logo
Latest News
    Sierra Snowpack Could Drop Significantly By End of Century

    Sierra Snowpack Could Drop Significantly By End of Century

    A future warmer world will almost certainly feature a decline in fresh water from the Sierra Nevada mountain snowpack. Now a new study by Lawrence Berkeley National Laboratory that analyzed the headwater regions of California's 10 major reservoirs, representing nearly half of the state's surface storage, found they could see on average a 79 percent drop in peak snowpack water volume by 2100.

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The mechanism responsible for creating intense magnetic fields in laser-driven plasmas also helps tear the fields apart.

    Compelling Evidence for Small Drops of Perfect Fluid

    Compelling Evidence for Small Drops of Perfect Fluid

    Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) have published additional evidence that collisions of miniscule projectiles with gold nuclei create tiny specks of the perfect fluid that filled the early universe.

    Topological Matters: Toward a New Kind of Transistor

    Topological Matters: Toward a New Kind of Transistor

    An experiment has demonstrated, for the first time, electronic switching in an exotic, ultrathin material that can carry a charge with nearly zero loss at room temperature. Researchers demonstrated this switching when subjecting the material to a low-current electric field.

    Experiments at PPPL show remarkable agreement with satellite sightings

    Experiments at PPPL show remarkable agreement with satellite sightings

    Feature describes striking similarity of laboratory research findings with observations of the four-satellite Magnetospheric Multiscale Mission that studies magnetic reconnection in space.

    New X-ray imaging approach could boost nanoscale resolution for Advanced Photon Source Upgrade

    New X-ray imaging approach could boost nanoscale resolution for Advanced Photon Source Upgrade

    A long-standing problem in optics holds that an improved resolution in imaging is offset by a loss in the depth of focus. Now, scientists are joining computation with X-ray imaging as they develop a new and exciting technique to bypass this limitation.

    Two-dimensional materials skip the energy barrier by growing one row at a time

    Two-dimensional materials skip the energy barrier by growing one row at a time

    News Release RICHLAND, Wash. -- A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials.

    Blasting Molecules with Extreme X-Rays

    Blasting Molecules with Extreme X-Rays

    To understand how damage from high-energy X-rays affects imaging studies, scientists supported by the Department of Energy shot the most powerful X-ray laser in the world at a series of atoms and molecules. Surprisingly, the atoms within the molecules acted far differently than the isolated ones.

    Scientists Enter Unexplored Territory in Superconductivity Search

    Scientists Enter Unexplored Territory in Superconductivity Search

    Scientists mapping out the quantum characteristics of superconductors--materials that conduct electricity with no energy loss--have entered a new regime. Using newly connected tools named OASIS at Brookhaven Lab, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors.

    Human Exposures and Health Effects Associated with Unconventional Oil and Gas Development

    Human Exposures and Health Effects Associated with Unconventional Oil and Gas Development

    The Health Effects Institute (HEI) convened an Energy Research Committee to help ensure the protection of public health during such development. A symposium at the 2018 Society for Risk Analysis (SRA) Annual Meeting will summarize the Committee's review approach and preliminary findings and provide initial options for future research intended to fill knowledge gaps.

    Reflecting Antiferromagnetic Arrangements

    Reflecting Antiferromagnetic Arrangements

    Scientists have demonstrated an x-ray imaging technique that could enable the development of smaller, faster, and more robust electronics that exploit electron spin.

    Researchers demonstrate new building block in quantum computing

    Researchers demonstrate new building block in quantum computing

    Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. The team's experimental system allows them to manipulate the frequency of photons to bring about superposition, a state that enables quantum operations and computing.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, December 2018

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, December 2018

    ORNL solved methane mystery through tree trunk, soil study; neutrons unlock secrets of corn nanoparticles; lithium-ion battery study could inform safer designs; corrosion tests could advance molten salt reactor designs; thought leaders discuss sea of energy change at maritime risk meeting.

