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Abstract

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities
over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem.
This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics,
antimicrobial resistance markers (AMR), and genetic elements, including 10,928 viruses, 1,302 bac-
teria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246
known species of urban microorganisms and a consistent set of 31 species found in 97% of samples
which were distinct from human commensal organisms. Profiles of AMR genes varied widely in type
and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by
climate and geographic differences. These results constitute a high-resolution global metagenomic
atlas that enables discovery of organisms and genes, highlights potential public health and forensic
applications, and provides a culture-independent view of AMR burden in cities.

Keywords: Built Environment, metagenome, global health, antimicrobial resistance



1 Introduction
The high-density urban environment has historically been home to only a fraction of all people, with the
majority is living in rural areas or small villages. In the last two decades, the situation has reversed;
55% of the world’s population now live in urban areas (Ritchie and Roser, 2020; United Nations, 2018).
Since the introduction of germ theory and John Snow’s work on cholera, it has been clear that people
in cities interact with microbes in ways that can be markedly different than in rural areas (Neiderud,
2015). Microbes in the built environment have been implicated as a possible source of contagion (Cooley
et al., 1998) and certain syndromes, like allergies, are associated with increasing urbanization (Nicolaou
et al., 2005). It is now apparent that cities, in general, have an impact on human health, though the
mechanisms of this impact are broadly variable and often little understood. Indeed, our understanding
of microbial dynamics in the urban environment outside of pandemics has only just begun (Gilbert and
Stephens, 2018).

Technological advances in next-generation sequencing (NGS) and metagenomics have created an
unprecedented opportunity for rapid, global studies of microorganisms and their hosts, providing re-
searchers, clinicians, and policymakers with a more comprehensive view of the functional dynamics of
microorganisms in a city. NGS facilitates culture-independent sampling of the microorganisms in an
area with the potential for both taxonomic and functional annotation; this is particularly important
for surveillance of microorganisms as they acquire antimicrobial resistance (AMR) (Afshinnekoo et al.,
2021; Fresia et al., 2019). Metagenomic methods enable nearly real-time monitoring of organisms, AMR
genes, and pathogens as they emerge within a given geographical location, and have the potential to
reveal hidden microbial reservoirs and detect microbial transmission routes as they spread around the
world (Zhu et al., 2017). There are several different drivers and sources for AMR; including agriculture,
farming, and livestock in rural and suburban areas, household and industrial sewage, usage of antimicro-
bials, hard metals, and biocides, as well as human and animal waste, all these factors contribute to the
complexity of AMR transmission (Allen et al., 2009; Martínez, 2008; Singer et al., 2016; Thanner et al.,
2016; Venter et al., 2017). A molecular map of urban environments will enable significant new research
on the impact of urban microbiomes on human health.

Urban transit systems - including subways and buses - are a daily contact interface for billions of
people who live in cities. Urban travelers bring their commensal microorganisms with them as they
travel and come into contact with organisms and mobile elements present in the environment. The study
of the urban microbiome and the microbiome of the built environment spans several different projects
and initiatives, including work focused on transit systems (Afshinnekoo et al., 2015; Hsu et al., 2016;
Kang et al., 2018; Leung et al., 2014; MetaSUB International Consortium. Mason et al., 2016), hospitals
(Brooks et al., 2017; Lax et al., 2017), soil (Hoch et al., 2019; Joyner et al., 2019), and sewage (Fresia
et al., 2019; Maritz et al., 2019), among others. For the most part, these efforts have only studied a few
select cities on a limited number of occasions. This leaves a gap in scientific knowledge about a microbial
ecosystem, with which the global human population readily interacts. Human commensal microbiomes
have also been found to vary based on culture, and thus geographically isolated studies are limited and
may miss key differences (Brito et al., 2016). Moreover, data on urban microbes and AMR genes are
urgently needed in developing nations, where antimicrobial drug consumption is expected to rise by 67%
by 2030 (United Nations, 2016; Van Boeckel et al., 2015), both from changes in consumer demand for
livestock products and expanding use of antimicrobials - both of which can alter AMR profiles of these
cities.

The International Metagenomics and Metadesign of Subways and Urban Biomes (MetaSUB) Consor-
tium was launched in 2015 to address this gap in knowledge on the density, types, and dynamics of urban
metagenomes and AMR profiles. Since then, we have developed standardized collection and sequencing
protocols to process 4,728 samples across 60 cities worldwide (Table S1). Sampling took place at three
major time points: a pilot study in 2015-16 and two global city sampling days (gCSD, June 21st) in
2016 and 2017. Each sample was sequenced with 5-7M 125bp paired-end reads using Illumina NGS
sequencers (see Methods). To deal with the challenging analysis of our large dataset, we generated an
open-source analysis pipeline (MetaSUB Core Analysis Pipeline, CAP), which includes a comprehensive
set of state-of-the-art, peer-reviewed, metagenomic tools for taxonomic identification, k-mer analysis,
AMR gene prediction, functional profiling, de novo assembly, taxon annotation, and geospatial mapping.

To our knowledge, this study represents the first extensive global metagenomic study of urban mi-
crobiomes. This study reveals a consistent “core” urban microbiome across all cities, as well as distinct
geographic variation that may reflect the epidemiological variation and that enables a new forensic, city-
specific source-tracking. Our data demonstrate a significant fraction of the urban microbiome remains to
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be characterized. Though 1,000 samples are sufficient to discover roughly 80% of the observed taxa and
AMR markers, we continued to observe taxa and genes not found in other samples. This genetic vari-
ation is affected by environmental factors (e.g., climate, surface type, latitude, etc.), and samples show
greater diversity near the equator. Sequences associated with AMR markers are widespread, though
not necessarily abundant, and show geographic specificity. Here, we present the results of our global
analyses and a set of tools developed to access and analyze this extensive atlas, including two inter-
active map-based visualizations for samples (metasub.org/map) and AMRs (resistanceopen.org), an
indexed search tool over raw sequence data (metagraph.ethz.ch/search), a Git repository for all analyt-
ical pipelines and figures, and application programming interfaces (APIs) for computationally accessing
results (github.com/metasub/metasub_utils).

2 Results
We collected 4,728 samples from the mass transit systems of 60 cities around the world (Table 1, Sup-
plementary table S1). These samples were collected from at least three common surfaces in each mass
transit system (railings, benches, and ticket kiosks), with additional optional surfaces also collected in
each city, and all were subjected to shotgun metagenomic sequencing (125x125 PE reads, see methods).
We use the microbiome of mass transit systems as a proxy for the urban microbiome as a whole and
present our key findings here.

2.1 A Core Urban Microbiome Centers Global Diversity
We first investigated the distribution of microbial species across the global urban environment. Specif-
ically, we asked whether the urban environment represents a singular type of microbial ecosystem or
a set of related, but distinct, communities, especially in terms of biodiversity. We observed a bimodal
distribution of taxa prevalence across our dataset, which we used to define two separate sets of taxa
based on the inflection points of the distribution: the putative “sub-core” set of urban microbial species
that are consistently observed (>70% of samples) and the less common “peripheral” (<25% of samples)
species. We also defined a set of true “core” taxa which occur in essentially all samples (>97% of samples)
(Figure 1A). Applying these thresholds, we identified 1,145 microbial species (Figure 1B), as defined by
the NCBI annotation in KrakenUniq, that make up the sub-core urban microbiome with 31 species in the
true core microbiome (Figure 1A). Core and sub-core taxa classifications were further evaluated for se-
quence complexity and genome coverage on a subset of samples. Of the sub-core species, 69 were flagged
as being low-quality classifications (see Methods). The sub-core microbiome was principally bacterial,
with just one high-confidence eukaryote identified: Saccharomyces cerevisiae. Notably, no archaea or
viruses were identified in the group of sub-core microorganisms. For viruses in particular this may be
affected by the DNA extraction methods used, limitations in sequencing depth, or by missing annotations
in reference databases used for classification. The three most common bacterial phyla across the world’s
cities ordered by the number of species observed were Proteobacteria, Actinobacteria, and Firmicutes.

Despite their global prevalence, the core taxa were not uniformly abundant across all cities. Many
species exhibited a high standard deviation and kurtosis (Fisher’s definition) relative to other species
(Figure 1C). Some species showed distinctly high mean abundance, often higher than core species, but
more heterogeneous global prevalence. For example, Salmonella enterica was identified in < 50% of
samples, but was the 12th most abundant species based on the fraction of DNA ascribed to it. The most
relatively abundant microbial species was Cutibacterium acnes (Figure 1D) which had a comparatively
stable distribution of abundance across all samples, and is a known human skin commensal. To correct
for bias arising from uneven geographic sampling, we measured the relative abundance of each taxon
by calculating the fraction of reads classified to each taxon, and compared the raw distribution to the
distribution of median abundances within each city; the two measures closely aligned. An examination
of the positive and negative controls indicates that these results are not likely due to contamination or
batch effect (See Methods). In total, we observed 31 core taxa (>97% prevalence), 1,145 sub-core taxa
(70-97% prevalence), 2,466 peripheral taxa (<25% prevalence), and 4,424 taxa across all samples. We
term the set of all high-confidence taxa observed in the urban panmicrobiome.

To estimate the number of taxa present in our samples, but that may have been missed by our
methods (e.g. sampling type and sequencing depth), we performed a rarefaction analysis on the taxa
that were identified. By estimating the number of taxa identified for different numbers of samples as a
function of the number of reads, we see a diminishing trend (Figure 1D), which indicates that at some
point, the species in every new sample were likely already identified in a previous one. Our rarefaction

5

metasub.org/map
resistanceopen.org
metagraph.ethz.ch/search
github.com/metasub/metasub_utils


curve did not reach a plateau and, even after including all samples, it still showed a marginal discovery
rate of roughly one new species for every 10 samples added to the study. For clarity, we note that this
analysis only considers taxa already present in reference databases, not newly discovered taxa (below).
Despite the remaining unidentified taxa, we estimate that most (80%) of the classifiable taxa in the
urban microbiome could be identified with roughly 1,000 samples.

Since humans are a major part of the urban environment, the DNA in our samples could be expected to
resemble commensal human microbiomes. To investigate this, we compared non-human DNA fragments
from our samples to 50 randomly selected samples from 5 commensal microbiome sites (stool, skin,
airway, gastrointestinal tract, urogenital tract, 10 samples of each type) in the Human Microbiome
Project (HMP) (Consortium et al., 2012). We used MASH to perform a k-mer based comparison of our
samples vs. the selected HMP samples, which showed a roughly uniform dissimilarity between MetaSUB
samples and those from different human body sites (Figure 1E, S1A). Samples were taken from surfaces
that were likely to have been touched more often by human skin, such as doorknobs, buttons, railings,
and touchscreens were indeed more similar to the human skin microbiomes than surfaces like bollards,
windows, and the floor. For example, doorknobs were significantly more similar to skin than windows,
t-test p<2e-16).

We performed an analogous comparison to a set of 28 metagenomic soil samples (Bahram et al.,
2018). Our samples were more dissimilar from the soil samples (Figure 1F) than they were to human
skin microbiomes. This suggests that unclassified DNA in our samples may represent uncharacterized
taxa that are not known commensal or soil species.

We next estimated the fraction of sequences in our data that did not resemble sequences in known
reference databases. We took a subset of 10,000 reads from each sample and aligned these reads to
four large-scale sequence databases using BLASTn (Altschul et al., 1990). We identified reads that
mapped at 80%, 90%, and 95% Average Nucleotide Identity (ANI) (Figure 1G) to sequences in the
RefSeq reference database, NCBI’s NT Environmental database, a large set of Metagenome Assembled
Genomes (MAGs) from Pasolli et al. (2019), and MAGs from MetaSUB itself (Section 2.5). At 80%
ANI, the most permissive threshold, we observed that 34.6% of reads did not map to any database, while
47.3% of reads did not map to any database except MAGs from MetaSUB itself. This mirrors results
seen by previous urban microbiome works (Afshinnekoo et al., 2015; Hsu et al., 2016). When we broke
alignment rates down by region we found that samples from Europe had the highest fraction of unaligned
reads, followed by the Middle East, while samples from Sub-Saharan Africa had the smallest fraction of
unaligned reads (Figure S1B).

