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Large waves and navigation 
hazards of the Eastern 
Mediterranean Sea
Sagi Knobler2,4, Dan Liberzon2,3 & Francesco Fedele1*

We present a statistical analysis of deep-water buoy measurements of large waves generated during 
two major storms of the Eastern Mediterranean in 2017 and 2018, respectively. The largest waves 
observed do display similar characteristics to those of the Draupner, Andrea, and El Faro rogue waves 
in that second order bound nonlinearities enhance the linear dispersive focusing of extreme waves. 
We also present a novel analysis of waves in space-time to predict potential risks posed by such large 
waves to navigation. In particular, we consider the scenario of two types of vessels of the Israeli 
Navy fleet navigating during the most intense stages of the two storms considered here and provide 
predictions for the largest waves likely to be encountered.

In light of global warming, weather events are likely to become more severe and hazardous to coastal and off-
shore structures and maritime navigation. Not only does this relate to vast oceans, but also to large basins such 
as the Black Sea and the Mediterranean Sea. In particular, the Eastern Mediterranean deserves special attention 
because it lacks studies on the physical characteristics of extreme sea states and large waves. A climatology hot-
spot and natural treasures area, the Eastern Mediterranean is a basin of increasing interest, both ecologically and 
economically1. Thus, a scientific investigation and prediction of wave extremes are of paramount importance, 
especially for rogue wave predictions and maritime navigation in extreme weather.

Conventional thresholds2 have been adopted to distinguish if a wave is rogue or not. In particular, a wave is 
rogue if its crest height h > 1.25Hs  or the crest-to-trough (wave) height H > 2Hs , where Hs is the significant 
wave height of the sea state in which the rogue wave occurred. For example, the first famous rogue wave ever 
recorded is the Draupner wave that occurred on the 1st of January 1995 in an intense sea state with Hs = 11.9 m3, 

4. The 26-m rogue wave hit the lower deck of the “Draupner S” oil platform at the North Sea. The Draupner 
wave has H = 2.15Hs and h = 1.55Hs satisfying the conventional criteria for being rogue2. On November 2007, 
the powerful Andrea storm crossed the “Ekofisk” oil platform. In a sea state with Hs = 9.2 m four wave gauge 
lasers mounted on the rig measured the Andrea rogue wave5, whose wave height H = 2.3Hs and crest height 
h = 1.62Hs . In November 2020 a rogue wave has been detected off the Vancouver Island in the Atlantic Ocean6, 
whose wave height H = 2.92Hs and crest height h = 1.98Hs are well over the conventional rogue thresholds2. 
Nevertheless, the crest height of that rogue wave reached 11.96 m in amplitude, and thus smaller than both the 
Draupner and Andrea waves.

There is a lack of scientific knowledge about the metocean characteristics of the eastern part of the Mediter-
ranean Sea, especially for rogue wave predictions and vessel navigation in extreme weather. Reports of rogue wave 
occurrences involving vessel navigation have been mostly observed in the western part of the Mediterranean by 
eyewitnesses on cruise ships that have been impacted by extreme waves resulting in structural damage and loss 
of lives. Two cases have been recently reported: the “Voyager” accident that occurred in 2005 and the “Louis 
Majesty” accident in 2010. Both accidents triggered scientific interest to confirm, or rebut the possibility of 
cruise ships encountering rogue waves7, 8. A rogue wave event has been caught in the Northern Adriatic Sea by a 
web-camera placed on the oceanographic tower ’Acqua Alta’ off the Venice coast, Italy. The estimated wave crest 
height is in the range of 5.1–6.4 m9 and exceeded the conventional rogue thresholds2. All the above-mentioned 
extreme waves have been observed in the western part of the Mediterranean Sea.

Recently, Knobler et al.10 provided the first observations of several rogue wave events in the Eastern part of 
the Mediterranean Sea from measurements acquired by AXYS Technologies “3 metre” metadata buoy in deep 
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waters (see “Methods” section for details). Surface elevations, wind and wave parameters were also collected 
by a meteorological station10, 11. As expected for this region, the strongest storm events occurred throughout 
October–April period10. They detected a sample of 109 rogue waves, whose wave heights exceeded the rogue 
threshold 2Hs , and only nine waves out of the sample had crests exceeding 1.25Hs in height2. However, no wave 
crest exceeded 4 m in height.

In the present work, we further examine the statistics of large waves in deep waters observed during the 
two most powerful storm events of the Eastern Mediterranean recorded during the last five years. In particular, 
the first storm occurred during January 16–22 in 2018, and hereafter referred to as Gaia. The second storm 
occurred during January 25–31 in 2017, and hereafter referred to as Jan 2017. We note that the largest waves 
observed in both storms do not exceed the rogue wave thresholds2, in contrast to the Draupner and Andrea rogue 
waves3–5, 12, 13 that occurred in intermediate water depths and did reach crest heights of 1.6Hs well over the rogue 
threshold. In our studies, we also exploit statistical distributions for non-stationary time series14 to analyze the 
statistics of surface elevations sampled from the two storms. Finally, we carry out a novel space-time analysis 
of the most intense sea states as a basis for predicting potential rogue hazards for ships navigating through the 
rough waters of the storms.

