Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-03-01 09:05:36
  • Article ID: 690205

Can Strongly Lensed Type Ia Supernovae Resolve Cosmology's Biggest Controversy?

Berkeley Lab researchers think so--and they're using NERSC supercomputers to find them

  • Credit: Image credit: Danny Goldstein, UC Berkeley

    This composite of two astrophysics simulations shows a Type Ia supernova (purple disc) expanding over different microlensing magnification patterns (colored fields). Because individual stars in the lensing galaxy can significantly change the brightness of a lensed event regions of the supernova can experience varying amounts of brightening and dimming, which scientists believed would be a problem for cosmologists measuring time delays. Using detailed computer simulations at NERSC, astrophysicists showed that this would have a small effect on time-delay cosmology.

In 1929 Edwin Hubble surprised many people—including Albert Einstein—when he showed that the universe is expanding. Another bombshell came in 1998 when two teams of astronomers proved that cosmic expansion is actually speeding up due to a mysterious property of space called dark energy. This discovery provided the first evidence of what is now the reigning model of the universe: “Lambda-CDM,” which says that the cosmos is approximately 70 percent dark energy, 25 percent dark matter and 5 percent “normal" matter (everything we’ve ever observed). 

Until 2016, Lambda-CDM agreed beautifully with decades of cosmological data. Then a research team used the Hubble Space Telescope to make an extremely precise measurement of the local cosmic expansion rate. The result was another surprise: the researchers found that the universe was expanding a little faster than Lambda-CDM and the Cosmic Microwave Background (CMB), relic radiation from the Big Bang, predicted. So it seems something’s amiss—could this discrepancy be a systematic error, or possibly new physics? 

Astrophysicists at Lawrence Berkeley National Laboratory (Berkeley Lab) and the Institute of Cosmology and Gravitation at the University of Portsmouth in the UK believe that strongly lensed Type Ia supernovae are the key to answering this question. And in a new Astrophysical Journal paper, they describe how to control “microlensing,” a physical effect that many scientists believed would be a major source of uncertainty facing these new cosmic probes. They also show how to identify and study these rare events in real time. 

“Ever since the CMB result came out and confirmed the accelerating universe and the existence of dark matter, cosmologists have been trying to make better and better measurements of the cosmological parameters, shrink the error bars,” says Peter Nugent, an astrophysicist in Berkeley Lab’s Computational Cosmology Center (C3) and co-author on the paper. “The error bars are now so small that we should be able to say ‘this and this agree,’ so the results presented in 2016 introduced a big tension in cosmology. Our paper presents a path forward for determining whether the current disagreement is real or whether it’s a mistake.”

Better Distance Markers Shed Brighter Light on Cosmic History

The farther away an object is in space, the longer its light takes to reach Earth. So the farther out we look, the further back in time we see. For decades, Type Ia supernovae have been exceptional distance markers because they are extraordinarily bright and similar in brightness no matter where they sit in the cosmos. By looking at these objects, scientists discovered that dark energy is propelling cosmic expansion.

But last year an international team of researchers found an even more reliable distance marker—the first-ever strongly lensed Type Ia supernova. These events occur when the gravitational field of a massive object—like a galaxy—bends and refocuses passing light from a Type Ia event behind it. This “gravitational lensing” causes the supernova’s light to appear brighter and sometimes in multiple locations, if the light rays travel different paths around the massive object.

Because different routes around the massive object are longer than others, light from different images of the same Type Ia event will arrive at different times. By tracking time-delay between the strongly lensed images, astrophysicists believe they can get a very precise measurement of the cosmic expansion rate.

“Strongly lensed supernovae are much rarer than conventional supernovae—they’re one in 50,000. Although this measurement was first proposed in the 1960’s, it has never been made because only two strongly lensed supernovae have been discovered to date, neither of which were amenable to time delay measurements,” says Danny Goldstein, a UC Berkeley graduate student and lead author on the new Astrophysical Journal paper.