Previous ecological studies have observed a decrease in taxonomic diversity as the distance from the
equator increases (O’Hara et al., 2017). Our data recapitulated this result and identifies a significant
decrease in taxonomic diversity (though with significant noise, p < 2e16, R2 = 0.06915) as a function of
absolute latitude; samples are estimated to lose 6.97 species for each degree of latitude away from the
equator (Figure S1C). While this is an observation consistent with ecological theory we note that our
samples are somewhat clustered in specific latitudes.

2.2 Global Diversity Varies According to Key Covariates
Despite the core urban microbiome present in almost all samples, there was nonetheless a wide range of
variation in taxonomy and localization across all the cities. To quantify this, we calculated the Jaccard
distance between samples based on the presence and absence of all panmicrobiome species and performed
a dimensionality reduction of the data using UMAP (Uniform Manifold Approximation and Projection,
McInnes et al. (2018)) for visualization (Figure 2A). In principle, Jaccard distance could be influenced
by read depth, where low abundance species drop below the detection threshold. However, we expect
this issue to be minor as Jaccard distance of taxonomic profiles correlated with k-mer based distances
(Figure S2A, B) and because the total number of species identified stabilized at roughly 100,000 reads
(with no sharp quality drop-off, Figure S2C, D) compared to an average of 6.01M reads per sample.

Since taxonomic profiles from North America and Europe were distinct from those collected in East
Asia (with smaller clusters for other regions), we next examined variation as function of functional
classification, climate, surface type, and year of sampling. Subclusters identified by UMAP of taxonomic
profiles roughly corresponded to climate but not surface type (Figure S3A, B). Similar to taxonomy,
dimensionality reduction of functional metabolic profiles showed a geospatial difference between regions
(Figure S3C), indicating stratification of the metagenomes at both the functional and genus/species
levels. These findings confirm and extend earlier analyses performed on a fraction of the MetaSUB data
which were run as a part of CAMDA Challenges (camda.info). To gauge the impact of time, we also
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compared variation in matched sites from cities with two consecutive years of sampling on the summer
solstice (June 21). While taxonomic change within a city between 2016 and 2017 was usually less than
the difference between cities (Figure S3D), this may become a more important factor over longer time
periods.

We next quantified the degree to which metadata covariates influence the taxonomic composition
of our samples using MAVRIC, a statistical tool to estimate the sources of variation in a count-based
dataset (Moskowitz and Greenleaf, 2018), according to each samples’ metadata of: city, population
density, average temperature in June, region, elevation above sea-level, surface type, surface material,
elevation above or below ground, and proximity to the coast. The most important factor (19% of the
variation) was the city from which a sample was taken, followed by the world’s overall region (11%).
The other four factors accounted for 2% to 7% of the possible variation in taxonomy (Table S2). We
note that many of the factors were confounded with one another, so they can explain less diversity than
their sum. Of note, the population density of the sampled city had no significant effect on taxonomic
variation.

Given this strong signal from each city, we performed a Principal Component Analysis (PCA) on
our taxonomic data, normalized by the proportion of identified principal components (PCs) that were
associated with a metadata covariate (positive or negative). We hypothesized that some principle covari-
ates, such as climate, continent, and surface material, might be prominent factors driving the taxonomic
composition of a given sample. We found that the two most prominent absolute PCs associated strongly
with the city climate (representing 28.0% and 15.7% of the variance of the original data, respectively),
while the continent and surface material associated less strongly (Figure 2B); the same trend held for
the variation of AMR genes (Figure S3E, F, G) as well.

We tested if samples that were close together in cities were more similar to one another. For pairs
of samples taken in the same city, the geographic distance between samples was crudely predictive of
the Jensen-Shannon distance between taxonomic profiles. Every increase of 1km in distance between
two samples represented an increase of 0.056% in divergence (p < 2e16, R2 = 0.01073, Figure S1D). To
reduce potential bias from samples taken from the same object we excluded all pairs of samples within
1km of one another. This suggests a "neighborhood effect" for sample similarity analogous to the effect
described by Meyer et al. (2018), albeit a very minor one.

At a global level, we examined the prevalence and abundance of taxa and their functional profiles
between cities and continents. These data showed that most samples contained species from four phyla:
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, but that the relative abundance of these
phyla varied (Figure 2C). Certain archetypes appear to be continental to an extant with, for example, the
Middle East and Oceania are showing a higher proportion of Firmicutes than other regions. In contrast
to taxonomic variation, functional pathways were much more stable across continents, showing relatively
slight variation in the abundance of high-level categories (Figure 2D). This pattern may also be due to
the more limited range of pathway classes and their essential role in cellular function, in contrast to the
much more wide-ranging taxonomic distributions examined across metagenomes. Classes of antimicrobial
resistance were observed to vary by continent, as well as to occur in groups of taxonomically similar
samples (Figure 2E), but were generally much sparser and more variable than the taxonomic gradients.

We compared the distribution of pairwise distances between samples’ taxonomic profiles and their
functional profiles(both equivalently normalized). Taxonomic profiles showed a mean pairwise Jensen-
Shannon Divergence (JSD) of 0.61 while pathways have a mean JSD of 0.099, which was significantly
different (Welch’s t-test, unequal variances, p < 2e− 16 ). This observation is consistent with data from
the Human Microbiome Project, where the metabolic function varied less than taxonomic composition
(Consortium et al., 2012; Lloyd-Price et al., 2017) within samples from a given body site.

2.3 Microbial Signatures Reveal Urban Characteristics
To facilitate more straightforward mapping and comparison of sequences, we created GeoDNA and
MetaGraph (metagraph.ethz.ch/search), a high-level web interface (Figure 3A) to search raw sequences
against the MetaSUB dataset. Users can submit sequences to be processed against a k-mer graph-based
representation of the MetaSUB data and other sequence databases (e.g. SRA). Query sequences are
mapped to samples and collection metadata, and then a set of likely sample hits from around the world
is returned to the user. This interface allows researchers to probe the diversity in this dataset and rapidly
identify related genetic sequences, as well as the discovery of city-defining k-mers and sequences that
might have forensic implications.

To test this idea of a sample’s predictive capacity for mapping to its city of origin, we trained
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a Random Forest Classifier (RFC) from the taxonomic profile of each metagenome. Specifically, we
trained an RFC with 100 estimators on 90% of the samples in our dataset and evaluated its classification
accuracy on the remaining 10%. We repeated this procedure with multiple subsamples of our data at
various sizes (with 5 replicates per size) to show how performance varied with the amount of input data
(Figure 3B). The RFC achieved 88% on held-out data, which compares favorably to the 7.01% that would
be achieved by a randomized classifier. Of note, we obtained similar results even with lower numbers of
estimators (e.g. 10 estimators showed an accuracy of 78.9%). These results from our RFC demonstrate
that city-specific taxonomic signatures and k-mers can be predictive for a sample’s origin.

We next expanded our analysis of environmental taxonomic signatures to the prediction of features
in cities not present in our training set, including: population, surface material, elevation, proximity
to the coast, population density, region, average June temperature, and Koppen climate classification.
We trained an RFC to predict each feature based on all samples that were not taken from a given
city, then used the relevant RFC to predict the feature for samples from the held out city and recorded
the classification accuracy (Figure 3D). While not all features and cities were equally predictable (in
particular features for several British cities were roughly similar and could be predicted effectively), in
general, the predictions exceeded random chance by a significant margin (Figure S4A). The successful
geographic classification of samples demonstrates distinct city-specific trends in the detected taxa and
city metadata that may enable future forensic biogeographical capacities.

However, these city-specific taxa are not uniformly distributed across the world (Figure 3B). To
quantify this "metagenome uniqueness" for each city, we developed a score to reflect how endemic a
given taxon is within a city, which reflects the forensic usefulness of a taxon. We defined the Endemicity
Score (ES) of a taxa as term-frequency inverse document frequency, where the "document" consists of
samples from a group such as a city or region. This score is designed to simultaneously reflect the
chance that a taxon would be useful to identify a given city. A high ES for a taxon in a city could be
evidence of an evolutionary advantage in that city or neutral evolutionary drift and the ES alone does
not distinguish between the two. The distribution of ES shows a bimodal distribution for regions and
cities (Figure 3C), with some outlier cities. Each region possesses a number of taxa with ES scores close
to 1 and a slightly larger number close to 0 (note, ES is not bounded in [0, 1]). Some cities, like Offa
(Nigeria), host many taxa with high ES while others, like Zurich (Switzerland), host fewer. High ES
could indicate geographic sampling bias however some cities from well-sampled continents (e.g., Lisbon,
Hong Kong) host many endemic species, suggesting that ES may indicate interchangeability and local
niches of microbiome variation.

2.4 Antimicrobial Resistance Genes Form Distinct Clusters
Quantification of antimicrobial diversity and AMRs are key components of global antibiotic stewardship.
Yet, predicting antibiotic resistance from genetic sequences alone is challenging, and detection accuracy
depends on the class of antibiotics (i.e., some AMR genes are associated with main metabolic pathways
while others are uniquely used to metabolize antibiotics). As a first step towards a global survey of
antibiotic resistance in urban environments, we mapped reads to known antibiotic resistance genes,
using the MegaRES ontology and alignment software. We quantified their relative abundance using
reads/kilobase/million mapped reads (RPKM) for 20 classes of antibiotic resistance genes detected in
our samples (Figure 4A & B). 2,210 samples had some sequences aligning to an AMR gene, but no
consistent core set of AMR genes was identified. The most common classes of antibiotic resistance genes
were for macrolides, lincosamides, streptogamines (MLS), and beta-lactams, yet the most common class
of antibiotic resistance genes, MLS was found in only 56% of the samples where AMR sequence was
identified. We also quantified the likely mechanisms of identified antibiotic resistance genes. The three
most prevalent resistance mechanisms are EF-Tu inhibition, 23S rRNA methyltransferases, and multi-
drug efflux pumps. However, none of these are found in more than 25% of samples (abundance and
prevalence of AMR mechanisms (Figure S5 A, B).

Indeed, antibiotic resistance genes were universally in low abundance compared to functional genes,
with RPKM values for resistance classes typically ranging from 0.1 – 1 compared to values of 10 - 100
for typical housekeeping genes (AMR classes contain many genes, so RPKM values may be lower than
they would be for individual genes). Despite the low abundance of the genes themselves, some samples
contained sequences from hundreds of distinct AMR genes. Clusters of high AMR diversity were not
evenly distributed across cities (Figure 4C). Some cities had more resistance genes identified on average
(15-20X) than others (e.g. Bogota) while other cities had bimodal distributions (e.g. San Francisco);
some samples had hundreds of genes while others were very few. We note that 99% of the cases where we

8



detected an AMR genes showed an average depth of 2.7x, indicating that our overall global distribution
would not dramatically change with altered read depth (Figure S5E).

Since taxa could be used to classify a sample’s city of origin, we next examined if AMR genes exhibited
the same stratification. A random forest model was trained (as above) to predict city classification based
on the mapped antimicrobial resistance genes. While this model achieved 37.6% accuracy on held out
test data (Figure S4B), showing that it is better than random chance (7.0%), the AMR profile was much
less accurate than the taxonomic predictor (88.0%). Since AMR genes are more likely to be mobile, this
is not surprising and likely indicates that they represent weaker (but possible) city-specific signatures.