Results
This section is structured as follows. First, we discuss the metocean characteristics of the sea states generated 
by the two observed storms as they passed through the Eastern Mediterranean. Relevant wave parameters and 
statistical models are defined in the “Methods” section. Then, we make prediction on the extreme waves during 
the two storms. To do so, we draw on Fedele et al.14 and use their formulation of the probability structure of non-
stationary time series as a model for the sequence of sea states in a storm. In particular, we study the occurrence 
frequencies of rogue waves during Jan 2017 and Gaia storms encountered by an observer at a given point of the 
sea surface. The wave extremes observed at the peak of the storms and their characteristics are then compared 
to those of the Andrea and Draupner rogue waves, observed at different oil platforms in the North Sea in 1995 
and 2007, respectively12 as well as the simulated El Faro rogue wave13. The metocean parameters of these five sea 
states are summarized in Table 1. Finally, we present a space-time wave analysis13, 15, 16 of the most intense sea 
states to predict rogue hazards for vessel navigation within an area.

Our extreme wave analysis focused on the study of the time sequence of changing sea states during the two 
storms. While the analysis of Fedele et al.14 yields an optimal sea state duration Tsea of 40–50 min to minimize 
the variation between waves of consecutive sea states of storms, the duration T of our actual measurements was 
limited to 18 min at the beginning of each hour to minimize data storage. So, the analyses here were unavoid-
ably based on Tsea = T = 18 min. Nevertheless, we observed that our wave statistics are very robust to changes 
in Tsea up to ±5 min, provided that surface elevations of each sea state in the storm sequence are normalized by 
the respective significant wave height.

Metocean parameters.  The metocean parameters history of Jan 2017 storm are shown in Fig. 1. In par-
ticular, the top panel depicts the hourly variation of the significant wave height. This is estimated as Hs = 4σ 
(black line). For comparison, H1/3 is also shown (red line), which is 5% smaller than Hs . The mean zero-up-
crossing wave period T0 is shown in the second panel of the same figure, and the hourly variations of kpd are 
reported in the third panel, where kp is the peak wavenumber. The bottom panel on the left depicts the frequency 

Table 1.   Wave parameters and various statistics of Jan 2017 and Gaia at the storm peak in comparison to the 
El Faro, Andrea and Draupner rogue sea states12. We refer to the “Methods” section for the definitions of wave 
parameters.

El Faro Andrea Draupner Jan 2017 Gaia

Significant wave height Hs [m] 9.0 10.0 11.2 6.86 6.16

Dominant wave period Tp [s] 10.2 14.3 15.0 11.9 14.1

Mean zero-crossing wave period T0 [s] 9.2 11.6 11.9 8.6 9.2

Mean wavelength L0 [m] 131 209 219 115 131

Depth d [m], k0d with k0 = 2π/L0 4700, 2.25 74, 2.23 70, 2.01 258,14.11 258, 12.36

Spectral bandwidth ν 0.49 0.35 0.36 0.43 0.46

Angular spreading σθ [rad] 0.79 0.37 0.39 1.08 1.11

Parameter R = σ 2
θ /2ν

2 1.34 0.56 0.59 3.18 2.88

Benjamin Feir Index BFI in deep water17 0.36 0.24 0.23 0.16 0.09

Tayfun  NB skewness �3,NB18 0.262 0.159 0.165 0.222 0.199

Observed skewness �3 0.162 0.141 0.146 0.103 0.105

Maximum NB dynamic excess kurtosis �d40,max
19 10−3 2.3× 10−3 2.1× 10−3 −4.8× 10−3 −1.6× 10−3

Janssen NB bound excess kurtosis �d40,NB 20 0.049 0.065 0.074 0.097 0.087

Observed excess kurtosis �40 0.042 0.041 0.032 0.100 0.087

Actual maximum crest height h/Hs 1.68 1.63 1.55 1.04 1.11

Actual maximum crest-to-trough (wave) height H/Hs 2.6 2.30 2.10 1.98 1.96
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spectrum measured at the storm peak. The directional wave spectrum is also shown, in the bottom panel on 
the right. Similarly, the histories of metocean parameters of storm Gaia are presented in Fig. 2. The two storms 
generated waves in deep waters depth ( kpd > π , see14). Moreover, kpd is well above the critical threshold 1.363, 
at which modulation instability disappears. Nevertheless, third-order nonlinear modulational effects are negli-
gible because the energy of the two sea states spreads both in all directions and frequencies12, 19 as clearly seen in 
the bottom panels of Figs. 1, 2. Furthermore, we depict in Fig. 3 the Boccotti parameter ψ∗ , which measures the 
spectral bandwidth of the sea states of the two storms. The values of the observed ψ∗ vary in the range [0.5–0.7] 
indicating sea states with broadband spectra. In Table 1 we report the metocean parameters of the two storm 
events at their peak stages in comparison to those of the El Faro, Draupner and Andrea rogue sea states12, 13. Note 
that the five sea states all have similar metocean characteristics. Both Jan 2017 and Gaia are in deep waters and 
developed comparable steep sea states as the other three sea states, even if their peak significant wave height is 
approximately 30% smaller than that of the other rogue sea states. Indeed, the observed wave parameters have 
comparable values in the same range typical of oceanic sea states in storms. Our analysis indicates that the largest 
observed waves in Gaia and Jan 2017 storms have characteristics quite similar to those displayed by the El Faro, 
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Figure 1.   Metocean parameters history during January 2017 storm: (top panels) hourly variation of the 
significant wave height estimated as Hs = 4σ (black) and H1/3 (red), mean zero-up-crossing wave period T0 , 
and depth factor kpd ; (bottom-left) normalized frequency spectrum S(f )/Sp and (bottom-right) the directional 
spectrum S(ω, θ) ([m2/rad/s/deg] ) at the storm peak. Here, Sp ([m2/Hz] ) and fp ([Hz] ) are the spectral 
amplitude and frequency at the storm peak.
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Andrea and Draupner rogue waves12, 13, where second order bound nonlinearities are the dominant factor that 
enhances the linear dispersive focusing of extreme waves.  