    To curb maternal deaths in developing countries, researchers use X-rays to map a lifesaving drug in action

    To curb maternal deaths in developing countries, researchers use X-rays to map a lifesaving drug in action

    A team that includes researchers from the Bridge Institute at the University of Southern California (USC) and the Department of Energy's SLAC National Accelerator Laboratory used X-rays to map the shape of a receptor in the body as it binds with misoprostol. This research, published in Nature Chemical Biology, could help in the quest to design low-cost drugs that can tackle postpartum bleeding without affecting other tissues.

    United States Department of Energy to host multi-laboratory CyberForce Competition(tm)

    United States Department of Energy to host multi-laboratory CyberForce Competition(tm)

    The U.S. Department of Energy (DOE) will host its fourth collegiate CyberForce Competition(tm) on December 1.

    Quickly Capture Tiny Particles Reacting

    Quickly Capture Tiny Particles Reacting

    New method takes a snapshot every millisecond of groups of light-scattering particles, showing what happens during industrially relevant reactions.

    FIONA Measures the Mass Number of 2 Superheavy Elements: Moscovium and Nihonium

    FIONA Measures the Mass Number of 2 Superheavy Elements: Moscovium and Nihonium

    A Berkeley Lab-led team has directly measured the mass numbers of two superheavy elements: moscovium (element 115), and nihonium (element 113).

    Why the future of water purification may involve Chinese ink

    Why the future of water purification may involve Chinese ink

    A substance developed thousands of years ago could help accelerate solutions to the world's freshwater crisis.

    Light-Activated, Single-Ion Catalyst Breaks Down Carbon Dioxide

    Light-Activated, Single-Ion Catalyst Breaks Down Carbon Dioxide

    A team of scientists has discovered a single-site, visible-light-activated catalyst that converts carbon dioxide (CO2) into building block molecules that could be used for creating useful chemicals. The discovery opens the possibility of using sunlight to turn a greenhouse gas into hydrocarbon fuels.

    Hidden Giants in Forest Soils

    Hidden Giants in Forest Soils

    Viruses can infect the microbes residing in, on and around soils, impacting their ability to regulate these global cycles. In Nature Communications, giant virus genomes have been discovered for the first time in a forest soil ecosystem by researchers from the DOE Joint Genome Institute and the University of Massachusetts-Amherst.

    Scientists Produce 3-D Chemical Maps of Single Bacteria

    Scientists Produce 3-D Chemical Maps of Single Bacteria

    Scientists at the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory--have used ultrabright x-rays to image single bacteria with higher spatial resolution than ever before. Their work, published in Scientific Reports, demonstrates an x-ray imaging technique, called x-ray fluorescence microscopy (XRF), as an effective approach to produce 3-D images of small biological samples.

    Making X-ray Microscopy 10 Times Faster

    Making X-ray Microscopy 10 Times Faster

    Microscopes make the invisible visible. And compared to conventional light microscopes, transmission x-ray microscopes (TXM) can see into samples with much higher resolution, revealing extraordinary details. Researchers across a wide range of scientific fields use TXM to see the structural and chemical makeup of their samples--everything from biological cells to energy storage materials.

    Microbes Eat the Same in Labs and the Desert

    Microbes Eat the Same in Labs and the Desert

    Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.

    Self-Sensing Materials Are Here

    Self-Sensing Materials Are Here

    Oak Ridge National Laboratory researchers invented a way to make a nanomaterial-embedded composite that is stronger than other fiber-reinforced composites and imbued with a new capability--the ability to monitor its own structural health.

    Diverse Biofeedstocks Have High Ethanol Yields and Offer Biorefineries Flexibility

    Diverse Biofeedstocks Have High Ethanol Yields and Offer Biorefineries Flexibility

    Evidence suggests that biorefineries can accept various feedstocks without negatively impacting the amount of ethanol produced per acre.