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Nuclear spins were among the first physical plat-1

forms to be considered for quantum information2

processing[1, 2], because of their exceptional quan-3

tum coherence[3] and atomic-scale footprint. How-4

ever, their full potential for quantum computing5

has not yet been realized, due to the lack of meth-6

ods to link nuclear qubits within a scalable de-7

vice combined with multi-qubit operations with8

sufficient fidelity to sustain fault-tolerant quan-9

tum computation. Here we demonstrate univer-10

sal quantum logic operations using a pair of ion-11
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implanted 31P nuclei in a silicon nanoelectronic de- 12

vice. A nuclear two-qubit controlled-Z gate is ob- 13

tained by imparting a geometric phase to a shared 14

electron spin[4], and used to prepare entangled 15

Bell states with fidelities up to 94.2(2.7)%. The 16

quantum operations are precisely characterised us- 17

ing gate set tomography (GST)[5], yielding one- 18

qubit average gate fidelities up to 99.95(2)%, 19

two-qubit average gate fidelity of 99.37(11)% and 20

two-qubit preparation/measurement fidelities of 21

98.95(4)%. These three metrics indicate that nu- 22

clear spins in silicon are approaching the perfor- 23

mance demanded in fault-tolerant quantum pro- 24

cessors [6]. We then demonstrate entanglement 25

between the two nuclei and the shared electron by 26

producing a Greenberger-Horne-Zeilinger three- 27

qubit state with 92.5(1.0)% fidelity. Since electron 28

spin qubits in semiconductors can be further cou- 29

pled to other electrons[7, 8, 9] or physically shut- 30

tled across different locations[10, 11], these results 31
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establish a viable route for scalable quantum in-32

formation processing using nuclear spins.33

34

35

Nuclear spins are the most coherent quantum systems36

in the solid state [3, 12], owing to their extremely weak37

coupling to the environment. In the context of quan-38

tum information processing, the long coherence is associ-39

ated with record single-qubit gate fidelities [13]. However,40

the weak coupling poses a challenge for multi-qubit logic41

operations. Using spin-carrying defects in diamond [14]42

and silicon carbide [15], this problem can be addressed by43

coupling multiple nuclei to a common electron spin, thus44

creating quantum registers that can sustain small quan-45

tum logic operations and error correction [16]. Exciting46

progress is being made on linking several such defects via47

optical photons [17, 18].48

Still missing, however, is a pathway to exploit the49

atomic-scale dimension of nuclear spin qubits to engineer50

scalable quantum processors, where densely-packed qubits51

are integrated and operated within a semiconductor chip52

[19]. This requires entangling the nuclear qubits with elec-53

trons that can either be physically moved, or entangled54

with other nearby electrons. It also requires interspersing55

the electron-nuclear quantum processing units with spin56

readout devices [20]. Here we show experimentally that57

silicon - the material underpinning the whole of modern58

digital information technology - is the natural system in59

which to develop dense nuclear spin based quantum pro-60

cessors [1].61

One electron – two nuclei quantum processor62

The experiments are conducted on a system of two 31P63

donor atoms, introduced in an isotopically purified 28Si64

substrate by ion implantation (see Methods). A three-65

qubit processor is formed by using an electron (e) with66

spin S = 1/2 (basis states |↑〉 , |↓〉) and two nuclei (Q1, Q2)67

with spin I = 1/2 (basis states |⇑〉 , |⇓〉). Metallic struc-68

tures on the surface of the chip provide electrostatic con-69

trol of the donors, create a single-electron transistor (SET)70

charge sensor, and deliver microwave and radiofrequency71

signals through a broadband antenna (Fig. 1a, Extended72

Data Fig. 1). With this setup, we can perform single-shot73

electron spin readout [20], and high fidelity (≈ 99.9%)74

single-shot quantum nondemolition readout of the nuclear75

spins [21], as well as nuclear magnetic resonance (NMR)76

and electron spin resonance (ESR) [22] on all spins in-77

volved (see Methods).78

The ESR spectra in Fig. 1c exhibit four resonances.79

This means that the ESR frequency depends upon the80

state of two nuclei, to which the electron is coupled by con- 81

tact hyperfine interactions A1 ≈ 95 MHz and A2 ≈ 9 MHz. 82

We adopt labels where, for instance, νe|⇓⇓ represents the 83

frequency at which the electron spin undergoes transitions 84

conditional on the two nuclear spin qubits being in the 85

|Q1Q2〉 = |⇓⇓〉 state, and so on. The values of A1, A2 can 86

be independently checked by measuring the frequencies 87

νQ1|↓, νQ2|↓ at which each nucleus responds while the elec- 88

tron is in the |↓〉 state (Supplementary Information S1). 89

The hyperfine-coupled electron could either be the first 90

or the third electron bound to the donor cluster. Since 91

its spin relaxation time T1e is three orders of magnitude 92

shorter than expected from a one-electron system (Ex- 93

tended Data Fig. 3), we interpret the ESR spectrum in 94

Fig. 1c as describing the response of the third electron 95

bound to a 2P donor system. 96

An effective-mass calculation of the wavefunction of the 97

third electron in a 2P system (see Methods) reproduces the 98

observed values of A1 and A2 by assuming donors spaced 99

6.5 nm apart, and subjected to an electric field 2 mV/nm 100

that pulls the electron wavefunction more strongly to- 101

wards donor 1 (Fig. 1b). The 31P nuclei in this 2P cluster 102

are spaced more widely than those produced by scanning 103

probe lithography [8, 23], where the sub-nanometre inter- 104

donor spacing causes a strongly anisotropic hyperfine cou- 105

pling, which randomizes the nuclear spin state each time 106

the electron is removed from the cluster for spin readout 107

[24]. Here, instead, the probability of flipping a nuclear 108

spin by electron ionisation is of order 10−6 (Extended Data 109

Fig. 5), meaning that our nuclear readout is almost per- 110

fectly quantum nondemolition. 111

Nuclear two-qubit operations 112

We first consider the two 31P nuclear spins as the 113

qubits of interest. One-qubit logic operations are triv- 114

ially achieved by NMR pulses [21] (see Methods), where 115

A1 6= A2 provides the spectral selectivity to address 116

each qubit individually (Fig. 1c). Two-qubit operations 117

are less trivial, since the nuclei are not directly coupled 118

to each other (Supplementary Information S1 and S9). 119

They are, however, hyperfine-coupled to the same elec- 120

tron. This allows the implementation of a geometric two- 121

qubit controlled-Z (CZ) gate [4, 16]. 122

When a quantum two-level system is made to trace a 123

closed trajectory on its Bloch sphere, its quantum state 124

acquires a geometric phase equal to half the solid angle 125

enclosed by the trajectory [25]. Fig. 1d illustrates how 126

an electron 2π-pulse at the frequency νe|⇓⇓ (see Fig. 1d) 127

constitutes a nuclear CZ 2-qubit gate. Starting from the 128

state |⇓〉⊗(|⇓〉+ |⇑〉)/
√

2 ≡ (|⇓⇓〉+ |⇓⇑〉)/
√

2, the electron 129
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Fig. 1 | Operation of a one-electron – two-nuclei quantum processor. a, Artist’s impression of a pair of
31P nuclei (red), asymmetrically coupled to the same electron (blue). The spins are controlled by oscillating magnetic
fields (yellow) generated on-chip. b, Effective-mass calculation of the wavefunction ψ(y, z) of the third electron on the
2P cluster. The observed values of hyperfine coupling are well reproduced by assuming a 6.5 nm spacing between the
donors. c, Experimental NMR spectrum of the 31P nuclei (top) and ESR spectrum of the shared electron (bottom)
at B0 = 1.33 T, along with energy level diagram (right) of the eight-dimensional Hilbert space (spacings not to scale).
The spectra yield the hyperfine couplings A1 ≈ 95 MHz and A2 ≈ 9 MHz between the electron and the nuclear qubits
Q1, Q2. d, Implementation of a geometric two-qubit CZ gate. A conditional π phase shift is acquired when a 2π
rotation is applied on the electron spin at frequency νe|⇓⇓, i.e. conditional on the nuclear spins being |⇓⇓〉. This
operation corresponds to the CZ gate on the nuclei when restricted to the electron |↓〉 subspace.