Statistical measures of ocean nonlinearities.  We use integral statistics such as the Tayfun steepness 
µ = �3/3 and the excess kurtosis �40 of the zero-mean surface elevation η(t) to measure ocean wave nonlineari-
ties. Wave skewness �3 describes the effects of second-order bound nonlinear effects, which alter the geometry 
and statistics of the sea surface with higher sharper crests and shallower more rounded troughs23–25. The excess 
kurtosis indicates deviations of the distribution of surface elevations from Gaussianity. It comprises a dynamic 
component19, 26 �d40 measuring third-order quasi-resonant wave-wave interactions and a bound contribution �b40 
induced by both second- and third-order bound nonlinearities23–28.

Figure 4 depicts the statistical parameters history for the two analyzed storms. The top panels display the 
hourly variations of the observed Tayfun steepness µ = �3/3 , the observed excess kurtosis �40 and the theo-
retical maximum Narrow Band (NB) dynamic excess kurtosis19 �d40,max for storm Jan 2017. The theoretical 
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Figure 2.   Metocean parameters history during Gaia storm: (top panels) hourly variation of the significant 
wave height estimated as Hs = 4σ (black) and H1/3 (red), mean zero-up-crossing wave period T0 , and depth 
factor kpd ; (bottom-left) normalized frequency spectrum S(f )/Sp and (bottom-right) the directional spectrum 
S(ω, θ) ([m2/rad/s/deg] ) at the storm peak. Here, Sp ([m2/Hz] ) and fp ([Hz] ) are the spectral amplitude and 
frequency at the storm peak.
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narrow-band predictions are also shown. The same comparisons for storm Gaia are also reported in the bot-
tom panels. In Table 1 we compare the statistical parameters of Gaia and Jan 2017 strongest sea states and the 
Draupner and Andrea rogue sea states (from Fedele et al.14). All sea states are short-crested as characterized by 
large directional spreading, especially at the peak of the storms as R > 1 . In open ocean, wave energy can spread 
directionally and third-order quasi-resonant nonlinearities are essentially insignificant12, 19, 29–32 in such realistic 
oceanic conditions12, 33, 34. Indeed, the right panels of Fig. 4 indicate that the maximum dynamic excess kurtosis 
is of O(10−3) and negative for both Jan 2017 and Gaia, and negligible in comparison to the associated bound 
component. The values of the observed excess kurtosis from the hourly 18 min samples are erratic due to the 
short record duration. Estimates of the third order moment, or wave skewness from the buoy’s time records of 
surface elevations converged for time series 70–100 wave periods long, or 12–15 min records. In contrast, esti-
mates of the fourth-order moment, or excess kurtosis were at the verge of convergence for the available 18-min 
record. Nevertheless, our analysis indicates that third-order quasi-resonant interactions, including NLS-type 
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Figure 3.   Metocean parameters history during storms  Jan 2017 (left panel, start date Jan 25, 2017, 00:00) and 
Gaia (right panel, start date Jan 16, 2017, 00:00): hourly variation of Boccotti parameter ψ∗ and the significant 
wave height estimated as Hs = 4σ.
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Figure 4.   Statistical parameters history during storms (top panels) Jan 2017 and (bottom panels) Gaia: (left) 
hourly variation of the theoretical NB (bold line) and observed Tayfun steepness µ = �3/3 (thin blue line), 
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modulational instabilities play an insignificant role in the formation of large waves12, 19 in agreement with oceanic 
observations available so far24, 35, 36.

Next we analyze the local steepness of the individual waves observed. To do so, we consider the two definitions 
Sc = kh and SH/2 = kH/2 based on the crest height h and the half of the crest-to-trough height H, respectively. 
Here, k is the wavenumber estimated from the measured local wave period using the nonlinear dispersion 
relation21, 37. Toffoli et al.21 used SH/2 to analyze the statistics of individual wave steepnesses from both laboratory 
and open sea measurements. They concluded that waves can reach SH/2 values above the Stokes limit 0.448 and 
up to the limit 0.55, hereafter referred to as TBOW. Clearly, H/2 is smaller than the crest height h on average 
because of the crest-trough asymmetry due to bound nonlinearities23. As a consequence SH/2 is smaller than Sc . 
Indeed, in a numerical study of breaking wave groups Barthelemy et al.22 observed Sc = kh values that did not 
exceed the limit 0.72, which is based on the fifth order Stokes wave solution38. Recently, Knobler et al.39 observed 
in their experiments waves of average amplitude with steepness Sc above 0.8. The steepest waves appear as forms 
of wave dislocations due to crest pairing, or splitting40. However, the largest waves in their dataset did not exceed 
the theoretical limit22 0.72. Figure 5 depicts the local steepness of the individual waves measured during Jan 2017 
and Gaia storms. Note that the observed SH/2 values do not exceed the TBOW limit 0.55. Similarly, the observed 
Sc values do not exceed the 0.72 limit proposed by Barthelemy et al.22.

