Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-04-09 17:05:42
  • Article ID: 692483

Fusion Research Ignites Innovation

How technologies developed for fusion have taken on second lives in industry.

  • Credit: Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory used the technology they developed to decommission the Tokamak Fusion Test Reactor to develop the Miniature Integrated Nuclear Detection System. The Tokamak Fusion Test Reactor, a former Office of Science user facility, ran for more than a decade before the lab decommissioned it in 1999.

If you’re heating something to 100 million degrees — three times hotter than the core of the sun — oven mitts and aprons aren’t going to cut it. But researchers investigating how to produce fusion energy tackle this challenge every day. Fusion involves combining nuclei from two atoms into one, resulting in a small amount of mass transforming into a staggering amount of energy. Getting that reaction started and containing it requires some of the most high-tech equipment in science.

While sustained fusion power is still years away, several technologies that scientists have developed to research it have already moved beyond the lab. From enabling smartphones to scanning for radioactive materials, technologies originally produced for fusion research supported by the Department of Energy’s (DOE) Office of Science are keeping us safe, secure, and connected.

Enabling Improvements in Semiconductors

When manufacturers needed to make electronics increasingly smaller in the 1990s, turning to fusion researchers may not have been the first thing on their minds. To make electronics smaller, faster, and more powerful, they needed to make semiconductors much smaller as well. The grooves and lines in semiconductors and other components needed to be at the atomic level, more than 100 times smaller than a human hair.

But fusion researchers at DOE’s Oak Ridge National Laboratory (ORNL) knew something industry didn’t — how to control plasma. A separate state of matter from solids, liquids, or gases, plasma is a collection of particles with positive and negative electric charges. It occurs when high amounts of power run through a gas. As it’s chemically very reactive, it interacts readily with almost anything you put it in contact with.

The semiconductor industry wanted to put materials into chambers filled with plasma and use the resulting chemical reactions to strip off or add atoms. In theory, this process would give them the level of control they needed to make miniscule grooves and lines.

Unfortunately, the companies had unpredictable results when they used radio frequency (RF) waves to create the plasma.

“Mother Nature was not kind. It turns out that there are very complex connections between different frequencies of voltages,” said Mark Kushner, a University of Michigan professor and director of the DOE Plasma Science Center there.

Because testing the RF power levels by hand was too complex and time-consuming, they sought outside expertise.

Fortunately, ORNL scientists had been using RF waves to heat up fuel for fusion for more than a decade.

“The government’s here to help you; they can actually help you!” laughed ORNL’s Gary Bell, recalling how manufacturers felt. “We got a big kick out of that.”

Partnering with a consortium of semiconductor manufacturers and suppliers, ORNL researchers evaluated a number of RF power delivery systems and controls. Using knowledge and tools from fusion research, ORNL scientists helped companies reposition components and reprogram controls. They also helped build testing equipment and developed technician training.

“A lot of expertise that came in was developed through magnetic fusion energy research, through the people and understanding of plasma science,” said Amy Wendt, a professor at the University of Wisconsin-Madison and a member of DOE’s Fusion Energy Sciences Advisory Committee.

Modifying how they produced semiconductors allowed manufacturers to fit more components onto computer chips than ever before. Those improvements and others using plasma made it possible for companies to build smaller, lighter, more efficient cell phones, tablets, and computers.


Launching Jets From Aircraft Carriers

While smartphone components are some of our smallest technologies, fusion research has also set the stage for improving some of the world’s biggest ones: aircraft carriers.

In the 1990s, the Department of Defense (DOD) realized that they could do better than the steam and hydraulic-powered catapults on aircraft carriers in use at the time. So they released a request for proposals for a technology that could store a huge amount of energy and release it almost instantaneously — over and over again.

Researchers at the DIII-D National Fusion Facility, an Office of Science user facility run by General Atomics (GA), were familiar with those challenges. In fact, they had to solve a similar problem back in 1978 before they could get a new iteration of their reactor up and running.