X2π pulse at νe|⇓⇓ introduces a phase factor eiπ = −1130

to the |⇓⇓〉 branch of the superposition, resulting in the131

state (− |⇓⇓〉+ |⇓⇑〉)/
√

2 ≡ |⇓〉 ⊗ (− |⇓〉+ |⇑〉)/
√

2, i.e. a132

rotation of Q2 by 180 degrees around the z-axis of its Bloch133

sphere, which is the output of a CZ operation. Conversely,134

if the initial state of Q1 were |⇑〉, the pulse at νe|⇓⇓ would135

have no effect on the electron, leaving the nuclear qubits136

unaffected.137

A nuclear controlled-NOT (CNOT) gate is obtained by138

sandwiching the CZ gate between a nuclear −π/2 and π/2139

pulse (Extended Data Fig. 6a). Applying an ESR X2π140

pulse at νe|⇑⇓ transforms the sequence into a zero-CNOT141

gate, i.e. a gate that flips Q2 when Q1 is in the |0〉 ≡142

|⇑〉 state (Extended Data Fig. 6b, and Supplementary143

Information S2).144

We apply this universal gate set (Fig. 2a) to produce145

each of the four maximally-entangled Bell states of the146

two nuclear spins, |Φ±〉 = (|⇓⇓〉 ± |⇑⇑〉)/
√

2 and |Ψ±〉 =147

(|⇓⇑〉 ± |⇑⇓〉)/
√

2. We reconstruct the full density matri-148

ces of the Bell states using maximum likelihood quantum149

state tomography [26] (Supplementary Information S3).150

The reconstructed states (Fig. 2f) have fidelities of up to151

94.2(2.7)%, and concurrences as high as 0.93(4), proving152

the creation of genuine two-qubit entanglement. Here and153

elsewhere, error bars indicate 1σ confidence intervals. Bell154

fidelities and concurrences are calculated without remov-155

ing state preparation and measurement (SPAM) errors156

(Extended Data Fig. 10).157

Gate set tomography158

We used a customized, efficient gate set tomography159

(GST) [27, 28, 5] analysis (see Methods, and Supplemen-160

tary Information S4, S5, S8) to investigate the quality of 161

six logic operations on two nuclear-spin qubits: Xπ/2 and 162

Yπ/2 rotations on Q1 and Q2, an additional Y−π/2 rota- 163

tion on Q2, and the entangling CZ gate. No two single- 164

qubit operations are ever performed in parallel. GST 165

probes these six logic operations and reconstructs a full 166

two-qubit model for their behavior. Earlier experiments 167

on electron spins in silicon used randomized benchmark- 168

ing (RB) [29, 30] to extract a single number for the aver- 169

age fidelity of all logic operations. Characterising specific 170

gates required “interleaved” RB, which can suffer system- 171

atic errors [31, 32]. Most importantly, RB does not reveal 172

the cause or nature of the errors. Our GST method en- 173

ables measuring each gate’s fidelity to high precision, dis- 174

tinguishing the contributions of stochastic and coherent 175

errors, and separating local errors (on the target qubit) 176

from crosstalk errors (on, or coupling to, the undriven 177

spectator qubit). 178

GST estimates a two-qubit process matrix for each logic 179

operation (Gi : i = 1 . . . 6) using maximum likelihood es- 180

timation. We represent each Gi as the composition of 181

its ideal target unitary process (Gi) with an error pro- 182

cess written in terms of a Lindbladian generator (Li): 183

Gi = eLiGi. Each gate’s error generator (EG) can be 184

written as a linear combination of independent elemen- 185

tary EGs that describe distinct kinds of error [33]. Each 186

elementary EG’s coefficient in Li is the rate (per gate) at 187

which that error builds up. Any Markovian error process 188

can be described using just four kinds of elementary EGs: 189

Hamiltonian (H), indexed by a single two-qubit Pauli op- 190

erator, cause coherent or unitary errors (e.g., HZZ gen- 191

3



|Q1〉

1
|Q2〉

1
|e〉

1

|↓〉

1

Xπ/2
Xπ/2

Xπ/2

X2π

0.00

0.25

0.50

0.00

0.25

0.50

0.00

0.25

0.50

a

c

ed

0.00

0.25

0.50

|Φ+〉

1

|Ψ+〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|Ψ−〉

1

|⇓〉

1

|↓〉

1

|⇑〉

1

State tom
ography

π

1−π/2

1

π/2

1
0

1

|Φ+〉

1

|Ψ+〉

1

|Φ−〉

1

|Ψ−〉

1

|⇑〉

1

|⇑〉

1
|⇓〉

1

|⇑〉

1

|↓〉

1

|⇓〉

1

|↓〉

1

|⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

|⇑⇑〉

1

|⇑⇓〉

1

|⇓⇑〉

1

|⇓⇓〉

1

b |Φ−〉

1

Initial states

f

Φ+

Φ−

Ψ+

Ψ−

Fig. 2 | Tomography of nuclear Bell states. a, Each
of the four Bell states has been generated using the same
quantum circuit, only varying the initial spin state. b-e,
Quantum state tomography results for (b) Φ+; (c) Φ−; (d)
Ψ+; (e) Ψ− Bell state. No corrections have been applied
to compensate readout errors. Hollow, black boxes indi-
cate the outcome of an ideal measurement for each Bell
state. f, Table of Bell state fidelities and concurrences.
The error bars are estimated using Monte Carlo bootstrap
re-sampling and represent 1σ confidence level.

erates a coherent ZZ rotation); Pauli-stochastic (S), also 192

indexed by a single Pauli, cause probabilistic Pauli errors 193

(e.g. SIX causes probabilistic X errors on Q2); Pauli- 194

correlation (C), and active (A), indexed by two Paulis, 195

describe more exotic errors (see Methods) that were not 196

detected in this experiment. We found that each gate’s 197

behavior could be described using just 13-14 elementary 198

EGs: 3 local S errors and 3 local H errors acting on each 199

of Q1 and Q2, and 1-2 entangling H errors (discussed in 200

detail below). Extended Data Figure 8 shows those errors’ 201

rates, along with the process matrices and full EGs used to 202

derive them. To get a higher-level picture of gate quality, 203

we aggregate the rates of related errors (see Methods) to 204

report total rates of stochastic and coherent errors on each 205

qubit and on the entire 2-qubit system. We present two 206

overall figures of merit in Figure 3a,c: generator infidelity 207

and total error. Generator infidelity is closely related to 208

entanglement infidelity, which accurately predicts average 209

gate performance in realistic large-scale quantum proces- 210

sors and can be compared to fault-tolerance thresholds 211

(see Methods and Supplementary Information S9). Total 212

error is related to diamond norm (see Supplementary In- 213

formation S9) and estimates worst-case gate performance 214

in any circuit, including structured or periodic circuits. In 215

Fig. 3c, we additionally report each gate’s average gate 216

fidelity on its target to ease comparison of these results 217

with those from the literature. 218

The process matrices estimated by GST are not unique. 219

An equivalent representation of the gate set can be con- 220

structed by a gauge transformation [34, 5] in which all 221

process matrices are conjugated by some invertible matrix, 222

Gi → MGiM
−1. Some gate errors, such as over/under- 223

rotations or errors on idle spectator qubits, are nearly un- 224

affected by choice of gauge; they are intrinsic to that gate. 225

But other errors, such as a tilted rotation axis, can be 226

shifted from one gate to another by changing gauge. These 227

relational errors cannot be objectively associated with any 228

particular gate. Recognizing this, we divide coherent er- 229

rors into intrinsic and relational components (Fig. 3a,c). 230

Intrinsic errors perturb a gate’s eigenvalues, whereas re- 231

lational errors perturb its eigenvectors. In Fig. 3a,c we 232

follow standard GST practice by choosing a gauge that 233

makes the gates as close to their targets as possible. This 234

associates relational errors with individual gates, in a way 235

that depends critically on the choice of gauge. But the 236

magnitude of a given relational error between a set of 237

gates is gauge-invariant, and Fig. 3d illustrates the to- 238

tal relational error between each pair of gates. In this 239

work, we found evidence only for pairwise relational er- 240
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are not an artifact of gauge-fixing.