Prior studies have shown that numerous AMR genes can be carried on a single plasmid, and ecological
competition may cause multiple taxa in the same sample to develop antimicrobial resistance, but little
is known in urban environments. To examine these phenomena, we identified clusters of AMR genes
that co-occurred in the same samples (Figure 4D). We measured the Jaccard distance between all pairs
of AMR genes found in at least 1% of samples and performed agglomerative clustering on the resulting
distance matrix. We identified three large clusters of genes and numerous smaller clusters. Of note, these
clusters often consist of genes from multiple classes of resistance, and the large clusters contain far more
genes than are typically found on plasmids.

Next, we performed a rarefaction analysis on the set of all resistance genes in the dataset, which
we call the “panresistome” (Figure S5D). Similar to the rate of detected species, the panresistome also
shows an open slope with an expected rate of discovery of 1 new AMR gene per 10 samples. Given that
AMR gene databases are rapidly expanding, and that no AMR genes were found in some samples, it is
likely that future analyses will identify many more resistance genes in these data. Additionally, AMR
genes showed a “neighborhood” effect within samples that are geographically proximal, analogous to the
effect was seen for taxonomic composition (Figure S5C). Excluding samples where no AMR genes were
detected, the Jaccard distance between sets of AMR genes increases with distance for pairs of samples
in the same city. As with taxonomic composition, the overall effect is weak and noisy, but nonetheless
significant.

2.5 Widespread Observation of Biology not in Reference Databases
To examine these samples for large genetic elements, we created Metagenome Assembled Genomes
(MAGs) with metaSPAdes to look for viral, bacterial, and archaeal genomes, and for CRISPR arrays
(see assembly methods). These MAGs comprised 1,304 total high-quality genomes, of which 748 did not
match any known reference genome within 95% average nucleotide identity (ANI). 1302 of the genomes
were classified as bacteria, and 2 as archaea. Bacterial genomes came predominantly from four phyla:
the Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidota. Bacterial genomes that did not match
any reference were evenly spread across these phyla (Figure 5A) and assembled bacterial genomes were
often identified in multiple samples. Several of the most prevalent bacterial genomes were species with
no known reference genome with >95% average nucleotide identity (Figure 5B).

Some assembled genomes showed regional specificity while others were globally distributed. Overall,
the taxonomic composition of identifiable genomes roughly matched the composition of the core urban
microbiome (Section 2.1), with the number of identified bacterial MAGs somewhat related to read depth.
(number of reads correlated with the number of OTUs in sample with R = 0.4, p < 2e − 16 Pearson’s
correlation) indicating additional sampling and sequencing will continue to discover more MAGs that do
not match known reference genomes. Bacterial MAGs were roughly evenly distributed geographically,
with the notable exception of Offa, Nigeria, which had dramatically more bacterial species than other
cities that did not match references.

We then examined the assembled contigs for viruses using JGI’s uncultivated viral genomes (UViGs)
mapping method (Paez-Espino et al., 2019). This analysis revealed a set of16,584 total uncultivated viral
genomes (UViGs). Taxonomic analysis of the predicted UViGS yielded 2,009 viral clusters, containing a
total of 6,979 UViGs and 9,605 singleton UViGs for a total of 11,614 predicted viral species. Predicted
viral species from samples collected within 10, 100, and 1000 kilometers of one another were agglomerated
to examine their planetary distribution at different scales (Figure 5B). At any scale, most viral clusters
appear to be weakly cosmopolitan; the majority of their members are found at or near one location, with
a few exceptions.

We compared the MAG-derived viruses to known viral sequences in the Integrated Microbial Genome
and Viral database (IMG/VR) at JGI (Joint Genome Institute), which contains viral genomes from
isolates, a curated set of prophages, and 730k viral MAGs from other studies. Of the 11,614 species
discovered in the MetaSUB MAGs, 94.1% did not match any viral sequence in IMG/VR (Paez-Espino
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et al., 2019) at the species level for a total of 10,928 viruses that did not match known species. We
note that this number was obtained using a conservative pipeline (99.6% precision) and corresponded
well with our identified CRISPR arrays (below). This suggests that urban microbiomes contain a large,
untapped amount of viral diversity not previously observed in other environments.

Next, we attempted to identify possible bacterial and eukaryotic hosts for our predicted viral MAGs.
For the 686 species with similar sequences in IMG/VR, we projected known host information onto 2,064
MetaSUB viral MAGs. Additionally, we used CRISPR-Cas spacer matches in the IMG/M system to
assign possible hosts to a further 1,915 predicted viral species. Finally, we used a database of 20 million
metagenome-derived CRISPR spacers to provide further rough taxonomic assignments. Our predicted
viral hosts aligned with our taxonomic profiles, 41% of species in the core microbiome (Section 2.1) had
predicted viral-host interactions. Many of our viral MAGs were found in multiple locations (Figure 5D).
Many viruses were found in South America, North America, and Africa, and viral MAGs in Japan often
corresponded to those in Europe and North America.

From these MAGs, we identified 838,532 CRISPR arrays, of which 3,245 could be annotated for
specific CRISPR systems. The annotated CRISPR arrays were mostly type 1-E and 1-F, but a number
of type II and III systems were identified as well (Figure 5E, F), and some arrays had unclear (ambiguous)
type assignment. Critically, when we aligned spacers to both our viral MAGs and all viral sequences
in RefSeq, the spacers in our identified CRISPR arrays closely matched our predicted MAG-derived
viruses. Moreover, while the total fraction of spacers that could be mapped to our virus-containing
MAGS and RefSeq was similar (32.2% to our data vs. 36.8% for RefSeq), the mapping rate to our
viral MAGs dramatically exceeded the mapping rate to RefSeq (Figure 5C), which provides additional
evidence supporting the veracity of urban viruses.

3 Discussion
MetaSUB is a global network of scientists and clinicians developing knowledge of urban microbiomes
by studying mass transit systems, the built environment, and hospitals . We collected and sequenced
4,728 samples from 60 cities worldwide (Tables 1 and S1), constituting the first large-scale metagenomic
study of the urban metagenome. We conclude that there is a consistent urban microbiome core (Figure
1, 2), which is supplemented by geographic variation (Figure 2) and microbial signatures based on the
specific attributes of a city (Figure 3). Our data also show that taxa remain to be discovered in these and
future data (Figure 5), environmental factors (e.g. climate) significantly affect the microbial variation,
and that sequences associated with AMR genes are globally widespread, but not necessarily abundant
(Figure 4). In addition to these results, we present several ways to access and analyze our data including
interactive web-based visualizations, search tools over raw sequence data, and high-level interfaces to
computationally access results.

Together, these data suggest that urban microbiomes should be treated as ecologically distinct from
both surrounding soil microbiomes and human commensal microbiomes. Though these microbiomes
undoubtedly interact they nonetheless represent distinct ecological niches with different genetic profiles.
While our metadata covariates were associated with the principal variation in our samples, they do
not explain a large proportion of the observed variance. It remains to be determined whether the
variation is essentially a stochastic process or if a deeper analysis of our covariates proves more fruitful.
In particular, analysis of cities’ greenspace, tourism, and waste management systems may be fruitful
to explain variation, a study by (Reese et al., 2016) found that urban stress could impact microbial
composition. We have observed that less important principal components (roughly PCs 10-100) are
generally less associated with metadata covariates, but that PCs 1-3 do not adequately describe the data
alone. This is a pattern that was observed in the human microbiome project as well, where minor PCs
(such as our Figure 2B) were required to separate samples from closely related body sites.

Much of the urban microbiome likely represents previously unobserved diversity, as our samples con-
tain a significant proportion of unclassified DNA. This finding is comparable to many other metagenomic
and microbiome studies including other work is done in subway environments (Afshinnekoo et al., 2015;
Hsu et al., 2016), airborne microbiomes (Yooseph et al., 2013), work done by the Earth Microbiome
Project (Thompson et al., 2017), and others. As noted in Figure 1 more sensitive alignment method-
ology only marginally increases the proportion of classified DNA. We consider the DNA which would
not be classified by a sensitive technique to be truly unclassified DNA and postulate that it may derive
from genes or species not in reference databases. Given that our samples did not closely resemble human
commensal microbiomes or soil samples, it is possible this represents DNA sequences specific to the urban
environment.
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The fraction of predicted viral sequences which belonged to previously unobserved taxa was partic-
ularly high in our study (94.1%) however, taxonomic associations of these viruses to observed microbial
hosts and associations with novel CRISPR sequences suggest these results are not spurious. The discov-
ery of more taxa not in reference databases may help to reduce the large fraction of DNA that cannot
currently be classified. Our data do not support the presence of a any viruses in the core microbiome
based. However, this cannot be excluded and should be thoroughly addressed in the future with more
in-depth sequencing, sampling/extraction techniques, or long-read technologies.

Many of the identified taxa are frequently implicated as infectious agents in a clinical setting including
specific Staphylococcus, Streptococcus, Corynebacterium, Klebsiella and Enterobacter species. However,
there is no indication that the species identified in the urban environments are pathogenic, and further
in-depth studies are necessary to determine the clinical impact of urban microbiomes. This includes
microbial culture studies, explicitly searching for virulence factors and performing strain-level character-
ization to determine biological functions carried by specific populations. Seasonal variation also remains
open to study as the majority of the samples collected here were from two global City Sampling Days
(June 21, 2016, and 2017). Further studies, some generating novel data, will need to explore whether the
core microbiome shifts over the course of the year, with a particular interest in the role of the microbiome
in flu transmission (Cáliz et al., 2018; Korownyk et al., 2018).

The COVID-19 crisis has thrown the need for broad microbial surveillance into sharp relief. Microbial
genetic mapping of urban environments will give public health officials tools to assess risk, map outbreaks,
and genetically characterize problematic species. This study identifies a large number of viruses in
the environment as well as antimicrobial resistance genes in bacteria, but they are only DNA-based.
Future shotgun RNA studies (metatranscriptomics) and targeted RNA viral studies that build on top of
this infrastructure represents an important starting point for tracking and potentially mitigating future
epidemics.

As metagenomics and next-generation sequencing becomes more and more available for clinical (Wil-
son et al., 2019) and municipal use (Hendriksen et al., 2019), it is essential to contextualize the AMR
markers or presence of species and strains within a global and longitudinal context. We observed that
the microbial profile of cities can slightly shift year to year and that this may become a more pronounced
effect over longer time frames. The most common AMR genes were found for two classes of antibiotics:
MLS and beta-lactams. Both of these are critical groups of antibiotics used to treat upper respiratory,
skin, soft tissue, and sexually transmitted infections, and a wide array of other infections. Antimicrobial
resistance genes are thought to spread from a variety of sources including hospitals, agriculture and water
(Bougnom and Piddock, 2017; Klein et al., 2018). The antimicrobial classes particularly impacted by
resistance include beta-lactams, glycopeptides, and fluoroquinolones (Rice, 2012), all of which we found
antimicrobial resistance genes across our samples.

We found that there was an uneven distribution of AMR genes across cities and that fewer AMR genes
were identified in samples from Oceania and the Middle East. This could be the result of different levels
of antibiotic use, differences in the urban geography between cities, or reflect the background microbiome
in different places in the world. Techniques to estimate antibiotic resistance from sequencing data remain
an area of intense research as certain classes of AMR gene (ie. fluoroquinolones) are sensitive to small
mutations, and methodological improvements may refine our results. A companion study to this paper
by Chng et al. (2020) has examined the spread of AMRs in hospital settings. Further research is needed
to explore AMR genes fully in the urban environment, especially in medical environments, and including
cultural studies that directly measure the phenotype of resistance.