“GA is in a unique position to drive technology innovations, given its long history of using scientific research results to develop cross-cutting practical applications,” said John Rawls, chief scientist at GA.

To control the 100-million-degree plasma inside of it, the DIII-D reactor produces huge magnetic fields. The machine creates and maintains these fields by running tremendous amounts of energy through giant magnets. When GA scientists designed the machine with funding from the Office of Science’s predecessor in the 1970s, they developed the controls and inverters to release and control those bursts of energy.

Based on that expertise and existing technology, DOD chose GA to develop the Electromagnetic Aircraft Launch System (EMALS). This system speeds an aircraft down the deck of a carrier using a linear induction motor coupled to the same type of inverters that provided such precise electrical and magnetic control at DIII-D. The performance of the induction motor can be finely controlled to deliver the precise amount of acceleration and velocity necessary to launch an aircraft of a specific size and weight. Because it’s much more precise than previous systems, EMALS minimizes the physical stress put on the aircraft, increasing their lifespans, and reducing costs.

Today, the U.S. Navy is using EMALS on the USS Gerald R. Ford (CVN 78). It is also installing EMALS on all future Ford-class aircraft carriers.

“We were able to advance numerous first-of-kind technologies, including the creation of the world’s most powerful linear motor and new inverter drives, to produce an integrated EMALS system that has a smaller footprint, greater efficiency, and requires less manning and maintenance to help save costs and improve reliability,” said Scott Forney, president of General Atomics Electromagnetic Systems. “To top it off, we offer a flexible design that has the potential for installation on other platforms requiring different catapult configurations and aircraft support.”    


Developing New Materials for Extreme Conditions

Fusion reactions create some of the most high-stress environments in the universe. The materials used in reactors must withstand staggeringly high pressures, temperatures, and radiation.

“We’re taking materials outside their usual comfort zone,” said Steven Zinkle, a University of Tennessee professor with a joint appointment at ORNL.

The plasma bombarding a fusion reactor’s walls can remove and re-deposit a single atom a billion times a year. Through it all, the walls need to stay tough, maintain stability, and absorb as little radiation as possible in a very stressful environment for building materials.

“If you’re going to make a fusion reactor work, it’s all about the materials,” said Bell.

To build a better reactor, ORNL researchers helped develop a new type of stainless steel that could resist temperatures up to 1560 degrees F.

It turns out that fusion researchers weren’t the only ones who needed steel that could withstand extremely high temperatures. Because advanced diesel engines run hotter than conventional ones, they needed advanced materials to match. ORNL’s materials group realized that this new steel could meet that challenge. After the Office of Science’s fusion group completed the basic research, DOE’s Vehicle Technologies Office took it over, supporting an agreement between ORNL and equipment manufacturer Caterpillar to adapt the material for vehicles. In 2007, Caterpillar started using it in all of their heavy-duty highway truck engines. Since then, the material has generated millions of dollars of revenue.

Even the best steel isn’t tough enough for fusion reactors’ inner walls. To provide further protection, ORNL developed radiation-tolerant silicon carbide ceramic composites. These composites can survive temperatures of up to 2700 degrees F.

Recognizing the potential of this material, NASA and other agencies supported further design and processing research on these composites. In rocket nozzles, thrusters, gas turbines, and even conventional nuclear reactors, this material can now simplify components and increase efficiency.

While national laboratories often develop these innovative materials, they also provide equipment and expertise that enable private companies to do so as well. Using tools developed for fusion research at DOE’s Princeton Plasma Physics Laboratory (PPPL), Lenore Rasmussen found a way to use plasma to improve the attachment of her Synthetic Muscle™ technology to metal electrodes. She also used the laboratory’s resources to test the material’s resistance to extreme temperatures and radiation. Since then, NASA has tested how well the material resists radiation on the International Space Station. Rasmussen is now working to commercialize the technology. In the future, companies may use it in prosthetic limbs and robotics.


Detecting Radioactive Materials for Security

Building a fusion reactor is hard enough. Retiring it can be even tougher. Charles Gentile and his colleagues at PPPL faced this dilemma in 1999. They needed to decommission the lab’s Tokamak Fusion Test Reactor that had been running for more than a decade.