5



rors, although more complex multi-gate relational errors241

are possible.242

All 6 gates achieved on-target fidelities > 99%, with in-243

fidelities as low as 0.07(3)% on Q1 and 0.68(7)% on Q2.244

However, we observed significant crosstalk on the specta-245

tor qubit during 1-qubit gates, resulting in full logic opera-246

tions (1-qubit gate and spectator idle operation in parallel)247

with higher infidelities of 0.68(6)%−3.5(2)%. Remarkably,248

the CZ gate’s infidelity of 0.79(14)% is almost on par with249

the single-qubit gates – a rare scenario in multi-qubit sys-250

tems (Fig. 3a,c).251

SPAM errors were estimated by GST as 1.05(4)% on252

average, and as low as 0.25(3)% for the |⇑⇑〉 state (Ex-253

tended Data Figure 10). This is a unique feature of nu-254

clear spin qubits, afforded by the quantum nondemolition255

nature of the measurement process [21] (Methods and Ex-256

tended Data Fig. 5).257

GST provided unambiguous evidence for a surprising re-258

lational error: weight-2 (entangling) HZZ and/or HGi[ZZ]259

coherent errors on each 1-qubit gate Gi, with amplitudes260

from 1.8 − 5.0% (Extended Data Figure 8). These er-261

rors are consistent with an intermittent ZZ Hamiltonian262

during the gate pulses. After ruling out a wide range of263

possible error channels, we propose that the observedHZZ264

error arises from the spurious accumulation of geometric265

phase by the electron spin, caused by off-resonance leak-266

age of microwave power near the ESR frequencies (Supple-267

mentary Information S9). This observation illustrates the268

diagnostic power of GST, which revealed an error channel269

we had not anticipated. It also shows GST’s ability to270

unveil correlated and entangling errors, whose detection271

and prevention is of key importance for the realization of272

fault-tolerant quantum computers [35].273

Three-qubit entanglement274

The nuclear logic gates shown above would not scale275

beyond a single, highly localized cluster of donors. How-276

ever, adding the hyperfine-coupled electron qubit yields a277

scalable heterogeneous architecture. Electron qubits de-278

cohere faster, but admit faster control. If high-fidelity279

entanglement between electron and nuclear qubits can be280

created, electron qubits can enable fast coherent commu-281

nication between distant nuclei (via electron-electron en-282

tanglement, or physical shuttling) or serve as high-fidelity283

ancilla qubits for quantum error correction. To demon-284

strate this capability, we produce the maximally entan-285

gled three-qubit Greenberger-Horne-Zeilinger (GHZ) state286

|ψGHZ〉 = (|⇑⇑↑〉 + |⇓⇓↓〉)/
√

2 using the pulse sequence287

shown in Fig. 4a. Starting from |⇓⇓↓〉, an NMR Yπ/2 pulse288

at νQ2|↓ creates a coherent superposition state of nucleus289

2, followed by a nuclear zCNOT gate (as in Fig. 2a) to 290

produce a nuclear |Φ+〉 state, and an ESR Xπ pulse at 291

νe|⇓⇓ to arrive at |ψGHZ〉. Since the ESR frequency di- 292

rectly depends on the state of both nuclei, the latter pulse 293

constitutes a natural 3-qubit Toffoli gate, making the cre- 294

ation of 3-qubit entanglement particularly simple, as in 295

nitrogen-vacancy centres in diamond [36]. Executing Tof- 296

foli gates on electrons in quantum dots [37] requires more 297

complex protocols, but can be simplified by a combination 298

of exchange and microwave pulses [38]. 299

Measuring the populations of the eight electron-nuclear 300

states (Supplementary Information S7) after each step 301

confirms the expected evolution from |⇓⇓↓〉 to |ψGHZ〉 302

(Fig. 4b). The evolution can be undone by applying the 303

sequence in reverse, yielding a return probability to |⇓⇓↓〉 304

of 89.6(9)%, including SPAM errors. As in the two-qubit 305

case, measuring the populations is a useful sanity check 306

but does not prove multipartite entanglement, which re- 307

quires knowing the off-diagonal terms of the density ma- 308

trix ρGHZ = |ψGHZ〉〈ψGHZ|. 309

Standard tomography methods require measuring the 310

target state in different bases, obtained by rotating the 311

qubits prior to measurement. However, the superposition 312

of |⇓⇓↓〉 and |⇑⇑↑〉 dephases at a rate dominated by the 313

electron dephasing time T ∗2e ≈ 100 µs (Extended Data 314

Fig. 3), which is only marginally longer than the nuclear 315

spin operation time≈ 10−20 µs. Therefore, the GHZ state 316

will have significantly dephased by the time it is projected 317

onto each measurement basis. 318

We circumvent this problem by adopting a tomography 319

method that minimises the time spent in the GHZ state. 320

An extension of a method first introduced for the measure- 321

ment of electron-nuclear entanglement in spin ensembles 322

[39], it is related to the parity scan commonly used in 323

trapped ions [40] and superconducting circuits [41]. We 324

repeat the reversal of the GHZ state (Fig. 4b) N = 100 325

times, each time introducing phase shifts θ1,2,3 to the ro- 326

tation axes of the three reversal pulses, with θ1 = 3θ2 = 327

9θ3 = 9N/125. The return probability to |⇓⇓↓〉 oscillates 328

with N ; the amplitude and phase of the oscillations yield 329

the off-diagonal matrix element 〈⇓⇓↓| ρGHZ |⇑⇑↑〉 = ρ18. 330

Since the ideal ρGHZ has nonzero elements only on 331

its four corners, the populations ρ11, ρ88 and the coher- 332

ence ρ18 are sufficient to determine the GHZ state fidelity 333

FGHZ = 92.5(1.0)%. Also here, SPAM errors remain in- 334

cluded in total infidelity. By comparison, an 88% GHZ 335

state fidelity has been reported in a triple quantum dot 336

after removing SPAM errors, whereas the uncorrected fi- 337

delity is 45.8% [37]. This highlights the drastic effect of 338
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Fig. 4 | Creation and tomography of an electron-nuclear three-qubit GHZ state. a, Starting from |⇓⇓↓〉,
the first three gates generate an entangled three-qubit GHZ state. All eight state populations are read out (b) at
each circuit step (red dashed lines), and estimated without correcting for SPAM errors (Supplementary Information
S7). The final three gates R(θi)φ reverse the operations of the first three if the rotation angles are θ1 = θ2 = θ3 = 0,
returning to the initial state in the absence of errors. The two gates that are conditional on Q2 are composed of
multiple pulses (Supplementary Information S6). c, The coherence between the GHZ components |⇓⇓↓〉 and |⇑⇑↑〉 is
probed by incrementing the phases θi of the reversal pulses. This induces oscillations at frequency f = 2π/(θ1+θ2+θ3)
whose amplitude and phase correspond to the purity and phase relation between |⇓⇓↓〉 and |⇑⇑↑〉. d, Density-matrix
extrema of the GHZ state. The state populations of the GHZ components |⇓⇓↓〉 and |⇑⇑↑〉 at circuit step 3 (b) provide
the diagonal entries, while the oscillation amplitude and phase (c) provide the off-diagonal entries. From these values,
the fidelity to the nearest GHZ state is estimated as 92.5(1.0)%, including SPAM.