Occurrence frequency of a rogue wave during storms.  We now describe the statistics of large waves 
encountered by an observer at a fixed point of the ocean surface during a storm of duration Ts . To do so, we draw 
on Fedele et al.14 and model the storm as a non-stationary continuous sequence of sea states of duration dt, and 
dt/T0(t) is the number of waves in the sea state, where T0(t) is the time-dependent mean zero-crossing wave 
period. We want to estimate the probability, or occurrence frequency Pns(ξ) of a wave crest height exceeding a 
given threshold ξHs as encountered by a fixed observer, where Hs = 4σ . That is the probability to randomly pick 
from the non-stationary time series observed at a fixed point a wave crest that exceeds the threshold ξHs , and 
it is given by14
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Figure 5.   Observed Local steepnesses Sc = kh and SH/2 = kH/2 versus local period T/T0 for (top panels) Jan 
2017 and (bottom panels) Gaia storms. Stokes limit = 0.448, TWBO limit21 = 0.55 and Barthelemy et al.22 = 0.72. 
k = local wave number, h = crest height, H = crest-to-trough height and T0 = mean zero-crossing period. 
Because of the crest-trough asymmetry, on average h > H/2 and Sc > SH/2.
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where P(ξ , t) is the stationary exceeding probability of the sea state occurring in the time interval t and t + dt , 
which depends on wave parameters around time t. The definition of Pns is consistent with the way wave crests 
are sampled from non-stationary wave measurements during storms. Moreover, the threshold ξHs is exceeded 
on average once every Nh(ξ) = 1/Pns(ξ) waves, where Nh is also the conditional return period of a wave whose 
crest height exceeds ξHs . In practice, the non-stationary Pns is estimated as the weighted average14

where Nw,j is the number of waves sampled in the sea state j and a storm is partitioned in a finite sequence of Ns 
sea states of duration Ds . For weakly nonlinear random sea states (stationary seas), the probability P is hereafter 
described by the third order Tayfun-Fedele24 (TF), modified narrow-band41 (MNB), Tayfun23, 25 (T), Forristall43 
(F) and the linear Rayleigh (R) distributions (see “Methods” section). Similarly, the non-stationary occurrence 
frequency Pns(H) of a wave in a storm whose crest-to-trough (wave) height exceeds the threshold H/Hs are 
described by the same Eqs. (1) by simply replacing P(h) with the exceedance probability P(H) proper for wave 
heights of stationary seas. This is hereafter described by the generalized Boccotti42 (B), Tayfun44 (T) and linear 
Rayleigh (R) distributions (see “Methods” section).

Figure 6 summarizes the wave statistics for storm Jan 2017. In particular, the left panel depicts the empirical 
distribution (squares) for crest heights h/Hs plotted versus the number of waves Nh(ξ) . This is compared against 
theoretical predictions of the non-stationary second-order F, MNB and T models as well as the third-order TF 
and Rayleigh (R) distributions. T and TF models are based on the observed Tayfun steepness µ = �3/3 . Note 
that TF is practically the same as MNB as an indication that second-order effects are dominant. F slightly over-
estimates the return periods, whereas the linear R model underestimates them. This indicates the dominance of 
second-order nonlinearities in shaping the sea surface. Similarly, the right panel of the same Fig. 6 reports the 
empirical distribution for crest-to-trough wave heights for Jan 2017. The observed statistics is well described by 
both the generalized Boccotti (B) and Tayfun (T) models. Similar conclusions also hold for the wave statistics 
for Gaia presented in Fig. 7.

The wave profile η with the largest wave crest height observed during Gaia (h = 1.11Hs ≈ 6.8 m, Hs = 6.16 m) 
is shown in the right panel of Fig. 8. For comparison, the El Faro, Draupner and Andrea rogue wave profiles 
are also shown12, 13. From Table 1, Gaia wave did not exceed the rogue threshold 1.25Hs as the other three rogue 
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Figure 6.   Wave statistics for storm Jan 2017: (left) crest heights h/Hs and (right) crest-to-trough wave heights 
H/Hs versus number of waves Nh(ξ) . The empirical distribution (squares) from the observed wave ensemble 
is compared against with theoretical models: T = Tayfun23, 25, TF = Tayfun-Fedele24, MNB = modified narrow-
band41, B = generalized Boccotti42, F = Forristall43 and R = Rayleigh distributions. Confidence bands are also 
shown (light dashes). Nh(ξ) is the inverse of the exceedance probability Pr[h > ξHs] , and similarly NH (ξ) is for 
crest-to-trough heights. Horizontal lines denote the rogue threshold 1.25Hs and 2Hs for crest and wave heights2.
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waves did. Nevertheless, the five sea states have very similar characteristics, suggesting a common generation 
mechanism due to linear dispersive focusing enhanced by second-order nonlinearities12.