In summary, this study presents the first genetic atlas of urban and mass-transit metagenomics from
across the world. By facilitating large-scale epidemiological comparisons, it is a first critical step towards
quantifying the distribution, types, and dynamics of environmental microbiomes, providing requisite data
for tracking changes in ecology or virulence. As more datasets emerge from rural and suburban areas
with livestock and farms, sewage from cities (Fresia et al., 2019; Joseph et al., 2019), and other public
sources of AMR genes, a new international AMR mapping paradigm is possible. Ideally, these data are
components of a global sentinel monitoring network of sequencers that tracks AMR and other microbial
changes (Singer et al., 2016; Thanner et al., 2016), which can also help with clinical interpretation and
risk stratification (Afshinnekoo et al., 2017; Gardy and Loman, 2018; Ladner et al., 2019). Indeed, a
continually-updated, global microbial genetic atlas has the potential to aid physicians, public health
departments, government officials, and scientists in tracing, diagnosing, and predicting epidemiological
risks and trends. This, in turn, enables data-driven policy and medical decisions in cities around the
world, with the sequencing data simultaneously providing a constant fountain of discovery for new
microbial biology.
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3.1 Limitations of the study
There are three key limitations to this study. First, this study exclusively measured DNA, meaning RNA
viruses would be excluded, as would evidence of transcriptional activity from Bacteria and Archaea.
Second, this study is unable to identify a large proportion of DNA collected. This is at least partly due
to the highly novel nature of urban microbiomes, and as more data is generated this proportion could
be improved. Third, AMR genes are often difficult to distinguish from similar genes that do not confer
resistance (though we have removed genes that require SNP level verification), so our results likely have
a degree of noise.
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8 Star Methods

8.1 Key resources table

8.2 Resource Availability
8.2.1 Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled
by Christopher Mason (chm2042@med.cornell.edu).

8.2.2 Materials availability

This study did not generate any new materials.

8.2.3 Data and code availability

Materials, Methods, and Open-Source Code To make our study fully reproducible, we released
an open-source version-controlled pipeline called the MetaSUB Core Analysis Pipeline (CAP) (Danko
and Mason, 2020). This pipeline includes all steps from extracting data from raw sequence FASTQ files
to producing refined results like taxonomic and functional profiles. Every tool in the CAP is open source
with a permissive license. The CAP is available as a docker container for easier installation in some
instances, and all databases used in the CAP are available for public download. The CAP is versioned
and includes all necessary databases, allowing researchers to replicate results and figures.

The MetaSUB dataset and CAP are built and organized for full accessibility to other researchers. This
is consistent with the concept of Open Science. Specifically, we built our study with the FAIR principles
in mind: Findable, Accessible, Interoperable, and Reusable. To make our results more reproducible and
accessible, we have developed a program to merge the CAP’s output into a condensed data-packet. This
data packet contains results as a series of Tidy-style data tables with descriptions. The advantage of
this set-up is that result tables for an entire dataset can be parsed with a single command in most high
level analysis languages like Python and R. This package also contains Python utilities for parsing and
analyzing data packets which streamline most of the boilerplate tasks of data analysis. All development
of the CAP and data packet builder (Capalyzer) package is open source and permissively licensed.

In addition to general-purpose data analysis tools, essentially all analysis in this paper is available as
a series of Jupyter notebooks. These notebooks allow researchers to reproduce our results, build upon
our results in different contexts, and better understand precisely how we arrived at our conclusions. By
providing the exact source used to generate our analyses and figures, users can quickly incorporate new
data or correct any bugs.

For less technical purposes, we also provide web-based interactive visualizations of our dataset (typ-
ically broken into city-specific groups). These visualizations are intended to provide a quick reference
for major results as well as an exploratory platform for generating novel hypotheses and serendipitous
discovery. The web platform used, MetaGenScope, is open source, permissively licensed, and can be run
on a moderately powerful machine (though its output relies on results from the MetaSUB CAP).

Our hope is that by making our dataset open and easily accessible to other researchers the scientific
community can more rapidly generate and test hypotheses. One of the core goals of the MetaSUB
consortium is to build a dataset that benefits public health. As the project develops, we want to make
our data easy to use and access for clinicians and public health officials who may not have computational
or microbiological expertise. We intend to continue to build tooling that supports these goals.

CAMDA Since 2017, MetaSUB has partnered with the Critical Assessment of Massive Data Analysis
(CAMDA) camda.info, a whole conference track at the Intelligent Systems for Molecular Biology (ISMB)
Conference. At this venue, a subset of the MetaSUB data was released to the CAMDA community in
the form of an annual challenge addressing the issue of geographically locating samples: ‘The MetaSUB
Inter-City Challenge’ in 2017 and ‘The MetaSUB Forensics Challenge’ in 2018 and 2019. In the latter
challenge the MetaSUB data has been complemented by data from EMP (Thompson et al., 2017) and
other studies (Delgado-Baquerizo et al., 2018; Hsu et al., 2016). This Open Science approach of CAMDA
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has generated multiple interesting results and concepts relating to urban microbiomics, resulting in
several publications biologydirect.biomedcentral.com/articles/collections/camdaproc as well
as perspective manuscript about moving towards metagenomics in the intelligence community (Mason-
Buck et al., 2020). The partnership is continued in 2020 with ‘The Metagenomic Geolocation Challenge’
where the MetaSUB data has been complemented by the climate/weather data in order to construct
multi-source microbiome fingerprints and predict the originating ecological niche of the sample.

Accessions and Data Access All data from this study including data tables that resulted from
analyses may be found at https://pngb.io/metasub-2021. Additionally, raw sequencing reads are
uploaded to the SRA and may be found under the accession TODO.

8.3 Method Details
8.3.1 Sample Collection and Preparation

To obtain a comprehensive picture of microbial communities within a sample, it is essential to choose
a sampling method which absorbs and preserves biological materials during sampling, transport and
storage until DNA extraction. The effectiveness of a swab may be influenced by a number of factors, most
importantly the material of the swab tip which can affect the rate at which bacteria are collected during
the sampling process. Furthermore, the design of the transport tube as well as the DNA preserving
liquids can affect the integrity of the material during transport. Finally, the amount of background
contamination identified for different products should be taken into account.

Sampling Materials Surface samples were collected and preserved using a flocked swab with a storage
tube containing a buffer that is optimized for DNA preservation. Two different sets of materials were
used for collection in 2016 and 2017.

In the first method of sample collection used a Copan Liquid Amies Elution Swab (ESwab, Copan
Diagnostics, Cat.: 480C) paired with a 1mL of Liquid Amies in a plastic, screw cap tube, hereafter
referred to as a ‘Copan swab’. The Amies transport medium maintains the sample at pH 7.0 ± 0.5 and
contains sodium thioglycolate as well as calcium, magnesium, sodium, and potassium salts to control the
permeability of bacterial cells. Once the surface was sampled, the swab was immediately placed into the
collection tube and stored in a -80C freezer once returned to the laboratory.

The second method used an individually wrapped Isohelix Buccal Mini Swab (MS Mini DNA/RNA
Swab, Isohelix, Cat.: MS-02) paired with a barcoded storage tubes (2D Matrix V-Bottom ScrewTop
Tubes, Thermo Scientific, Cat.: 3741-WP1D-BR/1.0mL), hereafter referred to as ‘matrix tubes’, pre-
filled with 400µl of a transport and storage medium suitable for both DNA and RNA (DNA/RNA Shield,
Zymo Research, Cat.: R1100), hereafter referred to as ’Zymo Shield’. Once the surface was sampled, the
swab was immediately placed into a matrix tube containing Zymo Shield and stored in a -80C freezer
until DNA extraction.

We assessed the absorption strength of both the Copan and Isohelix swabs for various biological
and surface materials encountered when sampling metro stations. A single surface was selected for a
designated sampling area to test the absorption strength. Both swabs were moistened by submerging the
swab for a few seconds in their preservative media. The area was then swabbed for 3 minutes, covering
the selected surface. By moistening the swab prior to sampling, the swab matrix would take up more
microflora already saturated with the transport medium.

Sampling Protocol A standard operating procedure (SOP) was developed for the sample collection to
be followed by all members of the MetaSUB consortium participating in CSD, and adapted from earlier
work by Afshinnekoo et al. (2015). The aim was to standardize as much of the sampling procedure
in order to ensure high quality control across the various cities and sampling teams. Thus, it was
recommended that teams collect samples from high contact surfaces found in most metro and transit
stations and systems around the world, including ticket kiosks, turnstiles, railings, and seats or benches.
Some cities had to adapt the sampling approach to better reflect their city. For example, in cases where
a city did not have a subway system, the most common form of public transit was studied instead. While
variation in the types of surfaces being sampled were allowed, modifications to the sampling procedure
itself were not. Moreover, a number of metadata were recorded for each sample during the process of
collection to ensure as much contextual information as possible was captured. Each city developed their
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own sampling and submitted them for review before sampling kits were sent to them in order to ensure
consistency across the various sites.

All principal investigators and MetaSUB city leaders were trained in the sampling protocol and this
training was further disseminated to the respective sampling teams to ensure consistent and quality
control sampling. Each participant was instructed to don disposable latex or nitrile gloves prior to
sample collection. The swab was dipped in the preservative medium for approximately 2 seconds before
the swab was firmly dragged across the surface, using both sides and using different angles, for a total
of 3 minutes to ensure highest yield. Any other important notes or observations could be added to the
metadata for each sample.

A sampling protocol video overview is included in the Supplementary Materials.

Process Controls To assess the quality of our sampling procedure, we created multiple controlled
scenarios. As a positive laboratory control, a Copan swab was introduced into a sterile urine cup with
30µl of a well-defined, accurately characterized microbial reference sample (ZymoBIOMICS Microbial
Community Standard, Zymo Research, Cat.: D6300). A negative control was made by adding 50µl of the
final resuspension buffer from the DNA isolation step into a sterile urine cup before introducing a Copan
swab. Furthermore, a laboratory workbench was swabbed using our sampling procedure both before and
after it was cleaned with a 10% bleach solution. To detect background contamination due to biological
material in the air in sample areas, a dampened Copan swab was held in the air for approximately 3
minutes. Finally, to ensure there was no contamination could be due to the consumables we procured
prior to sampling, we also swabbed, in triplicate, the interior of a flow hood that had been sterilized with
10% bleach before wiping down with ethanol and irradiating with ultraviolet light.

Metadata Collection and Aggregation Metadata from individual cities was collected from a stan-
dardized form and set of data fields. The principal fields collected were the location of sampling, the
material of the object being sampled, the type of object being sampled, the elevation above or be-
low sea level, and the station or line where the sample was collected. However, several cities were
unable to use the provided software application for various reasons, and instead submitted their meta-
data as separate spreadsheets that could be added to the data repository. Additionally, certain meta-
data features, such as those related to sequencing and quality control, were added after initial sample
collection. To collate various metadata sources, we built a publicly available repository on Pangea
(https://pngb.io/metasub-2021) which assembled a large master spreadsheet with consistent sample
universally unique identifiers (UUID). After assembling the originally collected data attributes we added
normalized attributes based on the original metadata to account for surface material, control status, and
features of individual cities. A full description of ontologies used is provided as part of the collating
program.

8.3.2 DNA Extraction, Library Preparation, and Sequencing

Samples stored at -80C were allowed to thaw to room temperature before performing a DNA extraction
suitable to the transport and preservation medium used with the Copan swabs and Isohelix swabs in 2016
and 2017, respectively. Initially, Copan swabs in liquid Amies were processed using the PowerSoil DNA
Isolation Kit (MoBio, Cat.: 12888-100), while Isohelix swabs were processed using the ZymoBIOMICS
96 MagBead DNA Kit (Zymo Research, Cat.: D4308). Additional automation of sample processing for
nucleic acid extraction using the Maxwell RSC Instrument (Promega, Cat.: AS4500) began in 2017 using
the Maxwell RSC Buccal Swab Kit (Promega, Cat.: AS1640).