Staff first needed to identify radioactive elements in the vacuum vessel, the container that housed the fusion reactions. So they created a portable detection unit to collect data, as well as software to process that data. After they finished disassembling the reactor, the technology sat on the shelf.

But in 2001, they saw the opportunity for their invention to have a second life. The federal government had put out a call for technologies that could have applications in homeland security. The team determined that their device had the potential to accurately identify in real time radionuclides that might be used in “dirty” bombs. With a $400,000 grant from the U.S. Army, PPPL staff adapted their technology. They revised it so it could run in any weather, be used by non-nuclear scientists, and detect a wider array of radioactive substances.

Now, the Miniature Integrated Nuclear Detection System is a combination hardware and software system that’s the size of a thermos. In one second, it can sense one-billionth of the material needed to build a credible dirty bomb. It can scan moving vehicles, luggage, packages, and cargo for more than 20 different types of radioactive substances. So far, security firms have used it at a major bus and commuter rail center as well as major U.S. ports. 

As fusion technology advances, the work that goes into it will continue to yield unexpected benefits.

As Gentile said, “It’s nice that we do have these technologies that come out of the laboratory that can help people in other areas.”


The Office of Science is the single largest supporter of basic energy research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit

Shannon Brescher Shea is a senior writer/editor in the Office of Science,

  • Filters

  • × Clear Filters

New Testing of Model Improves Confidence in the Performance of ITER

Article describes effect of ion and electron heating on multiscale turbulence in fusion plasmas.

Study Recommends Strong Role for National Labs in 'Second Laser Revolution'

A new study calls for the U.S. to step up its laser R&D efforts to better compete with major overseas efforts to build large, high-power laser systems, and notes progress and milestones at the Department of Energy's Berkeley Lab Laser Accelerator (BELLA) Center and other sites.

Wood Formation Model To Fuel Progress in Bioenergy, Paper, New Applications

Need stronger timber, better biofuel or new sources of green chemicals? A systems biology model built on decades of NC State research will accelerate progress on engineering trees for specific needs.

Researchers Achieve HD Video Streaming at 10,000 Times Lower Power

Engineers at the University of Washington have developed a new HD video streaming method that doesn't need to be plugged in. Their prototype skips the power-hungry components and has something else, like a smartphone, process the video instead.

Lawrence Livermore Issues Combined State-by-State Energy and Water Use Flow Charts

For the first time, Lawrence Livermore National Laboratory (LLNL) has issued state-by-state energy and water flow charts in one location so that analysts and policymakers can find all the information they need in one place.

Battery's Hidden Layer Revealed

An international team led by Argonne National Laboratory makes breakthrough in understanding the chemistry of the microscopically thin layer that forms between the liquid electrolyte and solid electrode in lithium-ion batteries. The results are being used in improving the layer and better predicting battery lifetime.

Ramp Compression of Iron Provides Insight into Core Conditions of Large Rocky Exoplanets

A team of researchers from Lawrence Livermore National Laboratory (LLNL), Princeton University, Johns Hopkins University and the University of Rochester have provided the first experimentally based mass-radius relationship for a hypothetical pure iron planet at super-Earth core conditions. This discovery can be used to evaluate plausible compositional space for large, rocky exoplanets, forming the basis of future planetary interior models, which in turn can be used to more accurately interpret observation data from the Kepler space mission and aid in identifying planets suitable for habitability.

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Valleytronics Discovery Could Extend Limits of Moore's Law

Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips. 

Scientists Use Machine Learning to Speed Discovery of Metallic Glass

SLAC and its collaborators are transforming the way new materials are discovered. In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

  • Filters

  • × Clear Filters

Five Leading Liberal Arts Colleges Partner to Create New Solar Energy Facility in Maine

Amherst, Bowdoin, Hampshire, Smith and Williams colleges have formed a partnership that will allow them to offset 46,000 megawatt hours per year of their collective electrical needs--enough to power 5,000 New England homes--with electricity created at a solar power facility to be built in Maine.