Wave statistics in space‑time.  The maximum surface wave height observed over a given area during a 
time interval, or space-time extreme is much larger than the maximum observed at a given point over the same 
time period15, 16, 48. Indeed, in the short-crested directional seas typically generated by storms it is very unlikely 
that an observed large crest at a given point in time is actually the largest crest of a group of waves propagating in 
space-time. In contrast, it is most likely that the sea surface was much higher somewhere near the measurement 
point, as Boccotti’s (2000) QD theory predicts.
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Figure 7.   Wave statistics for storm Gaia: (left) crest heights h/Hs and (right) crest-to-trough wave heights 
H/Hs versus number of waves Nh(ξ) . The empirical distribution (squares) from the observed wave ensemble 
is compared against with theoretical models: T = Tayfun23, 25, TF = Tayfun-Fedele24, MNB = modified narrow-
band41, B = generalized Boccotti42, F = Forristall43 and R = Rayleigh distributions. Confidence bands are also 
shown (light dashes). Nh(ξ) is the inverse of the exceedance probability Pr[h > ξHs] for crest heights, and 
similarly NH (ξ) is for crest-to-trough heights. Horizontal lines denote the rogue threshold 1.25Hs and 2Hs for 
crest and wave heights2.

Figure 8.   Simulated wave profiles η/ηmax (solid) and mean sea levels (MSL) (dashed) versus t/Tp for (from 
left to right) El Faro, Andrea and Draupner sea states. Gaia largest wave observed is shown in the right panel. 
Actual measurements (thin solid) and MSLs (thin solid) are also shown for Draupner. Note that the Gaia MSL 
is insignificant and the Andrea MSL is not available. ηmax is the maximum crest height and Tp is the dominant 
wave period (see Table 1 and “Methods” section for definitions).
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Euler Characteristics of random fields49–51 provide a theoretical framework for modelling space-time wave 
extremes stochastically15, 16, 52. Drawing on Fedele et al.13 consider a 3-D non-Gaussian field η(x, y, t) in space-
time over an area A for a time period of D. The area cannot be too large since the wave field may not be statisti-
cally homogeneous. The duration should be short so that the sea state can be assumed as stationary and spectral 
changes insignificant. Then, drawing on the linear Gaussian space-time model49–51 the third-order nonlinear 
probability PST(ξ ;A,D) that the maximum surface elevation ηmax over the area A and during the time interval 
D exceeds the generic threshold ξHs is described by13, 49–51

where

denotes the third-order nonlinear Tayfun-Fedele model24 for the probability of exceedance of crest heights at a 
fixed point. The parameter Λ measures third-order nonlinear effects and can be estimated from the excess kurto-
sis as �appr = 8�40/3 (see “Methods” section). Note that our analysis indicates that third-order nonlinearities are 
negligible. The amplitude ξ relates to the Rayleigh-distributed envelope ξ0 via the Tayfun quadratic equation11, 23, 25

The space-time parameters M1 and M2 are the average number of 1-D and 2-D waves that can occur on the 
edges and boundaries of the volume � , and M3 is the average number of 3-D waves that can occur within the 
volume15. These all depend on the directional wave spectrum and its spectral moments defined in the “Methods” 
section.

Given the probability structure of the linear surface wave maximum in Eq. (3), the nonlinear mean maxi-
mum surface or crest height hST = ξSTHs attained over the area A during a time interval D is given, according 
to Gumbel (1958), by13

where β = 1/P′ST (ξ) is the inverse of the derivative of PST (ξ) with respect ξ , the Euler-Mascheroni constant 
γe ≈ 0.577 , and the most probable surface elevation value ξm follows from Eq. (3) as

Fedele et al.13 observed that Gaussian space-time models53–57 overestimate the maximum surface height over 
large areas and time intervals because they rely on Gaussianity. Indeed, Gaussian seas do not account for the wave 
physics of nonlinear dispersion29, which limits the wave growth as a precursor to breaking29, 58. As a result, water 
surface elevations of a Gaussian sea can reach any height as there are no physical limits induced by wave break-
ing. Thus, the larger the area A or the time interval D, the greater the number of waves sampled in space-time, 
and unrealistically large amplitudes are likely to be sampled. Recently, Benetazzo et al.59 proposed an approach 
to limit the effects of the unboundedness of rare Gaussian space-time events. In particular, they bound the range 
of wave crest amplitudes of a given sea state in the finite interval [0, hmax] as waves inevitably break and limit 
crest heights. The threshold hmax = ξmaxHs is chosen based on wave observations. For Draupner, Andrea and 
El Faro sea states Benetazzo et al.59 set ξmax = 1.55 , but both Andrea and El Faro attained larger amplitudes (see 
Table 1). Such an approach was pioneered by Collins45 and Battjes46 in the early 70s (see Thornton and Guza47 
for a comprehensive review). Hereafter, we refer to it as the Collins-Battjes method. In simple words, it relies 
on defining a sea state of N waves whose sample space consists of NPmax non-breaking waves and N(1− Pmax) 
breaking waves. Here, Pmax = Pr(h < hmax) is the probability, or fraction of waves that do not break. All the 
mass probability of breaking waves is concentrated at h = hmax and the associated probability density function 
(pdf) of crest heights has a Dirac delta spike δ(h− hmax) of mass (1− Pmax) at hmax so that the probability of the 
entire sample space is 1. The pdfs reported by Benetazzo et al.59 in their Eqs. (13) and (16) miss the Dirac delta 
spike to concentrate the probability mass (1− Pmax) at hmax . Following Collins-Battjes method45–47, we bound 
the Tayfun-Fedele exceedance probability in Eq. (4) as

The correct pdf must have a Dirac delta spike at ξ = ξmax as

where Pmax = Pr(h < hmax) = 1− PST,bound(ξmax;A,D) and the probability of the entire sample space adds up 
to 1. The space-time probability of exceedance can be estimated by the associated Gumbel model15

(3)PST(ξ ;A,D) = Pr{ηmax > ξHs} = (16M3ξ
2
0 + 4M2ξ0 +M1)PTF(ξ),

(4)PTF(ξ) = exp
(

−8ξ20
)[

1+Λξ 20 (4ξ
2
0 − 1)

]

,

(5)ξ = ξ0 + 2µξ20 .