After running a number of computationally intensive simulations of supernova light at the National Energy Research Scientific Computing Center (NERSC), a Department of Energy Office of Science User Facility located at Berkeley Lab, Goldstein and Nugent suspect that they’ll be able to find about 1,000 of these strongly lensed Type Ia supernovae in data collected by the upcoming Large Synoptic Survey Telescope (LSST)—about 20 times more than previous expectations. These results are the basis of their new paper in the Astrophysical Journal.

“With three lensed quasars—cosmic beacons emanating from massive black holes in the centers of galaxies— collaborators and I measured the expansion rate to 3.8 percent precision. We got a value higher than the CMB measurement, but we need more systems to be really sure that something is amiss with the standard model of cosmology, “ says Thomas Collett, an astrophysicist at the University of Portsmouth and a co-author on the new Astrophysical Journal paper. “It can take years to get a time delay measurement with quasars, but this work shows we can do it for supernovae in months. One thousand lensed supernovae will let us really nail down the cosmology.”

In addition to identifying these events, the NERSC simulations also helped them prove that strongly lensed Type Ia supernovae can be very accurate cosmological probes.

“When cosmologists try to measure time delays, the problem they often encounter is that individual stars in the lensing galaxy can distort the light curves of the different images of the event, making it harder to match them up,” says Goldstein. “This effect, known as ‘microlensing,’ makes it harder to measure accurate time delays, which are essential for cosmology.”

But after running their simulations, Goldstein and Nugent found microlensing did not change the colors of strongly lensed Type Ia supernova in their early phases. So researchers can subtract the unwanted effects of microlensing by working with colors instead of light curves. Once these undesirable effects are subtracted, scientists will be able to easily match the light curves and make accurate cosmological measurements.

They came to this conclusion by modeling the supernovae using the SEDONA code, which was developed with funding from two DOE Scientific Discovery through Advanced Computing (SciDAC) Institutes to calculate light curves, spectra and polarization of aspherical supernova models.

“In the early 2000s DOE funded two SciDAC projects to study supernova explosions, we basically took the output of those models and passed them through a lensing system to prove that the effects are achromatic,” says Nugent. 

"The simulations give us a dazzling picture of the inner workings of a supernova, with a level of detail that we could never know otherwise,” says Daniel Kasen, an astrophysicist in Berkeley Lab’s Nuclear Science Division, and a co-author on the paper. “Advances in high performance computing are finally allowing us to understand the explosive death of stars, and this study shows that such models are needed to figure out new ways to measure dark energy."

Taking Supernova Hunting to the Extreme

When LSST begins full survey operations in 2023, it will be able to scan the entire sky in only three nights from its perch on the Cerro Pachón ridge in north-central Chile. Over its 10-year mission, LSST is expected to deliver over 200 petabytes of data. As part of the LSST Dark Energy Science Collaboration, Nugent and Goldstein hope that they can run some of this data through a novel supernova-detection pipeline, based at NERSC.

For more than a decade, Nugent’s Real-Time Transient Detection pipeline running at NERSC has been using machine learning algorithms to scour observations collected by the Palomar Transient Factor (PTF) and then the Intermediate Palomar Transient Factory (iPTF)—searching every night for “transient” objects that change in brightness or position by comparing the new observations with all of the data collected from previous nights. Within minutes after an interesting event is discovered, machines at NERSC then trigger telescopes around the globe to collect follow-up observations. In fact, it was this pipeline that revealed the first-ever strongly lensed Type Ia supernova earlier this year.

“What we hope to do for the LSST is similar to what we did for Palomar, but times 100,” says Nugent. “There’s going to be a flood of information every night from LSST. We want to take that data and ask what do we know about this part of the sky, what’s happened there before and is this something we’re interested in for cosmology?”

He adds that once researchers identify the first light of a strongly lensed supernova event, computational modeling could also be used to precisely predict when the next of the light will appear. Astronomers can use this information to trigger ground- and space-based telescopes to follow up and catch this light, essentially allowing them to observe a supernova seconds after it goes off.