DNA Extraction from Copan Swabs After spinning down the tubes containing the Copan swab
in Amies at 300rpm for 1 minute, the swab pad was transferred to a MoBio PowerBead Tube containing
beads using sterile scissors, which we sterilized with 70% ethanol before passing them through a flame.
The remaining 400-500µl of Amies solution was transferred into an Eppendorf tube and centrifuged
at high speed to collect bacteria and debris into a pellet. Once resuspended into a small volume of
Amies, the pellet was transferred to the same MoBio PowerBead Tube as its corresponding Copan swab.
The MoBio PowerSoil DNA Isolation Kit was used according to manufacturer’s instructions with the
exception of the following modifications: both the swab and corresponding pellet were resuspended in
135µl of the C1 buffer. Sample homogenization was performed using either the TissueLyser II (Qiagen,
Cat.: 85300) with 2 cycles of 3 minutes at 30Hz (https://bit.ly/3ub9tap) or using a Vortex-Genie 2
adapter for 1.5 to 2mL tubes (Vortex Adapter for 24 tubes, Qiagen, Cat.: 13000-V1-24) at maximum
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speed for 10 minutes. The sequencing centers in Stockholm and Shanghai used different procedures for
homogenization. Stockholm used a method based on MPI FASTPREP, while Shanghai added 0.6 grams
of 100-micron zirconium-silica beads to 2ml tubes containing the swab pad and the media, followed by
bead beating for 1 min. Following the MoBio protocol, the eluted samples were additionally purified by
introducing 1.8X of Agencourt AMPure XPmagnetic beads (Beckman Coulter, Cat.:A63881), allowed to
incubate at 25C for 15 min, and then placed on an Invitrogen magnetic separation rack (MagnaRack)
for 5 min. A wash step using 700µl of 80% ethanol was added the samples while they remained on the
MagnaRack before allowing the samples to dry. The resulting purified samples were eluted into 12µl -
50µl of buffer. Subsequently, DNA was quantified using a Qubit 2.0 fluorometer and (dsDNA HS Assay
Kit, Invitrogen, Cat.: Q32854).

DNA Extraction from Isohelix Swabs The entire 400µl volume of Zymo Shield, along with the
Isohelix swab head, were transferred into a new tube containing a 0.6mL dry volume of 0.5mm and 0.1mm
lysis matrix (BashingBead Lysis Tubes, Zymo Research, Cat.: S6012-50), as well as an additional volume
of 600µl of Zymo Shield. Mechanical lysis using bead beating was performed on 18 samples at a time
using a Vortex-Genie 2 adapter at maximum power for 40 minutes. A 400µl volume of the resulting lysate
in each tube was transferred into a separate well of a deep-well storage plate (Nunc 96-Well Polypropylene
DeepWell Storage Plate, Thermo Scientific, Cat.: 278743). High-throughput DNA extraction was carried
out on an automated liquid handling platform (Microlab STAR Liquid Handling System, Hamilton, Cat.:
Microlab STAR) using the ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research, Cat.: D4308) on
the Hamilton Star according to the manufacturer’s instructions. Purified samples were eluted into 50µl
ZymoBIOMICS DNAse/RNAse Free Water.

DNA Extraction Using an Automated Platform The Maxwell RSC was used as a high through-
put means of processing samples that used either the Copan or Isohelix swab collection method. To
process the Copan swab samples, 300µl of Promega Maxwell Lysis buffer and 30µl of Promega Maxwell
Proteinase K was added to each collection tube, then allowed to incubate in a water bath at 54C for 20
minutes. Following lysis, Copan swab heads were cut off their stem using sterile scissors and transferred
into a filter tube (ClickFit Microtube, Promega, Cat.: V4745). The filter containing the swab was placed
into a 2ml Eppendorf tube and spun down at full speed for 2min. This step is necessary since the Copan
swab material consists of a foam, which harbors the main liquid containing the extracted DNA. Next,
the eluate was combined with the corresponding sample tube media and added to a well of the Maxprep
cartridge (Maxwell RSC Buccal Swab Kit, Promega, Cat.: AS1640). Cartridges were processed using
the Maxwell RSC Instrument following the manufacturer’s default instructions. Extracted DNA was
eluted in 50µl Promega Elution Buffer and stored at -80C.

To process the Isohelix swabs, 300µl of Promega Maxwell Lysis buffer was added to each matrix tube
before vortexing at full speed for 1 minute. The Isohelix swab head material is non-porous, which allows
for easy collection of the lysate. The total lysate from each matrix tube was moved to the added to
a well of the Maxprep cartridge using a 3cc syringe syringe (Blunt fill needle with Luer-Lok tip 18-G
x 1 1/2-in 3-mL syringe, BD, Cat.: 305060). The Maxwell RSC Instrument was run using the ‘Blood’
program according to manufacturer’s instructions. Samples were subsequently eluted in 50µl Promega
Elution Buffer and stored at -80C.

Library Preparation and Sequencing Following DNA extraction, library preparation for Illumina
NGS platforms was performed at HudsonAlpha Genome Center using the QIAGEN Gene Reader DNA
Library Prep Kit I (Qiagen, Cat.: 180435) as was previously described in Afshinnekoo et al. (2015).
Briefly, this involved fragmenting with an LE Series Covaris sonicator (Woburn, MA) with a targeted
average size of 500nt, a bead clean-up step to remove fragments under 200nt, A-tailing, adaptor ligation,
PCR amplification, bead-based library size selection, and a final clean-up step. A BioAnalyzer 2100
(Agilent, Cat.: G2939BA) was used to ensure libraries fell within a range of 450-650bp. Pilot samples
collected in Barcelona and Stockholm were prepared using the QIAGEN QIAseq FX DNA Library Kit.
The resulting libraries were sequenced on an Illumina HiSeq X Ten System (Illumina Inc., San Diego,
CA) at HudsonAlpha Genome Center (Huntsville, Alabama) using HiSeq X Reagent Kits according to
the manufacturer’s instructions (www.illumina.com).

8.3.3 Quality Control
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Evaluation of sequence quality We measured sequencing quality based on 5 metrics: number of
reads obtained from a sample, GC content, Shannon’s entropy of k-mers, post PCR Qubit score, and
recorded DNA concentration before PCR. The number of reads in each sample was counted both before
and after quality control, we used the number of reads after quality control for our results though the
difference was slight. GC content was estimated from 100,000 reads in each sample after low quality
DNA and human reads had been removed. Shannon’s entropy of k-mers was estimated from 10,000
reads taken from each samples. PCR Qubit score and DNA concentration are described in the wet lab
methods.

We observed good separation of negative and positive controls based on both PCR Qubit and k-mer
entropy. Distributions of DNA concentration and the number of reads were as expected (Figure S2G, H,
I). GC content was broadly distributed for negative controls while positive controls were tightly clustered,
expected since positive controls have a consistent taxonomic profile. Comparing the number of reads
before and after quality control did not reveal any major outliers.

Identification of potential batch effects Batch effects are a major concern for this low-biomass
study and any large-scale study. The median flowcell used in our study contained samples from 3 cities
and 2 continents. However, two flowcells covered 18 cities from 5 or 6 continents respectively. When
samples from these flowcells were plotted using UMAP (see Section 2.2 for details) the major global
trends we described were recapitulated (Figure S2F). Plots of the number of reads against region (Figure
S2G) showed a stable distribution of reads across cities. Analogous plots of PCR Qubit scores were less
stable than the number of reads but showed a clear drop for control samples (Figure S2H). These results
led us to conclude that batch effects are likely to be minimal.

Identification of potential strain contamination We used BLASTn to align nucelotide assemblies
from case samples to control samples. We used a threshold of 8,000 base pairs and 99.99% identity as
a minimum to consider two sequences homologous. This threshold was chosen to be sensitive without
solely capturing conserved regions. We identified all connected groups of homologous sequences and
found approximate taxonomic identifications by aligning contigs to NCBI-NT using BLASTn searching
for 90% nucleotide identity over half the length of the longest contig in each group.

Despite good separation of positive and negative controls (see Section 8.3.3) we identified several
species in our negative controls which were also identified as prominent taxa in the data-set as a whole
(See Section 2.1). Our dilemma was that a microbial species that is common in the urban environment
might also reasonably be expected to be common in the lab environment. In general, negative controls
had lower k-mer complexity, fewer reads, and lower post PCR Qubit scores than case samples and
no major flowcell specific species were observed. Similarly, positive control samples were not heavily
contaminated. These results suggest samples are high quality but do not systematically exclude the
possibility of contamination.

Previous studies have reported that microbial species whose relative abundance is negatively cor-
related with DNA concentration may be contaminants. We observed a number of species that were
negatively correlated with DNA concentration but this distribution followed the same shape as a null
distribution of uniformly randomly generated relative abundances leading us to conclude that negative
correlation may simply be a statistical artifact.

We analyzed the total complexity of case samples in comparison to control samples. Case samples
had a significantly higher taxonomic diversity (Figure S2I) than any type of negative control sample. We
also compared the confidence of taxonomic assignments to control assignments for prominent taxa using
the number of unique marker k-mers to compare assignments. We found that case samples had more
and higher quality assignments than could be found in controls. In contrast, the taxonomic assignment
of one species, Bradyrhizobium sp. BTAi1, was not clearly more accurate in case samples than controls.
Nevertheless, we were able to assemble genomes for this species in several unique samples, so we feel the
species is not definitively a negative control contaminant.

Finally, we compared assemblies from negative controls to assemblies from our case samples search-
ing for regions of high similarity that could be from an identical microbial strain. We reasoned that
uncontaminated samples may contain the same species as negative controls but were less likely to con-
tain identical strains. Only 137 case samples were observed to have any sequence with high similarity
to an assembled sequence from a negative control (8,000 base pairs minimum of 99.99% identity). The
identified sequences were principally from Bradyrhizobium and Cutibacterium. Since these genera are
core taxa (See Section 2.1) observed in nearly every sample but high similarity was only identified in a
few samples, we elected not to remove species from these genera from case samples.
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Comparison of taxonomic and k-mer based metrics to establish database quality We gen-
erated 31-mer profiles for raw reads using Jellyfish. All k-mers that occurred at least twice in a given
sample were retained. We also generated MASH sketches from the non-human reads of each sample with
10 million unique minimizers per sketch. We calculated the Shannon’s entropy of k-mers by sampling
31-mers from a uniform 10,000 reads per sample.

We found clear correlations between k-mer based Jaccard distance (MASH) and taxonomic Jaccard
distance (Figure S2A). We also compared alpha diversity metrics (Figure S2B): Shannon entropy of
k-mers, and Shannon entropy of taxonomic profiles. As with pairwise distances these metrics were
correlated though noise was present. This noise may reflect sub-species taxonomic variation in our
samples.

Evaluation of unmapped DNA to establish aligner performance A large proportion of the
reads in our samples were not mapped to any reference sequence. There are three major reasons why
a fragment of DNA would not be classified in our analysis 1) The DNA originated from a non-human
and non-microbial species which would not be present in the databases we used for classification 2)
Our classifier (KrakenUniq) failed to classify a DNA fragment that was in the database due to slight
mismatch 3) The DNA fragment is not represented in any existing database. Explanations (1) and (2)
are essentially drawbacks of the database and computational model used, and we can quantify them by
mapping reads using a more sensitive aligner to a larger database, such as BLASTn (Altschul et al.,
1990), or ensemble methods for analysis (McIntyre et al., 2017). To estimate the proportion of reads
which could be assigned, we took 10k read subsets from each sample and mapped these to a set of large
database using BLASTn (see 2.1 for details). This resulted in 34.6% reads which could not be mapped
to any external database compared to 41.3% of reads mapped using our approach with KrakenUniq. We
note that our approach to estimate the fraction of reads that could be classified using BLASTn does
not account for hits to low quality taxa which would ultimately be discarded in our pipeline, and so
represents a worst-case comparison. Explanation (3) is altogether more interesting and we refer to this
DNA as true unclassified DNA. In this analysis we do not seek to quantify the origins of true unclassified
DNA except to postulate that it may derive from previously unknown species as have been identified in
other similar studies.