SPAM of multi-qubit entanglement, and the robustness339

of our system against such errors. The different coher-340

ence and operation timescales for electron and nuclei need341

not be an obstacle for the use of such entangled states in342

scaled-up architectures, because all further entangling or343

shuttling operations between electrons will occur on' 1 µs344

time scales.345

Outlook346

The demonstration of 1-qubit, 2-qubit and SPAM er-347

rors at or below the 1% level highlight the potential of348

nuclear spins in silicon as a credible platform for fault-349

tolerant quantum computing. An often-quoted example,350

based on surface code quantum error correction, sets a351

fault-tolerance threshold of 0.56% for the entanglement352

infidelity of 1- and 2-qubit gates and the SPAM errors [6].353

Several avenues are available to harness the high-fidelity354

operations demonstrated here. Replacing the 31P donors355

with the higher-spin group-V analogues such as 123Sb356

(I = 7/2) or 209Bi (I = 9/2) would provide access to a357

much larger Hilbert space in which to encode quantum 358

information. For example, a cluster of two 123Sb donors 359

contains the equivalent of six qubits in the nuclear spins, 360

plus an electron qubit. An error-correcting code can be 361

efficiently implemented in high-spin nuclei [42], where our 362

method would provide a pathway for universal operations 363

between the logical qubits encoded in each nucleus. 364

Moving to heavier group-V donors also allows the elec- 365

trical control of the nuclear spins [43]. Combined with 366

the electrical drive of the electron-nuclear ‘flip-flop’ tran- 367

sition [44], this implies the ability to control electron and 368

nuclei by purely electrical means. In a two-donor system 369

as shown here, the entangling CZ gate could similarly be 370

obtained by an electrical 2π-pulse on a flip-flop transition. 371

The electron-nuclear entanglement we have demon- 372

strated can be harnessed to scale up beyond a pair of 373

nuclei coupled to the same electron. Neighbouring donor 374

electrons can be entangled via exchange interaction by per- 375

forming controlled-rotation resonant gates [9] or
√

SWAP 376
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gates [8]. Wider distances could be afforded by physi-377

cally shuttling the electron across lithographic quantum378

dots [45, 46], while preserving the quantum information379

encoded in it [11]. Our methods would apply equally380

to isoelectronic nuclear spin centres like 73Ge and 29Si,381

where it has been shown that the nuclear qubit coherence382

is preserved while shuttling the electron across neighbour-383

ing dots [10]. Furthermore, electron spins can mediate the384

coherent interaction between nuclear spin qubits and mi-385

crowave photons [47, 48]. Recent experiments on electron386

spin qubits in silicon report 1- and 2-qubit gate fidelities387

above 99% [49, 50]. Therefore, the fidelity of electron qubit388

operations will not constitute a bottleneck for the perfor-389

mance of electron-nuclear quantum processors. These ex-390

amples illustrate the significance of universal high-fidelity391

two-qubit operations with nuclear spins in a platform like392

silicon, which can simultaneously host nuclear and elec-393

tron spin qubits, lithographic quantum dots, and dense394

readout and control devices [19].395

Methods396

Device fabrication397

The quantum processor is fabricated using methods com-398

patible with standard silicon MOS processes. We start399

from a high quality silicon substrate (p-type 〈100〉; 10-20400

Ωcm), on top of which a 900 nm thick epilayer of iso-401

topically enriched 28Si has been grown using low-pressure402

chemical vapour deposition (LPCVD). The residual 29Si403

concentration is 730 ppm. Heavily-doped n+ regions for404

Ohmic contacts and lightly-doped p regions for leakage405

prevention are defined by thermal diffusion of phosphorus406

and boron, respectively. A 200 nm thick SiO2 field oxide407

is grown in a wet oxidation furnace. In the centre of the408

device, an opening of 20 µm × 40 µm is etched in the field409

oxide using HF acid. Immediately after, a 8 nm thick,410

high quality dry SiO2 gate oxide is grown in this opening.411

In preparation for ion implantation, a 90 nm × 100 nm412

aperture is opened in a PMMA mask using electron-beam-413

lithography (EBL). The samples are implanted with P+
414

ions at an acceleration voltage of 10 keV per ion. Dur-415

ing implantation the samples were tilted by 8 degrees and416

the fluence was set at 1.4 × 1012/cm2. Donor activation417

and implantation damage repair is achieved through the418

process of a rapid thermal annealing (5 seconds at 1000419
◦C). The gate layout is patterned around the implantation420

region in three EBL steps, each followed by aluminium421

thermal deposition (25 nm thickness for layer 1; 50 nm for422

layer 2; 100 nm for layer 3). Immediately after each metal 423

deposition, the sample is exposed to a pure, low pressure 424

(100 mTorr) oxygen atmosphere to form an Al2O3 layer, 425

which electrically insulated the overlapping metal gates. 426

At the last step, samples are annealed in a forming gas 427

(400 ◦C, 15 min, 95% N2 / 5% H2) aimed at passivating 428

the interface traps. 429

Experimental setup 430

The device was wire-bonded to a gold-plated printed cir- 431

cuit board and placed in a copper enclosure. The enclosure 432

was placed in a permanent magnet array [51], producing a 433

static magnetic field of 1.33 T at the device (see Extended 434

Data Fig. 1 for field orientation). The board was mounted 435

on a Bluefors BF-LD400 cryogen-free dilution refrigerator, 436

reaching a base temperature of 14 mK, while the effective 437

electron temperature was ≈ 150 mK. 438

DC bias voltages were applied to all gates using Stan- 439

ford Research Systems (SRS) SIM928 voltage sources. A 440

room-temperature resistive combiner was used for the fast 441

donor gates (Extended Data Fig. 1) to add DC voltages 442

to AC signals produced by the LeCroy Arbstudio 1104, 443

which then passed through an 80 MHz low-pass filter; all 444

other gates passed through a 20 Hz low-pass filter. All 445

filtering takes place at the mixing chamber plate. The 446

wiring includes graphite-coated flexible coaxial cables to 447

reduce triboelectric noise [52]. 448

Microwave pulses to induce ESR transitions were ap- 449

plied to an on-chip broadband antenna [53] using a Rohde 450

& Schwarz SGS100A vector microwave source combined 451

with an SGU100A upconverter. The microwave carrier 452

frequency remained fixed at 37.1004125 GHz, while the 453

output frequency was varied within a pulse sequence by 454

mixing it with a radiofrequency (RF) signal using double- 455

sideband modulation, i.e. by applying RF pulses to the 456

in-phase port of the SGS100A IQ mixer (the quadrature 457

port was terminated by a 50 Ω load). The carrier fre- 458

quency was chosen such that whenever one sideband tone 459

was resonant with an ESR pulse, the second sideband was 460

off-resonant with all other ESR frequencies. To suppress 461

microwave signals when not needed, 0 V was applied to 462

the in-phase port of the IQ mixer. Under these circum- 463

stances, the carrier frequency is expected to be suppressed 464

by 35 dB, according to the source data sheet. The RF 465

pulses used for double-sideband modulation were gener- 466

ated by one of the two channels of the Agilent 81180A 467

arbitrary waveform generator; the second channel deliv- 468

ered RF pulses to the microwave antenna to drive NMR 469

transitions. The microwave signal for ESR and RF signal 470

8



for NMR were combined in a Marki Microwave DPX-1721471

diplexer.472

The SET current passed through a Femto DLPCA-200473

transimpedance amplifier (107 V/A gain, 50 kHz band-474

width), followed by an SRS SIM910 JFET post-amplifier475

(102 V/V gain), SRS SIM965 analog filter (50 kHz cut-476

off low-pass Bessel filter), and acquired via an AlazarTech477

ATS9440 PCI digitizer card. The instruments were trig-478

gered by a SpinCore PulseBlasterESR-PRO. The measure-479

ments instruments were controlled by Python code us-480

ing the quantum measurement software packages QCoDeS481

and SilQ.482

System Hamiltonian483

The static Hamiltonian of our combined electron-nuclei
system is

Hs = −γeB0Ŝz−γnB0(Î1,z+Î2,z)+A1~S ·~I1+A2~S ·~I2, (1)

where γe ≈ −27.97 GHz T−1 is the electron gyromag-484

netic ratio [54], γn ≈ 17.23 MHz T−1 is the nuclear gy-485

romagnetic ratio [55], ~S = [Ŝx, Ŝy, Ŝz] are the electron486

spin operators, and ~Ii = [Îi,x, Îi,y, Îi,z] are the nuclear487

spin operators for nucleus i ∈ 1, 2. The static magnetic488

field B0 = 1.33 T is aligned along ẑ, and A1 ≈ 95 MHz,489

(A2 ≈ 9 MHz) is the hyperfine interaction strength be-490

tween the electron and nucleus 1 (2).491

An AC drive applied to the microwave line is used to in-
duce transitions between nuclear spin states and between
electron spin states. The drive predominantly modulates
the transverse magnetic field as

