Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-03-01 09:05:36
  • Article ID: 690205

Can Strongly Lensed Type Ia Supernovae Resolve Cosmology's Biggest Controversy?

Berkeley Lab researchers think so--and they're using NERSC supercomputers to find them

  • Credit: Image credit: Danny Goldstein, UC Berkeley

    This composite of two astrophysics simulations shows a Type Ia supernova (purple disc) expanding over different microlensing magnification patterns (colored fields). Because individual stars in the lensing galaxy can significantly change the brightness of a lensed event regions of the supernova can experience varying amounts of brightening and dimming, which scientists believed would be a problem for cosmologists measuring time delays. Using detailed computer simulations at NERSC, astrophysicists showed that this would have a small effect on time-delay cosmology.

In 1929 Edwin Hubble surprised many people—including Albert Einstein—when he showed that the universe is expanding. Another bombshell came in 1998 when two teams of astronomers proved that cosmic expansion is actually speeding up due to a mysterious property of space called dark energy. This discovery provided the first evidence of what is now the reigning model of the universe: “Lambda-CDM,” which says that the cosmos is approximately 70 percent dark energy, 25 percent dark matter and 5 percent “normal" matter (everything we’ve ever observed). 

Until 2016, Lambda-CDM agreed beautifully with decades of cosmological data. Then a research team used the Hubble Space Telescope to make an extremely precise measurement of the local cosmic expansion rate. The result was another surprise: the researchers found that the universe was expanding a little faster than Lambda-CDM and the Cosmic Microwave Background (CMB), relic radiation from the Big Bang, predicted. So it seems something’s amiss—could this discrepancy be a systematic error, or possibly new physics? 

Astrophysicists at Lawrence Berkeley National Laboratory (Berkeley Lab) and the Institute of Cosmology and Gravitation at the University of Portsmouth in the UK believe that strongly lensed Type Ia supernovae are the key to answering this question. And in a new Astrophysical Journal paper, they describe how to control “microlensing,” a physical effect that many scientists believed would be a major source of uncertainty facing these new cosmic probes. They also show how to identify and study these rare events in real time. 

“Ever since the CMB result came out and confirmed the accelerating universe and the existence of dark matter, cosmologists have been trying to make better and better measurements of the cosmological parameters, shrink the error bars,” says Peter Nugent, an astrophysicist in Berkeley Lab’s Computational Cosmology Center (C3) and co-author on the paper. “The error bars are now so small that we should be able to say ‘this and this agree,’ so the results presented in 2016 introduced a big tension in cosmology. Our paper presents a path forward for determining whether the current disagreement is real or whether it’s a mistake.”

Better Distance Markers Shed Brighter Light on Cosmic History

The farther away an object is in space, the longer its light takes to reach Earth. So the farther out we look, the further back in time we see. For decades, Type Ia supernovae have been exceptional distance markers because they are extraordinarily bright and similar in brightness no matter where they sit in the cosmos. By looking at these objects, scientists discovered that dark energy is propelling cosmic expansion.

But last year an international team of researchers found an even more reliable distance marker—the first-ever strongly lensed Type Ia supernova. These events occur when the gravitational field of a massive object—like a galaxy—bends and refocuses passing light from a Type Ia event behind it. This “gravitational lensing” causes the supernova’s light to appear brighter and sometimes in multiple locations, if the light rays travel different paths around the massive object.

Because different routes around the massive object are longer than others, light from different images of the same Type Ia event will arrive at different times. By tracking time-delay between the strongly lensed images, astrophysicists believe they can get a very precise measurement of the cosmic expansion rate.

“Strongly lensed supernovae are much rarer than conventional supernovae—they’re one in 50,000. Although this measurement was first proposed in the 1960’s, it has never been made because only two strongly lensed supernovae have been discovered to date, neither of which were amenable to time delay measurements,” says Danny Goldstein, a UC Berkeley graduate student and lead author on the new Astrophysical Journal paper.

After running a number of computationally intensive simulations of supernova light at the National Energy Research Scientific Computing Center (NERSC), a Department of Energy Office of Science User Facility located at Berkeley Lab, Goldstein and Nugent suspect that they’ll be able to find about 1,000 of these strongly lensed Type Ia supernovae in data collected by the upcoming Large Synoptic Survey Telescope (LSST)—about 20 times more than previous expectations. These results are the basis of their new paper in the Astrophysical Journal.

“With three lensed quasars—cosmic beacons emanating from massive black holes in the centers of galaxies— collaborators and I measured the expansion rate to 3.8 percent precision. We got a value higher than the CMB measurement, but we need more systems to be really sure that something is amiss with the standard model of cosmology, “ says Thomas Collett, an astrophysicist at the University of Portsmouth and a co-author on the new Astrophysical Journal paper. “It can take years to get a time delay measurement with quasars, but this work shows we can do it for supernovae in months. One thousand lensed supernovae will let us really nail down the cosmology.”

In addition to identifying these events, the NERSC simulations also helped them prove that strongly lensed Type Ia supernovae can be very accurate cosmological probes.