8.3.4 Computational analysis of sequencing data

We processed raw reads from all samples into taxonomic, functional and AMR profiles for each sample
using the MetaSUB Core Analysis Pipeline (Danko and Mason, 2020) (v1.0.0). This pipeline includes
a preprocessing stage followed by steps to evaluate the taxonomic, functional, and k-mer profiles of
metagenomic samples.

Sequence Preprocessing Sequence data were processed with AdapterRemoval (v2.17, Schubert et al.
(2016)) to remove low quality reads and reads with ambiguous bases. Subsequently reads were aligned to
the human genome (hg38, including alternate contigs) using Bowtie2 (v2.3.0, fast preset, Langmead and
Steven L Salzberg (2013)). Read pairs where both ends mapped to the human genome were separated
from read pairs where neither mate mapped. Read pairs where only one mate mapped were discarded.
Hereafter, we refer to the read sets as human reads and non-human reads.

Generating taxonomic profiles for samples We generated taxonomic profiles by processing non-
human reads with KrakenUniq (v0.3.2 Breitwieser et al. (2018)) using a database based on all draft
and reference genomes in NCBI/RefSeq Microbial (bacteria/archaea, fungi and virus) ca. March 2017.
KrakenUniq was selected because its high performance, as it has been demonstrated to be comparable or
having higher sensitivity than the best tools identified in a recent benchmarking study (McIntyre et al.
(2017)) on the same comparative dataset. In addition, KrakenUniq allows for tunable specificity and
identifies k-mers that are unique to particular taxa in a database. Reads are broken into k-mers and
searched against this database. Finally, the taxonomic makeup of a sample is given by identifying the
taxa with the greatest leaf to ancestor weight.

KrakenUniq reports the number of unique marker k-mers assigned to each taxon, as well as the total
number of reads, the fraction of available marker k-mers found, and the mean copy number of those k-
mers. We found that requiring more k-mers to identify a species resulted in a roughly log-linear decrease
in the total number of species identified without a plateau or any other clear point to set a threshold
(Figure S2C).
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At a minimum, for an initial taxonomic call, we required three reads assigned to a taxa with 64 unique
marker k-mers. This setting captures a group of taxa with low abundance but reasonable (∼ 10-20%)
coverage of the k-mers in their marker set (Figure S2E). However, this also allows for a number of taxa
with very high (105) duplication of the identified marker k-mers and very few k-mers per read which
we believe is biologically implausible. To remove these we filtered taxonomic calls further by requiring
that the number of reads not exceed 10

25 times the number of unique k-mers, unless the set of unique
k-mers was saturated (> 90% completeness). We include a full list of all taxonomic calls from all samples
including diagnostic values for each call. We do not attempt to classify reads below the species level in
this study.

Evaluating taxonomic calls We further evaluated prominent taxonomic classifications for sequence
complexity and genome coverage. For each microbe evaluated we calculated two indices generated using
a random subset of 152 samples: the average topological entropy of reads assigned to the microbe and the
Gini-coefficient of read positions on the microbial genome. For brevity we refer to these as mean sequence
entropy (MSE) and coverage equality (CE). The formula for topological entropy of a DNA sequence is
described by Koslicki (2011). Values close to 0 correspond to low-complexity sequences and values near 1
are high complexity. In this work we use a word size of 3 with an overall sequence length of 64 since this
readily fits into our reads. To find the MSE of a microbial classification we take the arithmetic mean of the
topological entropy of all reads that map to a given microbial genome in a sample. The Gini-coefficient
is a classic economic measure of income inequality. We repurpose it here to evaluate the evenness of
read coverage over a microbial classification. Reads mapping to a microbial genome are assigned to a
contiguous 10kbp bin and the Gini-coefficient of all bins is calculated. Like MSE, the Gini-coefficient is
bounded in [0, 1]. Lower values indicate greater inequality, very low values indicate that a taxon may be
misidentified from conserved and near conserved regions. We downloaded one representative genome per
species evaluated and mapped all reads from samples to using Bowtie2 (sensitive-local preset). Indices
were processed from alignments using a custom script. Species classifications with an average MSE less
than 0.75 or CE less than 0.1 were flagged.

Estimating relative abundance of taxa To determine relative abundance of taxa (where applicable)
in each profile we sub-sampled each sample to 100,000 classified reads, computed the proportion of reads
assigned to each taxon, and took the distribution of values from all samples. This was the minimum
number of reads sufficient to maintain taxonomic richness (Figure S2D). We chose sub-sampling (some-
times referred to as rarefaction in the literature) based on the study by Weiss et al. (2017), showing that
sub-sampling effectively estimates relative abundance. Note that we use the term prevalence to describe
the fraction of samples where a given taxon is found at any abundance and we use the term relative
abundance to describe the fraction of DNA in a sample from a given taxon.

Contextualizing samples We compared our samples to metagenomic samples from the Human Mi-
crobiome Project and a metagenomic study of European soil samples using MASH (Ondov et al., 2016),
a fast k-mer based comparison tool. We built MASH sketches from all samples with 10 million unique
k-mers to ensure a sensitive and accurate comparison. We used MASH’s built-in Jaccard distance func-
tion to generate distances between our samples and HMP samples. We then took the distribution of
distances to soil and to each particular human commensal community as a proxy for the actual similarity
of our samples to the site.

We used the Microbe Directory (Shaaban et al., 2018) to annotate taxonomic calls. The Microbe
Directory is a hand curated, machine readable, database of functional annotations for 5,000 microbial
species.

Functional and metabolic analysis of samples We analyzed the metabolic functions in each of our
samples by processing non-human reads with HUMAnN2 (Franzosa et al., 2018). We aligned all reads to
UniRef90 (Suzek et al., 2015) using DIAMOND (v0.8.36, (Buchfink et al., 2014)) and used HUMAnN2 to
produce estimate of pathway abundance and completeness. We filtered all pathways that were less than
50% covered in a given sample but otherwise took the reported pathway abundance as is after relative
abundance normalization (using HUMAnN2’s attached script).

High level categories of functional pathways were found by grouping positively correlated pathways
and manually annotating resulting clusters.
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Analysis of Antimicrobial Resistance Genes We generated profiles of antimicrobial resistance
genes using MegaRes (v1.0.1, Lakin et al. (2017)). To generate profiles from MegaRes, we mapped
non-human reads to the MegaRes database using Bowtie2 (v2.3.0, very-sensitive presets, Langmead and
Steven L Salzberg (2013)). Subsequently, alignments were analyzed using ResistomeAnalyzer (commit
15a52dd github.com/cdeanj/resistomeanalyzer) and normalized by total reads per sample and gene
length to give RPKMs. MegaRes includes an ontology grouping resistance genes into gene classes, AMR
mechanisms, and gene groups. AMR detection remains a difficult problem and we note that detection
of a homologous sequence to a known AMR gene does not necessarily imply an equivalent resistance in
our samples. Currently, the gold standard for detecting AMR is via culturing.

Known AMR genes can come from gene families with homologous regions of sequence. To reduce
spurious mapping from gene homology we used BLASTn to align all MegaRes AMR genes against
themselves. We considered any connected group of genes with an average nucleotide identity of 80%
across 50% of the gene length as a set of potentially confounded genes. We collapsed all such groups
into a single pseudo-gene with the mean abundance of all constituent genes. Before clustering genes we
removed all genes which were annotated as requiring SNP verification to predict resistance.

Analysis of Alpha and Beta Diversity Inter-sample (beta) diversity was measured by the Jaccard
distances between the taxonomic and functional profiles of samples. Jaccard distance does not use relative
abundance information. Matrices of Jaccard distances were produced using built in SciPy (Virtanen et al.,
2020) functions treating all elements greater than 0 as present. Hierarchical clustering (average linkage)
was performed on the matrix of Jaccard distances using SciPy.

Dimensionality reduction of taxonomic and functional profiles was performed using UMAP (McInnes
et al., 2018) on the matrix of Jaccard distances with 100 neighbours (UMAP-learn package, random
seed of 42). We did not use Principal Component Analysis as a preprocessing step before UMAP as is
sometimes done for high dimensional data.

Intra-sample (alpha) diversity was measured by using Species Richness and Shannon’s Entropy. We
took species richness as the total number of detected species in a sample after rarefaction to 1 million
reads. Shannon’s entropy is defined as H = −

∑
ailog2ai where ai is the relative abundance of taxon i

in the sample. This formulation is robust to sample read depth and accounts for the relative size of each
group in diversity estimation. For alpha diversity based on k-mers or pathways, we simply substitute
the relative abundance of a species for the relative abundance of the relevant type of object.

8.3.5 Identifying Bacteria and Archaea

Metagenomic Assembly and Binning All samples were assembled with metaSPAdes (v3.10.1 Nurk
et al. (2017)) using the Bridges system at the Pittsburgh Supercomputing Center (PSC) available through
the Extreme Science and Engineering Discovery Environment (XSEDE) (Nystrom et al., 2015; Towns
et al., 2014); contigs with length <1000nt were excluded from further analysis. We mapped reads back
to the remaining contigs via Bowtie2 (v2.3.4 Langmead and Steven L Salzberg (2013)) using the –very-
sensitive-local preset to generate coverage metrics for each contig. Contigs with coverage information
were binned using MetaBAT2 (v2.12.1 Kang et al. (2019)) with default parameters, resulting in 14,080
bins. Draft genome quality of each bin was assessed via CheckM (v1.0.13 Parks et al. (2015)) using
the lineage_wf workflow with default parameters. Using the strategy proposed by Parks et al. (2018)
we filtered bins by quality score, defined as QS = completeness - 5 * contamination; bins with QS
< 50 were removed from consideration. The remaining 6,107 bins were labeled by quality based on
the MIMAG standard (Bowers et al. (2018)), with minor modification: 1,448 high quality (complete-
ness >90%, contamination <5%, strain heterogeneity <0.5%) bins, 4,532 medium quality (completeness
>50%, contamination <5%) bins, all others low quality. Bins of at least medium quality were selected
as acceptable Metagenome Assembled Genomes (MAGs) (5,980 total). PSC Bridges and XSEDE were
used in the processing of these assemblies (Nystrom et al. (2015), Towns et al. (2014)).

Identifying replicated MAGs OTUs (representative MAGs from a cluster) were chosen with a two-
step clustering strategy. Rough single-linkage clustering formed primary clusters of MAGs based on Mash
ANI (v2.1.1), with intra-cluster identity at 90%. Though Mash ANI can be inaccurate for potentially
incomplete genomes (Olm et al. (2017)), we can leverage the technique’s speed for the many pairwise
comparisons needed in this granular step. Within primary clusters, MAGs were compared pairwise
by a more accurate whole-genome ANI (gANI) via dnadiff (v1.3) from MUMmer (v3.23 Kurtz et al.
(2004)). Secondary, more refined clusters were grouped based n gANI using average-linkage hierarchical
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clustering from the R package dendextend (v1.12.0 Galili (2015)). A gANI cut-off of 95% resulted in
1,304 representative OTUs.

Matching OTUs to Reference Genomes OTUs were compared against reference genomes from
RefSeq (release 96 from November 2019, complete bacterial and archaeal genomes only, with “Exclude
anomalous” and “Exclude derived from surveillance project” applied) as well as the full Integrated Gut
Genomes (IGG) dataset (v1.0 Nayfach et al. (2019); 23,790 representative genomes). A MinHash sketch
was created for each reference genome via Mash (v2.1.1) with default parameters to find Mash distances
and select candidate “best matches” from each reference database. Then, dnadiff (v1.3) was used to
further quantify differences between each OTU and its best match from either database. ANI between
OTUs and their matches was found as “M-to-M AvgIdentity” in the query report column (ANI 95% over
60% OTU sequence qualified as a match).