Hrf(t) = −γe ~B1 · ~S sinωt− γn ~B1 · (Î1 + Î2) sinωt, (2)

where ~B1 is the oscillating magnetic field strength, pri-492

marily aligned along ŷ.493

Electron spin readout494

An electron spin readout is realized through the spin to495

charge conversion [56, 57]. This method utilizes a single496

electron transistor (SET) as both a charge sensor and an497

electron reservoir. The electron spin |↓〉 and |↑〉 states498

are separated by the Zeeman energy, which scales linearly499

with the external magnetic field. Thermal broadening of500

the SET at 100 mK is much smaller than the Zeeman501

splitting of two electron spin states. This means that,502

at the read position, the donor electron spin down state503

faces only occupied levels in the SET island (tunneling504

is prohibited) and the spin up state faces only unoccupied505

states and can freely tunnel out the SET island. This event 506

will shift the energy ladder in the SET island, bringing it 507

out of the Coulomb blockade, thus causing a burst in the 508

current. This burst will last until |↓〉 electron tunnels to 509

the donor. If the electron has been projected to the |↓〉 510

state then no change in the SET current will be recorded, 511

as the electron cannot tunnel to the SET island. At the 512

end of each read phase the electron spin is reinitialized in 513

|↓〉 for the next single shot cycle. The fidelity of single-shot 514

electron readout and |↓〉 initialisation by spin-dependent 515

tunnelling is ≈ 80% in this device. However, we further 516

increase the initialisation fidelity by letting the electron 517

thermalise to the lattice temperature for a time � T1e 518

(Fig. 3b) before triggering further operations. 519

Nuclear spin readout and initialisation 520

The readout of the two nuclear spin qubits is an extension 521

of the well-known method developed for a single donor 522

[21], based on the excitation of the electron bound to the 523

nuclei, conditional on a particular nuclear state, followed 524

by electron spin readout [20]. The same method is used 525

to initialise the nuclei in a known state. 526

In the present system, consisting of an electron cou- 527

pled to two 31P donors with different hyperfine couplings 528

A1 � A2, we find four well-separated electron spin res- 529

onance (ESR) frequencies (Fig. 1c), conditional on the 530

|⇓⇓〉 , |⇓⇑〉 , |⇑⇓〉 , |⇑⇑〉 nuclear states. An electron in the 531

|↓〉 state is initially drawn from a cold charge reservoir 532

onto the donor cluster (independently of nuclear states). 533

We then apply a microwave π-pulse at a particular ESR 534

frequency, for instance νe|⇓⇓ corresponding to the |⇓⇓〉 nu- 535

clear spin state, and then measure the electron spin. If it is 536

found in the |↑〉 state, then the nuclear spins are projected 537

to the |⇓⇓〉 state. If the electron is |↓〉 (i.e. the pulse at 538

νe|⇓⇓ failed to flip it to |↑〉), the nuclear spins are projected 539

to the subspace orthogonal to the |⇓⇓〉 state. This con- 540

stitutes a nuclear spins single-shot readout, with a fidelity 541

given by the product of the electron single-shot readout 542

fidelity (typically ≈ 80%) and the electron π-pulse fidelity 543

(� 99%). 544

This nuclear readout is a projective, approximately 545

quantum non demolition (QND) process [21]. The ideal 546

QND measurement relies on the observable Iz to com- 547

mute with the Hamiltonian Hint describing an interaction 548

between the observable and the measurement apparatus 549

[Iz, Hint] = 0 [58]. In our case the hyperfine terms A1SzIz1 550

and A2SzIz2 constitute Hint. The observation of nuclear 551

spin quantum jumps originating from the electron mea- 552

surement by spin-dependent tunnelling (ionization shock) 553
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hints at a deviation from QND nature of the readout pro-554

cess [21]. It implies the presence of terms of the form555

A||/2(S+I− + S−I+) in the hyperfine coupling, and pos-556

sibly additional anisotropic terms, which do not commute557

with Iz. In our experiment, the deviation from the ideal558

QND measurement is extremely small, of order 10−6, as559

shown in Extended Data Figure 5.560

We exploit the near-perfect QND nature of the nuclear561

spin readout by repeating the cycle [load |↓〉 – ESR π-562

pulse – electron readout] between 7 and 40 times, to sub-563

stantially increase the nuclear single-shot readout fidelity.564

This is the fundamental reason why our average SPAM er-565

rors are ≈ 1% (Extended Data Fig. 10), and we have thus566

reported Bell and GHZ state fidelities without removing567

SPAM errors from the estimate.568

ESR and NMR calibration569

Gate calibration570

Both the 1-qubit NMR gates and the 2-qubit ESR gate571

were iteratively calibrated using a combination of GST572

and other tuning methods. Rabi flops were first used to573

obtain roughly calibrated 1-qubit NMR gates. Next, 1-574

qubit GST was repeatedly employed to identify and cor-575

rect error contributions such as over-/under-rotations and576

detunings. Other routines such as the repeated application577

of gates were performed in between GST measurements to578

independently verify the improvements to 1-qubit gate fi-579

delities of GST. The calibrated NMR π/2 pulse duration580

of Q1 (Q2) is 12.0 µs (25.3 µs). The discrepancy between581

the two durations is largely due to the hyperfine interac-582

tion enhancing the Rabi frequency of Q1 and reducing the583

Rabi frequency of Q2, combined with line reflections and584

filtering.585

For the geometric 2-qubit gate based upon an electron586

2π pulse, we found that a trivial calibration using Rabi587

flops already gave a near-optimal result. GST was then588

used for fine-tuning and for the detection of small error589

contributions such as a minor frequency shift. The cali-590

brated ESR 2π pulse duration of the CZ gate is 1.89 µs at591

an output power of 20 dBm.592

Periodic frequency recalibration593

To keep the system tuned throughout the measurements,594

the NMR frequencies νQ1|↓ and νQ2|↓ and ESR frequency595

νe|↓↓ were calibrated every ten circuits. The ESR fre-596

quency was calibrated by measuring the ESR spectrum597

and selecting the frequency of the ESR peak. The NMR598

frequencies were measured by a variant of the Ramsey se- 599

quence, consisting of an Xπ/2 and Yπ/2 separated by a 600

wait time τ . An off-resonant RF pulse was applied dur- 601

ing the wait time to mitigate any frequency shift caused 602

by the absence of an RF drive. Since nuclear readout has 603

a near-unity fidelity, this measurement should result in 604

a nuclear flipping probability Pflip = 0.5 if the RF fre- 605

quency fRF matches the average NMR frequency fNMR 606

throughout the measurement. Therefore, any deviation of 607

Pflip from 0.5 provides a direct estimate of the frequency 608

mismatch ∆f = fNMR − fRF = arcsin (2Pflip − 1))/(2πτ), 609

provided that |∆f/τ | < 0.25. A higher τ more accu- 610

rate estimates δf , while a lower τ results in the condition 611

|∆f/τ | < 0.25 being valid for a broader range of ∆f . The 612

NMR recalibration sequence iteratively increased the wait 613

time τ = 40 µs→ 100 µs→ 160 µs to ensure that the con- 614

dition |∆f/τ | < 0.25 remains satisfied while increasing the 615

accuracy at which the NMR frequency is estimated. For 616

each τ , the NMR frequency was estimated by repeating 617

this sequence and updating the RF frequency until Pflip 618

fell within the range [0.4, 0.6]. 619

Measurement overhead 620

Instrument setups and calibration routines add a signif- 621

icant overhead to the GST measurements. An estimate 622

of this overhead can be obtained by comparing the total 623

measurement duration to the duration of a single pulse 624

sequence. The 2Q GST measurement shown in Fig. 3 was 625

acquired over 61 hours, during which 300-503 shots were 626

acquired for each of the 1593 circuits. This results in an 627

average duration of 340 ms per GST pulse sequence itera- 628

tion. Compared to the average pulse sequence duration of 629

around 121 ms, this corresponds to an overhead of 185%. 630

Effective mass theory simulations of the hy- 631

perfine interaction 632

To simulate the wave function of the third electron in the 633

2P system, the effective mass theory (EMT) model of the 634

neutral 2P system in Ref. [59] is extended in a mean-field 635

approach. 636

For short donor separations, the two inner electrons are
tightly bound in a magnetically inactive singlet orbital.
The third electron then only interacts with the inner ones
to the extent that it experiences the Coulomb repulsion of
their fixed charge distribution

