabilities may be similar to the process that maintains the Earth's magnetic field.

Seeing All the Colors of the Plasma Wind

2-D velocity imaging helps fusion researchers understand the role of ion winds (aka flows) in the boundary of tokamak plasmas.

Renewable Solvents Derived From Lignin Lowers Waste in Biofuel Production

New class of solvents breaks down plant biomass into sugars for biofuels and bioproducts in a closed-loop biorefinery concept.

Scientists Studying Nuclear Spin Make a Surprising Discovery

The size of a nucleus appears to influence the direction of certain particles emitted from collisions with spinning protons.

Simulating Turbulent Bubbly Flows in Nuclear Reactors

With a better understanding of bubbly flows, researchers can improve the safety and operation of our nuclear reactors.

Solving a Magnesium Mystery in Rechargeable Battery Performance

Study reveals surprising, bad chemical reactivity in battery components previously considered compatible.

Changing the Surroundings Improves Catalysis

Water changes how cobalt-based molecule turns carbon dioxide into chemical feedstock.

How to Draw a Line Narrower Than a Cold Virus

Scientists use ion beams to write high-purity metal structures, enabling nanofabrication opportunities.

Powering Up With a Smart Window

Window material repeatedly switches from being see-through to blocking the heat and converting sunlight into electricity.

Remnant Superconductivity From Invisible Stripes

Scientists used an intense light to unveil hidden rivers that transport electricity with no loss.


Spotlight

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University





Showing results

0-4 Of 2215