OTU Taxonomic Assignment OTUs were placed into a bacterial or archaeal reference tree (based
on the Genome Database Taxonomy, GTDB Parks et al. (2020)) and then assigned taxonomic clas-
sifications using GTDB-Tk (v1.0.2 Chaumeil et al. (2019)). GTDB-Tk relies on 120 bacterial and 122
archaeal marker genes; domain assignment is chosen based on domain-specific marker content of the OTU
sequence. Using the GTDB-Tk placements, we built an OTU-only bacterial phylogeny with FastTree
(v2.1.10 Price et al. (2010)). The tree was visualized using iTOL (v5.5 Letunic and Bork (2019)).

Viral Discovery We followed the protocol described by Paez-Espino et al. (2017). Briefly, we used
an expanded and curated set of viral protein families (VPFs) as bait in combination with recommended
filtering steps to identify 16,584 UViGs directly from all MetaSUB metagenomic assemblies greater than
5kb. Then, the UViGs were clustered with the content of the IMG/VR system (a total of over 730k viral
sequences including isolate viruses, prophages, and UViGs from all kind of habitats). The clustering
step relied on a sequence-based classification framework (based on 95% sequence identity across 85% of
the shortest sequence length) followed by the markov clustering (mcl). This approach yielded 2,009 viral
clusters (ranging from 2-611 members) and 9,605 singletons (or viral clusters of 1 member), sequences
that failed to cluster with any sequence from the dataset or the references from IMG/VR, resulting in a
total of 11,614 vOTUs. We define viral species from vOTUs as sequences sharing at least 95% identity
over 85% of their length. Out of this total MetaSUB viral diversity, only 686 vOTUs clustered with any
known viral sequence in IMG/VR.

Identifying Host Virus Interactions We used two computational methods to reveal putative host-
virus connections (Paez-Espino et al., 2016a). (1) For the 686 vOTUs that clustered with viral sequences
from the IMG/VR system, we projected the known host information to all the members of the group
(total of 2,064 MetaSUB UViGs). (2) We used bacterial/archaeal CRISPR-Cas spacer matches (from
the IMG/M 1.1 million isolate spacer database) to the UViGs (allowing only for 1 SNP over the whole
spacer length) to assigned a host to 1,915 MetaSUB vOTUs. Additionally, we also used a database of
over 20 million CRISPR-Cas spacers identified from metagenomic contigs from the IMG/M system with
taxonomy assigned. Since some of these spacers may derive from short contigs these results should be
interpreted with caution.

CRISPR Array Detection and Annotation Using CRISPRCasFinder (Couvin et al., 2018) the
MetaSUB database was investigated to predict CRISPR arrays and annotate them with their corre-
sponding predicted type based on CRISPR-Cas genes in their vicinity. CRISPRCasFinder was run with
default parameters, “-so” and “-cas” options to identify cas genes. The precision and recall of the virus
detection was 99.6% and 37.5% respectively, as previously reported by (Paez-Espino et al., 2016b).

CRISPR-Cas types were assigned to arrays based on detected cas genes within a 10 kilobases vicinity.
Cases where CRISPRCasFinder associated several cas genes of contradicting CRISPR-Cas types with
the same CRISPR array were regarded as unclear annotation. This procedure yielded 838,532 predicted
CRISPR arrays (with additional CRISPR arrays predicted with default parameters for PILER-CR), of
which, 3,245 CRISPR arrays had unambiguous annotation, resulting in 43,656 unique spacers queried
against genomic databases using BLASTN.

Matching CRISPR Spacers to Organism Databases In order to associate detected spacers within
defined groups (plasmids, prophages, viruses) four different genomic databases were aggregated to be
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searched with BLASTN. The aggregated database consisted of IMG/VR, PHASTER, and PLSDB along-
side bacterial and archaeal genomic sequences from the National Center for Biotechnology Information
(NCBI). All database downloads were made on the 28th January 2020. Detected and annotated spac-
ers were searched against the databases mentioned above using BLASTN with the following additional
arguments, which correspond to the default parameters of CRISPRTarget: word_size=7, evalue=1,
gapopen=10, gapextend=2, penalty=-1, reward=1.

8.3.6 GeoDNA Sequence Search

For building the sequence graph index, each sample was processed with KMC (version 3, (Kokot et al.,
2017)) to convert the reads in FASTA format into lists of k-mer counts, using different values of k ranging
from 13 to 19 in increments of 2. All k-mers that contained the character “N” or occurred in a sample less
than twice were removed. For each value of k, we built a separate index, consisting of a labeled de Bruijn
graph, using an implicit representation of the complete graph and a compressed label representation
based on Multiary Binary Relation Wavelet Trees (Multi-BRWT). For further details, we refer to the
manuscript (Karasikov et al., 2020). To build the index, for each sample the KMC k-mer count lists were
transformed into de Bruijn graphs, from which path covers in the form of contig sets were extracted and
stored as intermediate FASTA files. The contig sets of each sample were then transformed into annotation
columns (one column per sample) by mapping them onto an implicit complete de Bruijn graph of order
k. All annotation columns were then merged into a joint annotation matrix and transformed into Multi-
BRWT format. Finally, the topology of the Multi-BRWT representation was optimized by relaxing its
internal tree arity constraints to allow for a maximum arity of 40.

8.4 Quantification and statistical analysis
For each statistical test in this manuscript, the type of test, the size (n) of the test, and statistical
summaries or measures of dispersion are clearly defined in the figure legends or in the accompanying text
throughout the manuscript.

8.5 Additional resources
Interactive visualizations and maps: https://pngb.io/metasub-maps

BLAST-like sequence search tool: dnaloc.ethz.ch

Raw and Analyzed Data Files: https://pngb.io/metasub-2021

Collated Metadata: https://pngb.io/metasub-2021, https://github.com/MetaSUB/MetaSUB-metadata

Jupyter notebooks used to generate the figures and statistics in this study: https://www.
github.com/MetaSUB/main_paper_figures

24

https://pngb.io/metasub-maps
dnaloc.ethz.ch
https://pngb.io/metasub-2021
https://pngb.io/metasub-2021
https://github.com/MetaSUB/MetaSUB-metadata
https://www.github.com/MetaSUB/main_paper_figures
https://www.github.com/MetaSUB/main_paper_figures


9 Figure and Table Legends
Table 1. Sample Counts. The number of samples collected from each region.

Figure 1. The Core Microbiome. A) Taxonomic tree showing 31 core taxa, annotated according
to gram stain, ability to form biofilms, and whether the bacteria is a human commensal species. B)
Distribution of species prevalence from all samples and normalized by cities. Vertical lines show defined
group cutoffs. C) prevalence and distribution of relative abundances of the 75 most abundant taxa.
Mean relative abundance, standard deviation, and kurtosis of the abundance distribution are shown.
D) Rarefaction analysis showing the number of species detected in randomly chosen sets of samples.
E) MASH (k-mer based) similarity between MetaSUB samples and HMP skin microbiome samples, by
continent. F) MASH (k-mer based) similarity between MetaSUB samples and soil microbiome samples,
by continent. G) Fraction of reads aligned (via BLAST) to different databases at different Average
Nucleotide Identities. See also Figure S1.

Figure 2. Differences at Global Scale. A) UMAP of taxonomic profiles based on Jaccard distance
between samples. Colored by the region of origin for each sample. Axes are arbitrary and without
meaningful scale. The color key is shared with panel B. B) Association of the first 25 principal components
of sample taxonomy with climate, continent, and surface material. C) Distribution of ma1jo0r phyla,
sorted by hierarchical clustering of all samples and grouped by continent. D) Distribution of high-level
groups of functional pathways, using the same order as taxa (C). E) Distribution of AMR genes by drug
class (as defined in MegaRes), using the same order as taxa (C). Note that MLS is macrolide-lincosamide-
streptogramin. See also Figure S3.

Figure 3. Microbial Signatures. A) Schematic of GeoDNA representation generation – Raw se-
quences of individual samples for all cities are transformed into lists of unique k-mers (left). After
filtration, the k-mers are assembled into a graph index database. Each k-mer is then associated with
its respective city label and other informative metadata, such as geo-location and sampling information
(top middle). Arbitrary input sequences (top right) can then be efficiently queried against the index,
returning a ranked list of matching paths in the graph together with metadata and a score indicating
the percentage of k-mer identity (bottom right). The geo-information of each sample is used to highlight
the locations of samples that contain sequences identical or close to the queried sequence (middle right).
B) Classification accuracy of a random forest model for assigning city labels to samples as a function
of the size of the training set. C) Distribution of Endemicity scores (term frequency inverse document
frequency) for taxa in each region. D) Prediction accuracy of a random forest model for a given feature
(rows) in samples from a city (columns) that were not present in the training set. Rows and columns are
sorted by average accuracy. Continuous features (e.g. Population) were discretized. See also Figure S4.

Figure 4. Antimicrobial Resistance Genes. A) Prevalence of AMR genes with resistance to
particular drug classes. B) Abundance of AMR gene classes when detected, by drug class. C) Number
of detected AMR genes by city. D) Co-occurrence of AMR genes in samples (Jaccard index) annotated
by drug class. See also Figure S5.

Figure 5. Newly Observed Genetic Sequences. A) Taxonomic tree for Metagenome Assembled
Genomes (MAGs) found in the MetaSUB data. The outer black and the white ring indicate if the MAG
matches a known species, inner ring indicates phyla of the MAG. B) Top: the number of samples where
the most prevalent MAGs were found. Bottom: The regional breakdown of samples where the MAG
was found. C) Mapping rate of CRISPR Spacers from MetaSUB data to viral genomes in RefSeq and
viral genomes found in MetaSUB data. D) Ge- ographic distribution of viral genomes found in MetaSUB
data. E F) Fractional breakdowns of identifiable CRISPR systems found in the MetaSUB data.

Table S1. Sample Counts by City, Related to Table 1.

Table S2. Covariate Variance, Related to Figure 2. The sample variance that can be explained
by each factor, in isolation.
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Supplemental Figure 1. Core Urban Taxa and Ecological Trends, Related to Figure 1.
A) Jaccard similarity of MASH indices to HMP samples for different surface types. B) Fraction of
reads assigned at 80% ANI to different databases by BLAST for each region. C) Correlation between
species richness and latitude. Rich- ness decreases significantly with latitude D) Neighbourhood effect.
Taxonomic distance weakly correlates with geographic distance within cities.

Supplemental Figure 2. Quality Control and Metrics, Related to Figures 1 and 2. A)
Jaccard distance of taxonomic profiles vs MASH Jaccard distance of k-mers B) Shannon’s Entropy of
taxonomic profiles vs Shannon’s Entropy of k-mers C) Number of species detected as k-mer threshold
increases for 100 randomly selected samples D) Number of species detected as number of sub-sampled
reads increase E) Number of reads by region F) PCR Qubit by surface material G) Taxonomic Richness
in Cases vs. Types of Controls H) Flowcells vs quality control metrics See also Methods. I) k-mer counts
compared to number of reads for species level annotations in 100 randomly selected samples, colored by
coverage of marker k-mer set.

Supplementary Figure 3. Diversity and Variation Related to Figure 2. A) UMAP of taxo-
nomic profiles colored by climate classification B) UMAP of taxonomic profiles colored by surface type
C) UMAP of functional profiles colored by region D) Taxonomic shift over time in cities with two years of
sampling. UMAP dimensionality reduction of taxonomic profiles for each sample shows variation within
cities across time (2016, circles and 2017, triangles) though generally less variation than between cities
(colors) E, F, G) Sources of variation for AMRs. Association of the first 25 principal components of
AMR genes with climate, region, and surface material.