“I came to Berkeley Lab 21 years ago to work on supernova radiative-transfer modeling and now for the first time we’ve used these theoretical models to prove that we can do cosmology better,” says Nugent. “It’s exciting to see DOE reap the benefits of investments in computational cosmology that they started making decades ago.”

The SciDAC partnership project—Computational Astrophysics Consortium: Supernovae, Gamma-Ray Bursts, and Nucleosynthesis—funded by DOE Office of Science and the National Nuclear Security Agency was led by Stan Woosley of UC Santa Cruz, and supported both Nugent and Kasen of Berkeley Lab.

NERSC is a DOE Office of Science User Facility.

  • Filters

  • × Clear Filters

Engineering Yeast Tolerance to a Promising Biomass Deconstruction Solvent

Chemical genomic-guided engineering of gamma-valerolactone-tolerant yeast.

Beyond the WIMP: Unique Crystals Could Expand the Search for Dark Matter

A new particle detector design proposed at the U.S. Department of Energy's Berkeley Lab could greatly broaden the search for dark matter - which makes up 85 percent of the total mass of the universe yet we don't know what it's made of - into an unexplored realm.

20 Percent of Americans Responsible for Almost Half of US Food-Related Greenhouse Gas Emissions

On any given day, 20 percent of Americans account for nearly half of U.S. diet-related greenhouse gas emissions, and high levels of beef consumption are largely responsible, according to a new study from researchers at the University of Michigan and Tulane University.

Saplings Survive Droughts via Storage

Certain species of trees retain stored water, limit root growth to survive three months without water.

Study Reveals New Insights into How Hybrid Perovskite Solar Cells Work

Scientists have gained new insights into a fundamental mystery about hybrid perovskites, low-cost materials that could enhance or even replace conventional solar cells made of silicon.

Want to Clean Up the Environment? Make Credit Easier to Get.

Research by Berkeley Haas Prof. Ross Levine, the Willis H. Booth Chair in Banking and Finance, is the first to show that when lending conditions ease, businesses invest more in projects to cut pollution.

A Reference Catalog for the Rumen Microbiome

In Nature Biotechnology, an international team including JGI scientists presents a reference catalog of rumen microbial genomes and isolates, one of the largest targeted cultivation and sequencing projects to date.

Scientists Have a New Way to Gauge the Growth of Nanowires

n a new study, researchers from the U.S. Department of Energy's Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.

A Future Colorfully Lit by Mystifying Physics of Paint-On Semiconductors

It defies conventional wisdom about semiconductors. It's baffling that it even works. It eludes physics models that try to explain it. This newly tested class of light-emitting semiconductors is so easy to produce from solution that it could be painted onto surfaces to light up our future in myriad colors shining from affordable lasers, LEDs, and even window glass.

Liquid-to-Glass Transition Process Gains Clarity

Paul Voyles, the Beckwith-Bascom Professor in materials science and engineering at the University of Wisconsin-Madison, and collaborators in Madison and at Yale University have made significant experimental strides in understanding how, when and where the constantly moving atoms in molten metal "lock" into place as the material transitions from liquid to solid glass.

  • Filters

  • × Clear Filters

Rensselaer Polytechnic Institute Professor Jian Shi Receives Air Force Young Investigator Research Program Award

Jian Shi, assistant professor of materials science and engineering at Rensselaer Polytechnic Institute, has won a Young Investigator Research Program (YIP) award from the Air Force Office of Scientific Research (AFOSR). Shi will use the three-year, $450,000 grant to pursue fundamental research on nanoscale complex materials that could lead to the development of next-generation resilient and high-performance energy conversion and sensing technologies.

Kerstin Kleese van Dam Receives 32nd Town of Brookhaven Annual Women's Recognition Award for Science

The award recognizes the contributions Kleese van Dam--director of Brookhaven Lab's Computational Science Initiative since 2015--has made to scientific computing and data management over the past three decades.