(6)ξST = hST/Hs = ξm + γeβ ,

(7)PST(ξm;A,D) = 1.

(8)PST,bound(ξ ;A,D) =
{

PST(ξ ;A,D), ξ ≤ ξmax ,

0, ξ > ξmax .

(9)pST,bound(ξ ;A,D) =























− dPST,bound
dξ , ξ ≤ ξmax ,

(1− Pmax)δ(ξ − ξmax), ξ = ξmax ,

0, ξ > ξmax ,
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limited in the range [0, ξmax] . The expected maximum surface height follows by integrating the exceedance 
probability over the finite range

The nonlinear mean maximum surface or crest height hT expected at a point during the time interval D fol-
lows from Eq. (3) by setting M2 = M3 = 0 and M1 = ND . We note in passing that for Gaia and Jan 2017 storms 
the unbounded TF model well describes the statistics of large crests at a point (see Figs. 6 and 7), and so for El-
Faro13, Andrea and Draupner12 rogue waves. The second-order form of the ST model above ( � = 0 ) has been 
implemented in WAVEWATCH III60. The linear limit follows from Eq. (3) by setting µ = 0 and � = 0.

To characterize rare space-time occurrences in third-order nonlinear random seas we consider the threshold 
hq = ξqHs exceeded with probability q by the maximum surface height ηmax over an area A during a sea state of 
duration D. This satisfies

In simple words, the maximum surface height ηmax observed within the area A during D exceeds the threshold 
hq only in qN realizations of an ensemble of N identical sea states. Consider the ST ratio hST/hT , where hST is 
the mean maximum surface height expected over the area ℓ2 during a sea state of duration D = 1 hour and hT 
is the mean maximum surface height expected at a point during the same time interval D. Figure 9 displays the 
unbounded ST ratios (dashed lines) as a function of the area width ℓ/L0 for the El Faro, Draupner and Andrea 
sea states13 as well as the sea states at the peaks of Gaia and Jan 2017 storms. We also depict the bounded ratios 
(solid lines) using Collins-Battjes method and the threshold ξmax = 1.55 as in Benetazzo et al.59. The ST ratios for 
Draupner and Andrea are estimated using the European Reanalysis (ERA)-interim data52. For comparisons, we 
also report the empirical ST ratio from the HOS-simulated El Faro sea state13 and the experimental observations 
at the Acqua Alta tower16. Fedele et al.13 noted that the unbounded predictions fairly agree with the El Faro HOS 
simulations and observations for small areas ( ℓ ≤ L0 ), but they overestimate over larger areas. Note that Gaia 
and Jan 2017 give similar predictions and slightly smaller than the other sea states. As expected, the bounded 
predictions limit the growth of the statistical ensemble of waves in space-time. In particular, the maximum sur-
face height expected over an area is bounded by the threshold hmax = 1.55Hs , and it does not exceed 1.6 times 
the surface height expected at a point.

Prediction of potential hazards for vessel navigation.  Consider a vessel that navigates through a 
wave field of surface elevations η(x, y, t) at a constant speed V along a straight path at an angle β with respect 
to the x axis of a fixed Cartesian frame (x, y,  t) over a time interval D. Define the occurrence frequency, or 
exceedance probability Pe(h) that a rogue wave exceeding a crest height h is encountered by the vessel during 
its navigation path. Pe(h) can be estimated as the probability that the maximum surface height exceeds h over 

(10)PGumbel(ξ) = 1− exp
[

− exp (−β(ξ − ξm)
]

, 0 ≤ ξ ≤ ξmax ,

(11)ξST = hST/Hs =
∫ ξmax

0
PST,bound(ξ ;A,D) dξ .

(12)PST,bound(ξq;A,D) = q.
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Figure 9.   Space-time extremes: theoretical ratio hST/hT as a function of the area width ℓ/L0 for El Faro, 
Draupner and Andrea rogue sea states as well as the sea states at the peaks of Gaia and Jan 2017 storms. hST is 
the mean maximum surface height expected over the area ℓ2 during a sea state of duration D = 1 hours and 
hT is the mean maximum surface height expected at a point. For comparisons, the empirical ST ratio from 
the El Faro HOS simulations (green solid line) together with the experimental observations at the Acqua Alta 
tower (squares) are also shown16. L0 is the mean wavelength. Dashed lines denote the unbounded Gaussian 
predictions, whereas solid lines denote the bounded predictions using Collins-Battjes method45–47 with 
ξmax = 1.55.
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the space-time volume Ve spanned by the vessel in motion. To do so, we draw on Fedele et al.13 and consider the 
encountered wave field ηc as seen by an observer in the frame (xe , ye , t) moving with the vessel, where

and (x, y, t) is the fixed Cartesian frame. The wave field encountered by the cruising vessel, or equivalently the 
field of surface fluctuations measured from the moving frame (xe , ye , t) is