“When cosmologists try to measure time delays, the problem they often encounter is that individual stars in the lensing galaxy can distort the light curves of the different images of the event, making it harder to match them up,” says Goldstein. “This effect, known as ‘microlensing,’ makes it harder to measure accurate time delays, which are essential for cosmology.”

But after running their simulations, Goldstein and Nugent found microlensing did not change the colors of strongly lensed Type Ia supernova in their early phases. So researchers can subtract the unwanted effects of microlensing by working with colors instead of light curves. Once these undesirable effects are subtracted, scientists will be able to easily match the light curves and make accurate cosmological measurements.

They came to this conclusion by modeling the supernovae using the SEDONA code, which was developed with funding from two DOE Scientific Discovery through Advanced Computing (SciDAC) Institutes to calculate light curves, spectra and polarization of aspherical supernova models.

“In the early 2000s DOE funded two SciDAC projects to study supernova explosions, we basically took the output of those models and passed them through a lensing system to prove that the effects are achromatic,” says Nugent. 

"The simulations give us a dazzling picture of the inner workings of a supernova, with a level of detail that we could never know otherwise,” says Daniel Kasen, an astrophysicist in Berkeley Lab’s Nuclear Science Division, and a co-author on the paper. “Advances in high performance computing are finally allowing us to understand the explosive death of stars, and this study shows that such models are needed to figure out new ways to measure dark energy."

Taking Supernova Hunting to the Extreme

When LSST begins full survey operations in 2023, it will be able to scan the entire sky in only three nights from its perch on the Cerro Pachón ridge in north-central Chile. Over its 10-year mission, LSST is expected to deliver over 200 petabytes of data. As part of the LSST Dark Energy Science Collaboration, Nugent and Goldstein hope that they can run some of this data through a novel supernova-detection pipeline, based at NERSC.

For more than a decade, Nugent’s Real-Time Transient Detection pipeline running at NERSC has been using machine learning algorithms to scour observations collected by the Palomar Transient Factor (PTF) and then the Intermediate Palomar Transient Factory (iPTF)—searching every night for “transient” objects that change in brightness or position by comparing the new observations with all of the data collected from previous nights. Within minutes after an interesting event is discovered, machines at NERSC then trigger telescopes around the globe to collect follow-up observations. In fact, it was this pipeline that revealed the first-ever strongly lensed Type Ia supernova earlier this year.

“What we hope to do for the LSST is similar to what we did for Palomar, but times 100,” says Nugent. “There’s going to be a flood of information every night from LSST. We want to take that data and ask what do we know about this part of the sky, what’s happened there before and is this something we’re interested in for cosmology?”

He adds that once researchers identify the first light of a strongly lensed supernova event, computational modeling could also be used to precisely predict when the next of the light will appear. Astronomers can use this information to trigger ground- and space-based telescopes to follow up and catch this light, essentially allowing them to observe a supernova seconds after it goes off.

“I came to Berkeley Lab 21 years ago to work on supernova radiative-transfer modeling and now for the first time we’ve used these theoretical models to prove that we can do cosmology better,” says Nugent. “It’s exciting to see DOE reap the benefits of investments in computational cosmology that they started making decades ago.”

The SciDAC partnership project—Computational Astrophysics Consortium: Supernovae, Gamma-Ray Bursts, and Nucleosynthesis—funded by DOE Office of Science and the National Nuclear Security Agency was led by Stan Woosley of UC Santa Cruz, and supported both Nugent and Kasen of Berkeley Lab.

NERSC is a DOE Office of Science User Facility.

X
X
X
  • Filters

  • × Clear Filters

Two Faces Offer Limitless Possibilities

Named for the mythical god with two faces, Janus membranes -- double-sided membranes that serve as gatekeepers between two substances -- have emerged as a material with potential industrial uses.

Relax, Just Break It

Argonne scientists and their collaborators are helping to answer long-held questions about a technologically important class of materials called relaxor ferroelectrics.

Putting Bacteria to Work

Bacteria are diverse and complex creatures that are demonstrating the ability to communicate organism-to-organism and even interact with the moods and perceptions of their hosts (human or otherwise). Scientists call this behavior "bacterial cognition," a systems biology concept that treats these microscopic creatures as beings that can behave like information processing systems.

New Computer Model Predicts How Fracturing Metallic Glass Releases Energy at the Atomic Level

Metallic glasses are an exciting research target for tantalizing applications; however, the difficulties associated with predicting how much energy these materials release when they fracture is slowing down development of metallic glass-based products. Recently, researchers developed a way of simulating to the atomic level how metallic glasses behave as they fracture. This modeling technique could improve computer-aided materials design and help researchers determine the properties of metallic glasses. The duo reports their findings in the Journal of Applied Physics.

The Relationship Between Charge Density Waves and Superconductivity? It's Complicated.

For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

Splitting Water: Nanoscale Imaging Yields Key Insights

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macroscopic performance.

Feeding Plants to This Algae Could Fuel Your Car

The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.