Argonne Selects Innovators From Across Nation to Grow Startups

Argonne announces second cohort of Chain Reaction Innovations.

Brookhaven Lab Materials Physicist Yimei Zhu Receives 2018 Distinguished Scientist Award from the Microscopy Society of America

How do complex atomic and electronic interactions impact material properties? Using electron microscopy instrumentation and methods he developed, Yimei Zhu has been investigating this question for the past 30 years. The Microscopy Society of America is now recognizing his contributions.

SLAC Produces First Electron Beam with Superconducting Electron Gun

Accelerator scientists at the Department of Energy's SLAC National Accelerator Laboratory are testing a new type of electron gun for a future generation of instruments that take snapshots of the atomic world in never-before-seen quality and detail, with applications in chemistry, biology, energy and materials science.

U.S., India Sign Agreement Providing for Neutrino Physics Collaboration at Fermilab and in India

Earlier today, April 16, 2018, U.S. Secretary of Energy Rick Perry and India's Atomic Energy Secretary Dr. Sekhar Basu signed an agreement in New Delhi to expand the two countries' collaboration on world-leading science and technology projects. It opens the way for jointly advancing cutting-edge neutrino science projects under way in both countries: the Long-Baseline Neutrino Facility (LBNF) with the international Deep Underground Neutrino Experiment (DUNE) hosted at the U.S. Department of Energy's Fermilab and the India-based Neutrino Observatory (INO).

Nanomaterials Expert Ganpati Ramanath Named Fellow of Materials Research Society

Nanomaterials expert Ganpati Ramanath, the John Tod Horton '52 Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute, has been named a fellow of the Materials Research Society (MRS) "for developing creative approaches to realize new nanomaterials via chemically directed nanostructure synthesis and assembly and for tailoring interfaces in electronics and energy applications using molecular nanolayers."

Doing the Neutron Dance

Two materials scientists, Suzanne te Velthuis and Stephan Rosenkranz, have been named fellows of the Neutron Scattering Society of America (NSSA).

Hirohisa Tanaka Joins SLAC to Push Limits of Neutrino Physics

Accomplished neutrino physicist Hirohisa Tanaka has joined the Department of Energy's SLAC National Accelerator Laboratory as a professor of particle physics and astrophysics. He oversees a group at the lab that is preparing for research with the future Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF). The experiment will give scientists unprecedented opportunities to learn more about neutrinos - fundamental particles with mysterious properties that could play crucial roles in the evolution of the universe.

University Teams to Compete in Department of Energy's 2018 National Cyber Defense Competition

The U.S. Department of Energy is proud to announce the 29 university teams selected to compete in the third annual Cyber Defense Competition (CDC), taking place April 6-7, 2018.

  • Filters

  • × Clear Filters

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Seeing How Next-Generation Batteries Power-Up

Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

Worm-Inspired Tough Materials

Scientists mimic a worm's lethal jaw to design and form resilient materials.

How to Turn Light Into Atomic Vibrations

Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

Superacids Are Good Medicine for Super Thin Semiconductors

Scientists demonstrated that powerful acids heal certain structural defects in synthetic films.

Tubular Science Improves Polymer Solar Cells

Novel engineered polymers assemble buckyballs into columns using a conventional coating process.

Fast! Hard X-Ray Flash Breaks Speed Record

Lasting just a few hundred billionths of a billionth of a second, these bursts offer new tool to study chemistry and magnetism.

Scientists Have Overestimated Meteor Sizes

First demonstration of high-pressure metastability mapping with ultrafast X-ray diffraction shows objects aren't as large as previously thought.

Rewriting Resistance: Genetic Changes Increase Crops' Biomass and Sugar Release

Using genetic engineering, scientists improve biomass growth and conversion in woody and grassy feedstocks.

Measuring the Glow of Plants From Below

Novel observations suggest a great potential of measuring global gross primary production via solar-induced fluorescence.


Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Showing results

0-4 Of 2215