V (~r) = e2

4πεSi

∫
ρS(~r′)
|~r′ − ~r|

d3~r′. (3)
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Here, e is the electron charge, εSi the dielectric constant637

in silicon and ρS(~r′) is the charge density of the tightly638

bound electrons found in Ref. [59]. The third electron639

is then effectively described by the sum of the 2P EMT640

Hamiltonian in an electric field [59] and the corresponding641

mean-field potential in Eq. (3).642

Here, only 2P configurations along the [100] crystal axis643

with distances d≤7 nm and realistic fields E≤2 mV/nm are644

considered. In this regime the inter-donor exchange dom-645

inates the on-site exchange and the mean-field approach646

is justified.647

The chosen basis is a combination of two STO-3G [59]648

orbitals, one variationally optimized at d=0.5 nm and the649

other at d=7 nm.650

To compute the hyperfine interaction strength, the elec-651

tron density at the nucleus is rescaled by a bunching factor652

of 440 [60]. The experimentally found hyperfine configu-653

ration is found for donors spaced 6.5 nm apart, and sub-654

jected to an electric field 2 mV/nm.655

Gate set tomography experiments656

We designed a customized GST experiment for a set of657

6 logic gates: Xπ/2 and Yπ/2 rotations on each qubit,658

an additional Y−π/2 rotation on Q2, and the symmetric659

CZ gate between them. A basic 2-qubit GST experiment660

for this gate set comprises a list of quantum circuits de-661

fined by: (1) choosing a set of 75 short “germ” circuits662

that, when repeated, collectively amplify every error rate;663

(2) repeating each germ several times to times to form664

“germ power” circuits whose lengths are approximately665

L = 1, 2, 4, . . . Lmax; and (3) prefacing and appending each666

germ power with each of 16 “preparation fiducial” circuits667

and each of 11 “measurement fiducial” circuits. We used668

Lmax = 8, yielding a set of 20606 circuits (this is not669

a simple multiplication because germ circuits with depth670

> 1 do not appear at shorter L). We eliminated 92%671

of these circuits using two techniques from [5]. First, we672

identified a subset of 18 germs that amplify any dominant673

errors in each gate (if Lmax was very large, subdominant674

errors would get echoed away by dominant errors). This675

yielded a total of 50 germ powers. Second, for the L > 1676

germ powers, we identified and eliminated pairs of fidu-677

cial circuits that provided redundant information. This678

trimmed the circuits per germ power from 176 to as few679

as 16, and the total number of circuits from 8800 to just680

1592. Each of those circuits was repeated 300-500 times to681

gather statistics. We used maximum likelihood estimation682

(MLE) implemented in the pyGSTi software [61, 62] to es-683

timate 16× 16 2-qubit process matrices {Gi : i = 1 . . . 6}684

for all six operations. 685

Constructing and selecting reduced models 686

Process matrices are a comprehensive, but not especially 687

transparent, representation of gate errors. So we used each 688

gate’s ideal target (unitary) operation Gi to construct an 689

error generator [33] Li = log(GiG−1
i ) that presents the 690

same information more usefully. Representing noisy gates 691

this way enables us to split each gate’s total error into 692

parts that act on Q1 only, Q2 only, or both qubits together 693

– and then further into coherent and stochastic errors – 694

to reveal those errors’ sources and consequences. It also 695

enables the construction of simple, efficient “reduced mod- 696

els” for gate errors, by identifying swaths of elementary er- 697

ror generators whose rates are indistinguishable from zero. 698

Pinning the coefficients of k elementary error generators 699

to zero yields a reduced model with k fewer parameters, 700

whose likelihood (L) can be found by MLE. We evaluate 701

the statistical significance of error rates that were pinned 702

by seeing how much L declines. If a given error’s true rate 703

is zero, then pinning it to zero in the model reduces 2 logL, 704

on average, by 1 [63]. So when we pin k rates, we com- 705

pute the “evidence ratio” r = 2∆ logL/k, where ∆ logL 706

is the difference between the two models’ likelihood [64]. 707

If r ≤ 1, the pinned rates are strictly negligible; if r ≤ 2, 708

then the smaller model is preferred by Akaike’s informa- 709

tion criterion (AIC) [65]; other criteria (e.g. the Bayesian 710

BIC) impose higher thresholds. We used a slightly higher 711

threshold and chose the smaller model whenever r ≤ 5. 712

Using this methodology, we constructed a model that de- 713

scribes the data well, in which just 83 (out of 1440) ele- 714

mentary errors’ rates are significantly different from zero. 715

The rates of all the un-pinned elementary errors form a 716

vector describing the noisy model. In general, un-physical 717

gauge degrees of freedom [5] will give rise to a foliation of 718

the model space into gauge manifolds on which the loglike- 719

lihood is constant. In our analysis, we work in the limit 720

of small errors and gauge transformations where the space 721

is approximately linear, and identify the subspace that 722

is gauge invariant. We are able to construct a basis for 723

the gauge-invariant subspace whose elements correspond 724

to relational or intrinsic errors and have a definite type 725

(H, S, or A), allowing us to decompose the model’s total 726

error as shown in Figure 3. 727

Extended Data Figure 8 presents each gate’s 13-14 728

nonzero elementary error rates after projecting the er- 729

ror vector onto the gauge-invariant subspace (column 3), 730

along with the process matrices (column 1) and error gen- 731

erators (column 2) from which they are derived. Here and 732
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elsewhere, error bars are 1σ confidence intervals computed733