Supplemental Figure 4. Microbial Signatures in the Urban Environment, Related to Figure
3. A) Classification accuracy that would be achieved by a random model predicting features (rows) for
held out cities (columns) B) Classification accuracy of a random forest model predicting city labels for
held out samples from antimicrobial resistance genes.

Supplemental Figure 5. Antimicrobial Resistance in the Urban Environment, Related to
Figure 4. A) Prevalence of AMR genes with a particular resistance mechanism B) Abundance of
AMR genes when categorized by resistance mechanism C) Distribution of reads per gene (normalized by
kilobases of gene length) for AMR gene calls. The vertical red line indicates that 99% of AMR genes have
more than 9.06 reads per kilobase and would still be called at a lower read depth. D) Rarefaction analysis
of antimicrobial resistance genes. Curve does not flatten suggesting we would identify more AMR genes
with more samples. E) Neighbourhood effect. Jaccard distance of AMR genes weakly correlates with
geographic distance within cities. F) Relationship of the number of AMR genes (richness) to the number
of species (richness) in each sample. No clear correlation is observed.

Supplemental Video. MetaSUB Sampling Protocol, Related to Methods and Table 1.
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Table 1: Sample Counts, The number of samples collected from each region.
Pilot CSD16 CSD17 Other Total

Region

North America 28 284 371 276 959
East Asia 34 26 1297 0 1357
Europe 177 310 939 1 1427
Sub Saharan Africa 0 116 192 0 308
South America 20 44 199 68 331
Middle East 0 100 15 0 115
Oceania 0 94 32 0 126
Background Control 0 0 40 0 40
Lab Control 0 0 20 6 26
Positive Control 0 0 33 6 39
Total 259 974 3138 357 4728
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Figure 1: The core microbiome A) Taxonomic tree showing 31 core taxa, annotated according to gram stain,
ability to form biofilms, and whether the bacteria is a human commensal species. B) Distribution of species
prevalence from all samples and normalized by cities. Vertical lines show defined group cutoffs. C) prevalence and
distribution of relative abundances of the 75 most abundant taxa. Mean relative abundance, standard deviation,
and kurtosis of the abundance distribution are shown. D) Rarefaction analysis showing the number of species
detected in randomly chosen sets of samples. E) MASH (k-mer based) similarity between MetaSUB samples and
HMP skin microbiome samples, by continent. F) MASH (k-mer based) similarity between MetaSUB samples
and soil microbiome samples, by continent. G) Fraction of reads aligned (via BLAST) to different databases at
different Average Nucleotide Identities. See also Figure S1.
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Figure 2: Differences at global scale A) UMAP of taxonomic profiles based on Jaccard distance between samples.
Colored by the region of origin for each sample. Axes are arbitrary and without meaningful scale. The color key
is shared with panel B. B) Association of the first 25 principal components of sample taxonomy with climate,
continent, and surface material. C) Distribution of major phyla, sorted by hierarchical clustering of all samples
and grouped by continent. D) Distribution of high-level groups of functional pathways, using the same order as
taxa (C). E) Distribution of AMR genes by drug class (as defined in MegaRes), using the same order as taxa
(C). Note that MLS is macrolide-lincosamide-streptogramin. See also Figure S3.
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Figure 3: Microbial Signatures A) Schematic of GeoDNA representation generation – Raw sequences of individual
samples for all cities are transformed into lists of unique k-mers (left). After filtration, the k-mers are assembled
into a graph index database. Each k-mer is then associated with its respective city label and other informative
metadata, such as geo-location and sampling information (top middle). Arbitrary input sequences (top right)
can then be efficiently queried against the index, returning a ranked list of matching paths in the graph together
with metadata and a score indicating the percentage of k-mer identity (bottom right). The geo-information of
each sample is used to highlight the locations of samples that contain sequences identical or close to the queried
sequence (middle right). B) Classification accuracy of a random forest model for assigning city labels to samples as
a function of the size of the training set. C) Distribution of Endemicity scores (term frequency inverse document
frequency) for taxa in each region. D) Prediction accuracy of a random forest model for a given feature (rows) in
samples from a city (columns) that were not present in the training set. Rows and columns are sorted by average
accuracy. Continuous features (e.g. Population) were discretized. See also Figure S4.
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Figure 4: Antimicrobial Resistance Genes. A) Prevalence of AMR genes with resistance to particular drug
classes. B) Abundance of AMR gene classes when detected, by drug class. C) Number of detected AMR genes
by city. D) Co-occurrence of AMR genes in samples (Jaccard index) annotated by drug class. See also Figure
S5.
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Figure 5: Newly Observed Genetic Sequences A) Taxonomic tree for Metagenome Assembled Genomes (MAGs)
found in the MetaSUB data. The outer black and the white ring indicate if the MAG matches a known species,
inner ring indicates phyla of the MAG. B) Top: the number of samples where the most prevalent MAGs were
found. Bottom: The regional breakdown of samples where the MAG was found. C) Mapping rate of CRISPR
Spacers from MetaSUB data to viral genomes in RefSeq and viral genomes found in MetaSUB data. D) Ge-
ographic distribution of viral genomes found in MetaSUB data. E & F) Fractional breakdowns of identifiable
CRISPR systems found in the MetaSUB data
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Table S1: Sample Counts by City, See also Table 1
Pilot CSD16 CSD17 Other Total

Region city

East Asia Region Total 34.0 26.0 1300 0 1357
Fukuoka 0.0 0.0 3 0 158
Hanoi 0.0 0.0 16 0 16
Hong Kong 12.0 0.0 712 0 724
Kuala Lumpur 0.0 0.0 30 0 30
Sendai 0.0 0.0 32 0 32
Seoul 12.0 0.0 80 0 92
Shanghai 10.0 0.0 0 0 10
Singapore 0.0 0.0 192 0 192
Taipei 0.0 0.0 94 0 94
Tokyo 0.0 26.0 132 0 158
Yamaguchi 0.0 0.0 9 0 9

Europe Region Total 177.0 310.0 939 1 1427
Barcelona 25.0 99.0 0 0 124
Belfast 0.0 0.0 5 0 5
Berlin 0.0 55.0 1 0 56
Birmingham 0.0 0.0 5 1 6
Bradford 0.0 0.0 4 0 4
Bury 0.0 0.0 6 0 6
Eastbourne 0.0 0.0 6 0 6
Eden 0.0 0.0 5 0 5
Edinburgh 0.0 0.0 6 0 6
Islington 0.0 0.0 5 0 5
Jaywick 0.0 0.0 6 0 6
Kensington 0.0 0.0 6 0 6
Kyiv 0.0 0.0 97 0 97
Lands End 0.0 0.0 5 0 5
Lisbon 28.0 60.0 0 0 88
London 0.0 0.0 534 0 534
Marseille 0.0 96.0 16 0 112
Naples 0.0 0.0 16 0 16
Newcastle 0.0 0.0 5 0 5
Oslo 12.0 0.0 16 0 28
Paris 0.0 0.0 16 0 16
Porto 112.0 0.0 0 0 112
Sofia 0.0 0.0 16 0 16
Stockholm 0.0 0.0 62 0 62
Swansea 0.0 0.0 6 0 6
Vienna 0.0 0.0 16 0 16
Zurich 0.0 0.0 79 0 79

Middle East Region Total 0.0 100.0 15 0 115
Doha 0.0 100.0 15 0 115
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Table S1: Sample Counts by City Continued, See also Table 1
project Pilot CSD16 CSD17 Other Total

continent city

North America Region Total 28.0 284.0 371 276 959
Baltimore 0.0 0.0 23 0 23
Denver 0.0 24.0 23 0 47
Fairbanks 0.0 141.0 0 0 141
Mexico City 10.0 0.0 0 0 10
Minneapolis 0.0 0.0 16 0 16
New York City 0.0 103.0 279 276 658
Sacramento 18.0 16.0 0 0 34
San Francisco 0.0 0.0 30 0 30

Oceania Region Total 0.0 94.0 32 0 126
Auckland 0.0 16.0 0 0 16
Brisbane 0.0 0.0 16 0 16
Hamilton 0.0 16.0 0 0 16
Honolulu 0.0 0.0 16 0 16
Sydney 0.0 62.0 0 0 62

South America Region Total 20.0 44.0 199 68 331
Bogota 0.0 17.0 0 0 17
Montevideo 20.0 0.0 0 0 20
Ribeirao Preto 0.0 0.0 93 0 93
Rio De Janeiro 0.0 0.0 77 68 145
Santiago 0.0 27.0 0 0 27
Sao Paulo 0.0 0.0 29 0 29

Sub Saharan Africa Region Total 0.0 116.0 192 0 308
Ilorin 0.0 90.0 134 0 224
Offa 0.0 26.0 58 0 84
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Table S2: Covariate Variance. The sample variance that can be explained by each factor, in isolation.
See also Figure 2

Factor Variance Explained

City 19%
City Population Density 0%
City Ave June Temp 4%
City Elevation 2%
Coastal City 1%
Surface Material 4%
Koppen Climate Classification 8%
Setting 2%
Above/Below Ground 7%
Continent 11%
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Figure S1: Core Urban Taxa and Ecological Trends, Supplemental. See also 1. A) Jaccard similarity of MASH
indices to HMP samples for different surface types. B) Fraction of reads assigned at 80% ANI to different
databases by BLAST for each region. See also Figure 1. C) Correlation between species richness and latitude.
Richness decreases significantly with latitude D) Neighbourhood effect. Taxonomic distance weakly correlates
with geographic distance within cities.
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Figure S2: Quality Control and Metrics, Supplemental. See also figures 1 and 2. A) Jaccard distance of
taxonomic profiles vs MASH Jaccard distance of k-mers B) Shannon’s Entropy of taxonomic profiles vs Shannon’s
Entropy of k-mers C) Number of species detected as k-mer threshold increases for 100 randomly selected samples
D) Number of species detected as number of sub-sampled reads increase E) Number of reads by region F) PCR
Qubit by surface material G) Taxonomic Richness in Cases vs. Types of Controls H) Flowcells vs quality control
metrics See also Methods. I) k-mer counts compared to number of reads for species level annotations in 100
randomly selected samples, colored by coverage of marker k-mer set.

44



Figure S3: Diversity and Variation, Supplemental to figure 2. A) UMAP of taxonomic profiles colored by climate
classification B) UMAP of taxonomic profiles colored by surface type C) UMAP of functional profiles colored by
region D) Taxonomic shift over time in cities with two years of sampling. UMAP dimensionality reduction of
taxonomic profiles for each sample shows variation within cities across time (2016, circles and 2017, triangles)
though generally less variation than between cities (colors) E, F, & G) Sources of variation for AMRs. Association
of the first 25 principal components of AMR genes with climate, region, and surface material.
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Figure S4: Microbial Signatures in the Urban Environment, Supplemental. See also Figure 3. A) Classification
accuracy that would be achieved by a random model predicting features (rows) for held out cities (columns) B)
Classification accuracy of a random forest model predicting city labels for held out samples from antimicrobial
resistance genes.
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Figure S5: Antimicrobial Resistance in the Urban Environment, Supplemental. See also 4. A) Prevalence of
AMR genes with a particular resistance mechanism B) Abundance of AMR genes when categorized by resistance
mechanism C) Distribution of reads per gene (normalized by kilobases of gene length) for AMR gene calls. The
vertical red line indicates that 99% of AMR genes have more than 9.06 reads per kilobase and would still be
called at a lower read depth. D) Rarefaction analysis of antimicrobial resistance genes. Curve does not flatten
suggesting we would identify more AMR genes with more samples. E) Neighbourhood effect. Jaccard distance
of AMR genes weakly correlates with geographic distance within cities. F) Relationship of the number of AMR
genes (richness) to the number of species (richness) in each sample. No clear correlation is observed.
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