For an observer in the fixed frame (x, y, t), η is a random wave field homogeneous in space and stationary 
in time, and so is the encountered field ηc as seen from an observer on the vessel in the moving frame (xe , ye , t) . 
However, ηc will be non-stationary for a generic navigation route and variable vessel’s speed. The associated 
space-time covariance is given by

where S(f , θ) is the directional wave spectrum of the sea state, kx = k cos θ and ky = k sin θ , where k is the 
wavenumber related to the frequency f via the linear dispersion relation. The Doppler-shifted encountered, or 
apparent frequency is61–63

When the vessel moves faster than the waves coming from a direction θ , the apparent frequency fe < 0 and 
waves appear to move away from an observer on the vessel. In this case, the direction of those waves should be 
reversed61, i.e. θ = θ + π , and fe set as positive. The spectral moments m(e)

ijk of the encountered random field ηc 
are given by13

In the moving frame (xe , ye , t) , the vessel is stationary. As a consequence, the vessel spans the same area equal 
to its size L x W m2 over the duration D, i.e. it covers the space-time volume Ve = LW m2 x D min. Here, L and 
W are the length and width of the vessel, respectively. The probability Pe(h) that the maximum surface height over 
Ve exceeds the threshold h can be estimated from the spectral moments me

ijk of the encountered wave field using 
the space-time model13, 15, 52 in Eq. (3). In our analysis, we consider the worst-case scenario of the vessel cruising 
against the dominant wave direction of the sea state. In such conditions the moving vessel encounters more waves 
than if it were anchored at a fixed point because the apparent frequency of the encountered waves increases.

As an application, we hypothesize the scenarios of two vessels of the Israeli Navy fleet navigating at their cruise 
speeds against the dominant waves of the peak sea state of Gaia over a time interval of 10 min. We consider the 
Super Dvora Mk III-class patrol boat, a vessel of small size (length 20 m and width 6 m) cruising at the average 
speed of  50 km/h (27 knots) and maximum speed of 93 km/h (50 knots). We also consider the Sa’ar 6-class 
corvette, a large vessel (length 90 m and width 14 m) cruising at the average speed of 30 km/h (17 knots) and 
maximum speed of 50 km/h (27 knots). Figure 10 depicts the bounded predictions (solid lines) of the nonlinear 
threshold hn/Hs exceeded with probability 1/n by the maximum surface height seen by the observer on the 
two vessels over the duration D = 10 min. We used the Collins-Battjes method45–47 described in the preceding 
section and adopt ξmax = 1.68 , which is the crest height of the largest simulated wave of the El Faro sea state13. 
The unbounded Gaussian predictions are also reported (dashed lines). Consider an observer on the large vessel 
navigating against the dominant waves of the peak sea state of Gaia at the average cruise speed of 30 km/h. The 
observer sees the vessel as stationary and the spanned space-time volume is Ve = 90 x 14 m2 x10 min. The prob-
ability that the maximum surface height exceeds h = 1.6Hs ≈ 9 m (here, Hs = 6.16 m, see Table 1) when the 
vessel cruises along the dominant direction of waves is close to Pe = 1/1260 , as shown in Fig. 10. An observer on 
the small vessel navigating against the dominant waves at the average cruise speed of 50 km/h has a smaller prob-
ability Pe = 1/4000 to encounter the rogue wave, because the vessel’s size is smaller than that of the large vessel. 
If the two vessels navigate along with the dominant waves Pe reduces to 1/2400 (large vessel) and 1/10,500 (small 
vessel), because they will encounter less waves as the apparent wave frequency reduces.

For an observer fixed at a point of the sea, Pe reduces to 1/105 (see Fig. 8). We note in passing that if the two 
vessels navigate at their maximum speeds against the dominant waves, Pe increases to 1/3160 (small vessel) and 
1/1000 (large vessel).

Figure 10 also depicts the predictions for the El Faro vessel during Hurricane Joaquin based on HOS 
simulations13. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s 
prior to its sinking13. Over a time interval of D = 10 min prior sinking the probability to encounter a rogue 
wave that exceeds the threshold h = 1.6Hs ≈ 14 m is Pe ≈ 1/400 , in agreement with the predictions by Fedele 
et al.13. Thus, we find the same probabilities for the hypothetical scenario of the El Faro vessel drifting through 
the sea state at the storm peak of Gaia. However, in this case the rogue wave would exceed a smaller height, i.e. 
1.6Hs ≈ 9 m since the significant wave height at the peak of Gaia (Hs = 6.16 m) is smaller than that of the El 
Faro sea state (Hs = 9 m, see Table 1).

(13)x = xe + V cos(β)t, y = ye + V sin(β)t,

(14)ηc(xe , ye , t) = η(xe + V cos(β)t, ye + V sin(β)t, t).

(15)�c(X,Y ,T) = ηc(xe , ye , t)ηc(xe + X, ye + Y , t + T) =
∫

S(f , θ) cos(kxX + kyY − 2π feT)df dθ ,

(16)fe = f − kV cos(θ − β)/(2π).