using the Hessian of the loglikelihood function.734

Aggregated error rates and metrics735

Our GST analysis aims to identify specific gate errors and736

understand how these errors affect the overall performance737

of our system. It begins with the raw output of GST –738

rates of elementary errors on gates. We aggregate these739

error rates in different ways, yielding each gate’s total er-740

ror and infidelity, and partitioning those metrics into their741

components on Q1 or Q2 or both qubits together, in or-742

der to summarize different aspects of system performance.743

We additionally report average gate fidelities to facilitate744

comparison with the literature.745

Gate errors by definition cause unintended changes in746

the state of the system. S error generators produce747

stochastic errors that transfer probability to erroneous748

states; H generators produce coherent errors that trans-749

fer amplitude to erroneous states. We can interpret the750

rate of an error generator, to first order, as the amount751

of erroneous probability (denoted ε for S generators) or752

amplitude (denoted θ for H generators) transferred by a753

single use of the gate when acting on one half of a maxi-754

mally entangled state.755

It is useful to group similar errors together and aggre-756

gate their rates. We classify and combine error generators757

according to:758

• Their type (H or S),759

• Their support (Q1, Q2, or joint),760

• Whether they are intrinsic to a single gate, or rela-761

tional between gates (H errors only; relational S errors762

were negligible).763

The elementary error generators described in the main764

text have definite type and support. For example, the765

HXI generator has type H and support on Q1. Any er-766

ror generator on a given gate is intrinsic to that gate if767

it commutes with the gate, and relational otherwise. For768

example, if single-qubit Xπ/2 and Yπ/2 gates produce ro-769

tations around axes that are separated by only 89◦ instead770

of 90◦, then either gate can be considered perfect at the771

cost of assigning a 1◦ tilt error to the other gate. This772

error can be moved between the two gates by a gauge773

transformation M that rotates both gates by 1◦ around774

the Z-axis. This error is purely relational; it cannot be775

assigned definitively to one gate or the other, but can be776

unambiguously observed in circuits containing both gates.777

To divide each gate’s errors into intrinsic and relational 778

components, we represent the gate’s error generator as a 779

vector in a space spanned by the H and S elementary error 780

generators. Error generators that commute with the tar- 781

get gate form a subspace that is invariant under gauge 782

transformations. The error generator’s projection onto 783

this space is its intrinsic component. Error generators in 784

the complement of the intrinsic subspace are relational – 785

they can be changed or eliminated by gauge transforma- 786

tions – and the projection of the gate’s error generator 787

onto this complement is its relational component. 788

To construct aggregated error metrics, we start by ag- 789

gregating H and S rates separately. They add in differ- 790

ent ways, because H error rates correspond to amplitudes 791

while S error rates correspond to probabilities. Rates of 792

S generators add directly (εagg =
∑
i εi), while rates of H 793

generators add in quadrature (θagg = (
∑
i θ

2
i )1/2). Com- 794

bining H and S error rates into a single metric is trickier 795

– there is no unique way to do so because the impact of 796

coherent errors depends on how they interfere over the 797

course of a circuit. We therefore consider two quanti- 798

ties: total error εtot = εagg + θagg and generator infidelity 799

ε̂ = εagg + θ2
agg. Total error approximates the maximal 800

rate at which gate errors could add up in any circuit, while 801

infidelity quantifies the same errors’ average impact in a 802

random circuit. 803

Both of these metrics appear in Fig. 3, where in panels
a, c, and d we report aggregated error rates that partition
the overall error in various ways (see the discussion in S10
of the Supplement). We report a third metric, the aver-
age gate fidelity (AGF) on each gate’s target qubit[s], in
Fig. 3c and in the abstract to aid comparison with other
published results. The on-target AGF provides an over-
all (and gauge-dependent) measure of the average perfor-
mance of a gate when acting only on the target qubit(s).
For a gate targeting Q1, it is defined as:

ε̄(Q1) = 1− 1
2

∫
dψ 〈ψ|trQ2

[
eL (|ψ〉〈ψ| ⊗ I)

]
|ψ〉 (4)

For a two-qubit gate, the on-target AGF is simply the
AGF of the two-qubit operation:

ε̄ = 1−
∫
dψ 〈ψ|eL(|ψ〉〈ψ|)|ψ〉, (5)

In both cases, dψ is the Haar measure (over 1-qubit states 804

in Eq. 4 and over 2-qubit states in Eq. 5) and L is the 805

error generator of the gate. Although AGF is provided 806

for comparison to the literature, it is not a good predic- 807

tor of performance in general circuits (see Supplemental 808
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Information S9), and when we use the unqualified term809

“fidelity”, it always denotes generator fidelity, ε̂. Section810

S9 of the Supplement includes an extensive discussion of811

overall gate error metrics and their relationships.812

Data availability813

The experimental data that support the findings of814

this study are available in Figshare with the identifier815

doi.org/10.6084/m9.figshare.c.5471706.816

Code availability817

Multivalley effective mass theory calculations, some of the818

results of which are illustrated in Fig. 1b, were performed819

using a fork of the code first developed in the production820

of Ref. [60] that was extended to include multielectron in-821

teractions as reported in Ref. [59]. Requests for a license822

for and copy of this code will be directed to points of con-823

tact at Sandia National Laboratories and the University824

of New South Wales, through the corresponding author.825
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Extended data figures and tables 1086

SET gate

barrie
r gate

rate gate

barrier gate

SET top gate

DC donor gate

DC donor gate

fast donor gate

fast donor gate

MW antenna

200 nmx̂ŷ

ẑ‖B0

1087

Extended Data Fig. 1 | Device layout. Scanning electron micrograph of a device identical to the one used in
this experiment. 31P donor atoms are implanted in the region marked by the orange rectangle, using a fluence of
1.4× 1012/cm2 which results in a most probably inter-donor spacing of approximately 8 nm. Four metallic gates are
fabricated around the implantation region, and used to modify the electrochemical potential of the donors. A nearby
SET, formed using the SET top gate and barrier gates, enables charge sensing of a single donor atom, as well as its
electron spin through spin-to-charge conversion (Methods). The tunnel coupling between the donors and SET is tuned
by the rate gate situated between the SET and donor implant region. A nearby microwave (MW) antenna is used for
ESR and NMR of the donor electron and nuclear spins, respectively. 1088
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Extended Data Fig. 2 | Electrical tunability of the hyperfine interaction and the electron gyromagnetic
ratio. a, Map of the SET current as a function of SET gate and fast donor gates (pulsed jointly). The white dashed
line indicates the location in gate space where the 2P donor cluster changes its charge state. The third, hyperfine-
coupled electron is present on the cluster in the region to the right of the line. Electron spin readout is performed
at the location indicated by the pink star. b, ESR spectrum of the electron bound to the 2P cluster, acquired while
the system was tuned within the blue dashed rectangle in panel a. The hyperfine couplings A1, A2 are extracted from
ESR frequencies as shown, namely A1 = (νe|⇑⇓ + νe|⇑⇑)/2 − (νe|⇓⇓ + νe|⇓⇑)/2; A2 = νe|⇑⇑ − νe|⇑⇓. c-d, Extracted
hyperfine couplings within the marked area. The data shows that A1 decreases and A2 increases upon moving the
operation point towards higher gate voltages and away from the donor readout position. e, A small change is also
observed in the sum of the two hyperfine interactions At = A1 + A2. f, Electrical modulation (Stark shift) of the
electron gyromagnetic ratio γe, extracted from the shift of the average of the hyperfine-split electron resonances. The
ESR frequencies can be tuned with fast donor gates at the rate of ∆νe|⇑⇑ = 0.3 MHz/V; ∆νe|⇑⇓ = 5.2 MHz/V;
∆νe|⇓⇑ = 7.6 MHz/V; ∆νe|⇓⇓ = 2.4 MHz/V.1090
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Extended Data Fig. 3 | Coherence metrics of the electron spin qubit. The columns correspond to the
nuclear configurations |⇓⇓〉, |⇓⇑〉, |⇑⇓〉, |⇑⇑〉, respectively. All measurements start with the electron spin initialized in
the |↓〉 state. Error bars are 1σ confidence intervals. a, Electron Rabi oscillations. The measurements were performed
by applying a resonant ESR pulse of increasing duration. The different Rabi frequencies fRabi on each resonance
are likely due to a frequency-dependent response of the on-chip antenna and the cable connected to it. b, Electron
spin-lattice relaxation times T1e. Measurements were obtained by first adiabatically inverting the electron spin to |↑〉,
followed by a varying wait time τ before electron readout. The observed relaxation times are nearly three orders of
magnitude shorter than typically observed in single-electron, single-donor devices [66], and even shorter compared to
1e-2P clusters. This strongly suggests that the measured electron is the third one, on top of two more tightly-bound
electrons which form a singlet spin state [67]. We also observe a strong dependence of T1e on nuclear spin configuration.
c, Electron dephasing times T ∗2e. The measurements were conducted by performing a Ramsey experiment, i.e. by
applying two π/2 pulses separated by a varying wait time τ , followed by electron readout. The Ramsey fringes are
fitted to a function of the form P↑(τ) = C0 +C1 cos(∆ω · τ + ∆φ) exp[−(τ/T ∗2e)2], where ∆ω is the frequency detuning
and ∆φ is a phase offset. The observed T ∗2e times are comparable to previous values for electrons coupled to a single
31P nucleus. d, Electron Hahn-echo coherence times TH

2e, obtained by adding a π refocusing pulse to the Ramsey
sequence. We also varied the phase of the final π/2 pulse at a rate of one period per τ = (5 kHz)−1., to introduce
oscillations in the spin-up fraction which help improve the fitting. The curves are fitted to the same function used
to fit the Ramsey fringes, with fixed ∆ω = 5 kHz. The measured TH

2e times are similar to previous observations for
electrons coupled to a single 31P nucleus.1092
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Extended Data Fig. 4 | Nuclear spin coherence times. Panels in column 1 (2) correspond to nucleus Q1 (Q2).
Error bars are 1σ confidence intervals. a, Nuclear dephasing times T ∗2n, obtained from a Ramsey experiment. Results
are fitted with a decaying sinusoid with fixed exponent factor 2 (see Extended Data Fig. 3). b, Nuclear Hahn-echo
coherence times TH

2n. To improve fitting, oscillations are induced by incrementing the phase of the final π/2 pulse with
τ at a rate of one period per (3.5 kHz)−1. Results are fitted with a decaying sinusoid with fixed exponent factor 2 (see
Extended Data Fig. 3). c, Dependence of TH