No More Zigzags: Scientists Uncover Mechanism That Stabilizes Fusion Plasmas

Article describes simulation of physics behind elimination of sawtooth instabilities.

Solutions to Water Challenges Reside at the Interface

Leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility.

New Cost-Effective Instrument Measures Molecular Dynamics on a Picosecond Timescale

Studying the photochemistry has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale. They discuss their work this week in The Journal of Chemical Physics.


  • Filters

  • × Clear Filters

Department of Energy Invests $64 Million in Advanced Nuclear Technology

The U.S. Department of Energy (DOE) has announced nearly $64 million in awards for advanced nuclear energy technology to DOE national laboratories, industry, and 39 U.S. universities in 29 states. Rensselaer Polytechnic Institute has been awarded $800,000 for analysis of nuclear power plants' accident propagation and mitigation processes.

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Miao Yu, associate professor in the Howard P. Isermann Department of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, has been named the Priti and Mukesh Chatter Career Development Professor. His research focuses on developing advanced nanomaterials for energy and environmental applications.

Funding for New DOE Energy Frontier Research Center at Brookhaven Lab

UPTON, NY--The U.S. Department of Energy (DOE) has announced funding for a new Energy Frontier Research Center (EFRC) to be led by DOE's Brookhaven National Laboratory. The Brookhaven EFRC, named "Molten Salts in Extreme Environments," will focus on understanding the properties of a class of materials with potential applications in energy technologies--particularly in nuclear power.

Two Stony Brook Researchers Receive Energy Frontier Research Center Awards Totaling $21.75M

Stony Brook University received notification from the U.S. Department of Energy (DOE) that two proposals directed by SBU faculty to expand or develop Energy Frontier Research Centers (EFRCs) designed to accelerate scientific breakthroughs needed to strengthen U.S. economic leadership and energy security will receive funding totaling $21.75 million. The two Stony Brook EFRCs are the Center for Mesoscale Transport Properties (m2M), led by renowned energy storage researcher, Esther Takeuchi, PhD, which will receive a four-year $12 million grant for the existing center; and the creation of a new EFRC, A Next Generation Synthesis Center (GENESIS) led by John Parise, PhD, which will receive a four-year $9.75 million grant.

Seth Davidovits Wins 2018 Marshall N. Rosenbluth Dissertation Award

Article describes dissertation award won by Seth Davidovits.

DOE Launches New Lab Partnering Service

The U.S. Department of Energy officially launched the Lab Partnering Service (LPS), an on-line, single access point platform for investors, innovators, and institutions to identify, locate, and obtain information from DOE's 17 national laboratories.

Department of Energy Announces $75 Million for High Energy Physics Research

The U.S. Department of Energy (DOE) announced $75 million in funding for 77 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

Thesis Prize Winner's Calculations Characterize Neutrino Interactions

Alessandro Baroni is helping demystify one of the most mysterious particles. His work is contributing to our understanding of neutrinos, and it has earned him the 2017 Jefferson Science Associates Thesis Prize for work performed on a thesis related to research at the Department of Energy's Thomas Jefferson National Accelerator Facility

10 Questions for Steven Cowley, New Director of the Princeton Plasma Physics Laboratory

Steven Cowley, a theoretical physicist and international authority on fusion energy, became the seventh Director of the Princeton Plasma Physics Laboratory (PPon July 1 and will be Princeton professor of astrophysical sciences on September 1.

Ames Laboratory to lead new Center for Advancement of Topological Semimetals

Ames Laboratory will receive $10.75 million over four yearrs for a new Center for Advancement of Topological Semimetals as one of the Department of Energy's Energy Frontier Research Centers.


  • Filters

  • × Clear Filters

Steering Light with Dynamic Lens-on-MEMS

Scientists add active control to design capabilities for new lightweight flat optical devices.

Sugar-Coated Sheets Selectively Target Pathogens

Researchers design self-assembling nanosheets that mimic the surface of cells.

Tracking Down Helium-4's Quarks and Gluons

Scientists obtain the first exclusive measurement of deeply virtual Compton scattering of electrons off helium-4, vital to obtaining an unambiguous 3-D view of quarks and gluons within nuclei.

Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

Supercomputer simulations and theoretical analysis shed new light on when and how fast reconnection occurs.

Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

Elegant techniques of trapping and polarizing atoms open vistas for beta-decay tests of fundamental symmetries, key to understanding the most basic forces and particles constituting our universe.

As Future Batteries, Hybrid Supercapacitors Are Super-Charged

A new supercapacitor could be a competitive alternative to lithium-ion batteries.

Forever Young Catalyst Reduces Diesel Emissions

Atom probe tomography reveals key explanations for stable performance over a cutting-edge diesel-exhaust catalyst's lifetime.

Sense Like a Shark: Saltwater-Submersible Films

A nickelate thin film senses electric field changes analogous to the electroreception sensing organ in sharks, which detects the bioelectric fields of prey.

A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

Let's talk! Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon, vital for moving information inside quantum computers.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.


Spotlight

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University





Showing results

0-4 Of 2215