Jefferson Lab Announces New Accelerator Science Leader

The Department of Energy's Thomas Jefferson National Accelerator Facility has announced that Andrei Seryi will become its new associate director for accelerator operations, research and development in June.

First Plasma for New Machine to Study Puzzling Process That Occurs Throughout the Universe

Announcement describes completion of construction of FLARE, a powerful new machine to study magnetic reconnection.

Rensselaer Polytechnic Institute Professor Jian Sun Receives Power Electronics Achievement Award

Jian Sun, professor of electrical, computer, and systems engineering and director the New York State Center for Future Energy Systems at Rensselaer Polytechnic Institute, received the 2017 R. David Middlebrook Outstanding Achievement Award from the IEEE Power Electronics Society (PELS). He was recognized for "contributions to modeling and control of power electronic converters and systems."

FGC Plasma Solutions Wins Top NASA Innovation Award

Argonne Chain Reaction Innovator Felipe Gomez del Campo has received the 2018 NASA iTech award for X-Factor Innovation.

Sandia Researcher Jacqueline Chen Elected to National Academy of Engineering

LIVERMORE, Calif. -- Jacqueline Chen, a distinguished member of the technical staff at Sandia National Laboratories, has been elected to the National Academy of Engineering. Chen is among the 99 new members from around the globe in the 2018 class.Election to the National Academy of Engineering is the highest professional distinction for an engineer in the United States.

PNNL Helps Form International Energy Storage Organization

News Release DALIAN, China -- Energy storage allows power operators across the nation to balance electricity supply and demand instantaneously, affording ratepayers a more resilient power supply.Now the focus on energy storage is global. In January, energy storage experts at the Department of Energy's Pacific Northwest National Laboratory joined forces with their counterparts around the world to forge the International Coalition for Energy Storage and Innovation, or ICESI.

University Partnership to Help Nevada Scientists Commercialize Discovery

UNLV's Office of Technology Transfer and the Desert Research are partnering to help faculty and students leverage each other's talent and resources to transform inventions into new products and services.

DOE Seeks Industry Partners for HPC Research on Materials in Applied Energy Technologies

The Department of Energy (DOE) today announced a funding opportunity totaling $3 million to support projects between U.S. industry and DOE national laboratories related to improving materials in severe or complex environments through the new High Performance Computing for Materials in Applied Energy Technologies (HPC4Mtls) Program.

  • Filters

  • × Clear Filters

Engineering Yeast Tolerance to a Promising Biomass Deconstruction Solvent

Chemical genomic-guided engineering of gamma-valerolactone-tolerant yeast.

Saplings Survive Droughts via Storage

Certain species of trees retain stored water, limit root growth to survive three months without water.

Unlocking On-Package Memory's Effects on High-Performance Computing's Scientific Kernels

Intuitive visual analytical model better explains complex architectural scenarios and offers general design principles.

Data Dive: How Microbes Handle Poor Nutrition in Tropical Soil

High-performance computing reveals the relationship between DNA and phosphorous uptake.

The Secret Lives of Cells

Supercomputer simulations predict how E. coli adapts to environmental stresses.

It's Not Part of the Problem, but Part of the Solution

Americium(III) is selectively and efficiently separated from europium(III) by an extractant in an ionic liquid.

Buckyball Marries Graphene

Electronic and structure richness arise from the merger of semiconducting molecules of carbon buckyballs and 2-D graphene.

Atomic Movies Explain Why Perovskite Solar Cells Are More Efficient

Tracking atoms is crucial to improving the efficiency of next-generation perovskite solar cells.

Catalysts: High Performance Lies on the Edge

Iron may be more valuable than platinum. Sometimes.

Discovery of a New Microbe that Produces Methane in Oxygenated Soils

Global models may be underestimating net wetland methane emissions.


Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Showing results

0-4 Of 2215