2n on the amplitude of an off-resonance pulse. We perform this experiment
to study whether a qubit, nominally left idle (or, in quantum information terms, subjected to an identity gate) is
affected by the application of an RF pulse to the other qubit, at a vastly different frequency. Here, during the idle
times between NMR pulses, an RF pulse is applied at a fixed frequency 20 MHz – far off-resonance from both qubits’
transitions – with varying amplitude VRF. The red dashed line indicates the applied RF amplitude for NMR pulses
throughout the experiment. We observe a slow decrease of TH

2n with increasing VRF. This is qualitatively consistent
with the observation of large stochastic errors on the idle qubit, as extracted by the GST analysis in Fig. 3. 1095
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Extended Data Fig. 5 | Nuclear spin quantum jumps caused by ionization shock. The electron and nuclear
spin readout relies upon spin-dependent charge tunnelling between the donors and the SET island. If the electron
tunnels out of the two-donor system, the hyperfine interactions A1, A2 suddenly drop to zero. If A1 and A2 include
an anisotropic component (e.g. due to the non-spherical shape of the electron wavefunction which results in nonzero
dipolar fields at the nuclei), the ionisation is accompanied by a sudden change in the nuclear spin quantisation axes
(“ionisation shock”), and can result in a flip of the nuclear spin state. We measure the nuclear spin flips caused by
ionisation shock by forcibly loading and unloading an electron from the 2P cluster every 0.8 ms. a, For qubit 1 with
A1 = 95 MHz, the flip rate is Γ1 = 2.8×10−6 Nflip

Nion
. b, For qubit 2 with A2 = 9 MHz, the flip rate is Γ2 = 4.0×10−7 Nflip

Nion
.

This means that the nuclear spin readout via the electron ancilla is almost exactly quantum non-demolition. From
this data, we also extract an average time between random nuclear spin flips of 283 seconds for qubit 1, and 2000
seconds for qubit 2. The extremely low values of Γ – comparable to those observed in single-donor systems – are the
reason why we can reliably operate the two 31P nuclei as high-fidelity qubits.1097
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Extended Data Fig. 6 | CNOT and zero-CNOT nuclear two-qubit gates. We perform Rabi oscillation on
the control qubit followed by the application of a, zCNOT or b, CNOT gates. The two qubits are initialized in the
|⇓⇓〉 ≡ |11〉 state. We observe the Rabi oscillations of both qubits in phase for zCNOT and out of phase for CNOT.
At every odd multiple of π/2 rotation of the control qubit the Bell states are created. 1099
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Extended Data Fig. 7 | Two-qubit gate set tomography. a, Measurement circuit for the two-qubit gate set
tomography. A modified version of this circuit has been used for Bell state tomography. The green box prepares the
qubit 2 in the |⇑〉 state, then the orange box prepares the qubit 1 in the |⇑〉 state. The readout step in the blue box
(see Methods) determines whether the |⇑⇑〉 state initialization was successful. Only then the record will be saved. The
electron spin is prepared in |↓〉 during the nuclear spin readout process. Subsequently, the GST sequence is executed.
The red box indicates the Q1,Q2 readout step. The total duration of the pulse sequence is 120 ms, of which nuclear
spin initialization is 8.6 ms (green and yellow), initial nuclear spin readout is 26.5 ms (blue), 3 ms delay is added for
electron initialization (between blue and purple), GST circuit is 10 µs - 300 µs (purple), and nuclear readout is 80 ms
(orange). b, Measurement results for individual two-qubit gate set tomography circuit. The first 145 circuits estimate
the preparation and measurement fiducials, and the subsequent circuits are ordered by increasing circuit depth. At
the end of a circuit, there are three situations for the target state populations: 1) the population is entirely in one
state, while all others are zero; 2) the population is equally spread over two states, while the other two are zero; 3) the
population is equally spread over all four states. The measured state populations for the different circuits therefore
congregate around the four bands 0, 0.25, 0.5, and 1, as indicated by black dashed lines.1102
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Extended Data Fig. 8 | Estimated gate set, from process matrices to error rates. Experimental GST data
were analyzed using pyGSTi to obtain self-consistent maximum likelihood estimates of 2-qubit process matrices for all
6 elementary gates. These are represented (“Process Matrix” column) in a gauge that minimizes their average total
error, as superoperators in the 2-qubit Pauli basis. Green columns indicate positive matrix elements, orange ones
are negative. Wireframe sections indicate differences between estimated and ideal (target) process matrices. Those
process matrices can be transformed to error generators (“Error Generator” column) that isolate those differences,
and are zero if the estimated gate equals its target. Each gate’s error generator was decomposed into a sparse sum
of Hamiltonian and stochastic elementary error generators [33]. Those rates are depicted (“All Error Rates” column)
as contributions to the gate’s total error, with one-sigma uncertainties indicated in parentheses. Each non-vanishing
elementary error rate (error generators are denoted “H” or “S” followed by a Pauli operator) is listed, and identified
with its role in the total error budget (reproduced from Figure 3). Orange bars indicate stochastic errors, dark blue
indicate coherent errors that are intrinsic to the gate, and light blue indicate relational coherent errors that were
assigned to this gate. Total height of the blue region indicates the total coherent error, but because coherent error
amplitudes add in quadrature, individual components’ heights are proportional to their quadrature.1104
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Extended Data Fig. 9 | Simulation of standard and interleaved randomized benchmarking (RB). All
simulated RB experiments used 2-qubit Clifford subroutines compiled from the 6 native gates, requiring (on average)
14.58 individual gate operations per 2-qubit Clifford. a, Standard randomized benchmarking, simulated using the
GST-estimated gate set, yields a “reference” decay rate of rr = 22.2(2)%, suggesting an average per-gate error rate of
rr/14.58 ≈ 1.5%. One-sigma confidence intervals are indicated in parentheses. b-f, Simulated interleaved randomized
benchmarking for the CZ gate, and 1-qubit Xπ/2 and Yπ/2 gates on each qubit, yielded interleaved decay rates rr + ri.
For each experiment, 1000 random Clifford sequences were generated, at each of 15 circuit depths m, and simulated
using the GST process matrices. Exact probabilities (effectively infinitely many shots of each sequence) were recorded.
Inset histograms show the distribution over 1000 random circuits at m=4. Observed decays are consistent with each
gate’s GST-estimated infidelities – e.g. 1− F = 0.79% for the C-Z gate (b). Performing these exact RB experiments
in the lab would have required running 90000 circuits to estimate a single parameter (ri) for each gate to the given
precision of ±0.25%. Using fewer (< 1000) random circuits at each m would yield lower precision. GST required only
1500 circuits to estimate all error rates to the same precision. 1106
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Extended Data Fig. 10 | Estimated state preparation and measurement (SPAM) error rates. In the GST
analysis, the system’s initial state was represented by a 4× 4 density matrix ρ, and the final measurement/readout by
a 4-element 4× 4 POVM (positive operator-valued measure) {E⇑⇑, E⇑⇓, E⇓⇑, E⇓⇓} with Ej ≥ 0 and

∑
j Ej = I. We

quantified the overall quality of the SPAM operations by using the GST estimate to compute the table of conditional
probabilities shown here. Each cell shows the estimated probability of a particular readout (e.g. ⇑⇑) given (imperfect)
initialization in a particular state (e.g. |⇓⇓〉). The |⇑⇑〉 column can be read out directly from the estimate, since the
experiment initalized into |⇑⇑〉. Other states must be prepared by applying Xπ/2 or Yπ/2 pulses. These add additional
error, which should not be attributed to SPAM operations. To correct for this, we simulated ideal unitary rotation
of the real |⇑⇑〉 state into each of the other 3 states by (1) taking the GST-estimated Xπ/2 gates on each qubit and
removing all intrinsic errors from them, and (2) simulating a circuit comprising initialization in ρ, an appropriate
sequence of those idealized gates, and readout according to {Ej}. The resulting analysis shows probabilities of all but
one readout error to be below 1%, which is unprecedented in semiconductor spin qubit systems, and competitive with
the state of the art in other physical platforms.1108
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