Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.

Explorations of the Universal Glue

The newly upgraded CEBAF Accelerator opens door to strong force studies.

Understanding the Rice Genome for Bioenergy Research

Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.

Bringing Visual "Magic" to Light

Scientists create widely controllable ultrathin optical components that allow virtual objects to be projected in real environments.

Speeding Materials Discovery Puts Solar Fuels on the Fast Track to Commercial Viability

In just two years, a process that was developed by Molecular Foundry staff and users has nearly doubled the number of materials with the potential for using sunlight to produce fuel.

Water in One Dimension

Confined within tiny carbon nanotubes, extremely cold water molecules line up in a highly ordered chain.

Adding Stress Boosts Performance, Stability for Fuel Cells

Scientists design outstanding catalysts by controlling the composition and shape of these tiny plate-like structures on the nanoscale.

Drawing at the One-Nanometer Length Scale

Scientists set record resolution for patterning materials at sizes as small as a single nanometer using microscope-based lithography.

The Road Less Traveled: How to Switch Assembly Pathways

Big impacts on crystal formation result from small changes and reveal design principles for new materials for solar cells, more.

Blurring the Line between Animate and Inanimate: "Active" Matter Drives Self-Propelled Fluid

For the first time, self-organized, soft machines powered by molecular motors propelled fluid for hours across meters.

Fungi: Gene Activator Role Discovered

Specific modifications to fungi DNA may hold the secret to turning common plant degradation agents into biofuel producers.

First Look at a Living Cell Membrane

Neutrons provide the solution to nanoscale examination of living cell membrane and confirm the existence of lipid rafts.

High Yield Biomass Conversion Strategy Ready for Commercialization

Researchers convert 80 percent of biomass into high-value products with strategy that's ready for commercialization.

Consequences of Drought Stress on Biofuels

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation and resulting biofuel production.

Clay Minerals and Metal Oxides Change How Uranium Travels Through Sediments

Montmorillonite clays prevent uranium from precipitating from liquids, letting it travel with groundwater.

Tundra Loses Carbon with Rapid Permafrost Thaw

Seven-year-study shows plant growth does not sustainably balance carbon losses from solar warming and permafrost thaw.

Crystals Grow by Twisting, Aligning and Snapping Together

Van der Waals force, which that enables tiny crystals to grow, could be used to design new materials.

Vitamin B12 Fuels Microbial Growth

Scarce compound, vitamin B12, is key for cellular metabolism and may help shape microbial communities that affect environmental cycles and bioenergy production.

Carbon in Floodplain Unlikely to Cycle into the Atmosphere

Microbes leave a large fraction of carbon in anoxic sediments untouched, a key finding for understanding how watersheds influence Earth's ecosystem.

Bacterial Cell Wall Changes Produce More Fatty Molecules

New strategy greatly increases the production and secretion of biofuel building block lipids in bacteria able to grow at industrial scales.