(17)me
ijk =

∂ i+j+k�c

∂Xi∂Yj∂Tk

∣

∣

∣

X=Y=T=0
=

∫

S(f , θ)kixk
j
yf

k
e df dθ .
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Conclusions
The Eastern Mediterranean is a basin of increasing interest being a climatology hot-spot and a natural treasures 
area, both ecologically and economically1. However, there is a lack of studies on the metocean characteristics 
of its extreme sea states and large waves. Such studies are of paramount importance, especially in light of global 
warming where weather events are likely to become more severe and more hazardous to offshore and coastal 
structures as well as to vessel navigation.

To fill the gap of knowledge on metocean properties of the Eastern Mediterrenean sea storms, we have pre-
sented a scientific investigation and prediction of wave extremes of that area. Our statistical analysis indicates that 
the largest observed waves during the two major storms recorded in the last five years have characteristics quite 
similar to those displayed by the El Faro, Andrea, and Draupner rogue waves12, 13. In particular, linear dispersive 
focusing enhanced by second order bound nonlinearities are the dominant factor in the generation of large 
waves. Third-order resonances and NLS-type modulational instabilities are ineffective in shaping large waves12, 

19. Finally, we have carried out a novel space-time analysis of the most intense sea states and demonstrated the 
ability to predict potential rogue hazards for ships of various sizes and cruise speed navigating within the rough 
waters of the analyzed storms.

Methods
Buoy measurements.  The ‘3 metre’ buoy manufactured by AXYS Technologies is located on the south part 
of the Exclusive Economic Zone of Israel. The buoy is moored at a depth of 260 m at the coordinates ( 31o 45′ 41′′ 
Lat., 34o 20′ 30′′ Long.). This buoy operates by recording 18 minuets of heave displacements at the beginning of 
each hour with sampling frequency of fs = 7.14 Hz. Additional outputs are also elaborated by the internal buoy’s 
software, i.e. the directional energy density spectrum spectrum S(ω, θ) with a resolution of 3° covering 360°, and 
typical wave parameters such as the significant wave height, wave period and steepness. The same wave param-
eters were estimated independently from the the time series of the surface wave fluctuations provided by the 
buoy, and they were practically identical to the buoy’s outputs. For a cross-site validation, the buoy’s wave param-
eters have been compared to data acquired by the nearby onshore (i) Ashkelon port meteorological station64 
and (ii) the DATAWELL Wave-Rider MKIII buoy65 40-km away from our buoy, and moored 2 km offshore at 
a 24-m depth. In both cases, the buoy’s wave parameters showed similar trends to those acquired by the two 
instruments, while differing slightly in values. This is expected in light of the distance between the instruments’ 
locations and the physical characteristics of shallow waters and onshore environments.

Wave parameters.  The significant wave height Hs is defined as the mean value H1/3 of the highest one-
third of wave heights. It can be estimated either from a zero-crossing analysis or more easily but approximately 
from the wave omnidirectional spectrum So(f ) =

∫ 2π
0 S(f , θ)dθ as Hs ≈ 4σ , where σ = √

m0 is the standard 
deviation of surface elevations, mj =

∫

So(f )f
jdf  are spectral moments. Further, S(f , θ) is the directional wave 

spectrum with θ as the direction of waves at frequency f, and the cyclic frequency is ω = 2π f  . In this paper, we 
use the spectral-based estimate, which according to our wave measurements is 5%− 10% larger than H1/3 esti-
mated from the measured time series.
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Figure 10.   Theoretical bounded predictions (Collins-Battjes method45–47, ξmax = 1.68 ) for the maximum 
surface height hn/Hs exceeded with probability 1/n over the space-time volume Ve = LW m2 x D min spanned 
by the El Faro vessel (black lines), the Super Dvora Mk III-class patrol boat (red lines, small vessel) and the Sa’ar 
6-class corvette (blue lines, large vessel). The vessels navigate against the dominant waves in the peak sea state 
of storm Gaia for a duration D. L and W are the length and width of the vessel. The numerical HOS predictions 
(squares) for El Faro are also reported13. Dashed lines denote the unbounded Gaussian predictions. Dashed 
horizontal line denotes the 1.6Hs threshold.
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The dominant wave period Tp = 2π/ωp refers to the cyclic frequency ωp of the spectral peak. The mean zero-
crossing wave period T0 is equal to 2π/ω0 , with ω0 =

√
m2/m0 . The associated wavelength L0 = 2π/k0 follows 

from the linear dispersion relation ω0 =
√

gk0 tanh(k0d) , with d the water depth. The mean spectral frequency is 
defined as ωm = m1/m0

23 and the associated mean period Tm is equal to 2π/ωm . A characteristic wave steepness 
is defined as µm = kmσ , where km is the wavenumber corresponding to the mean spectral frequency ωm

23. The 
following quantitites are also introduced: qm = kmd,Qm = tanh qm , the phase velocity cm = ωm/km , the group 
velocity cg = cm

[

1+ 2qm/sinh(2qm)
]

/2.
The spectral bandwidth ν = (m0m2/m

2
1 − 1)1/2 gives a measure of the frequency spreading. The angular 

spreading σθ =
√

∫ 2π
0 D(θ)(θ − θm)2dθ  , where D(θ) =

∫∞
0 S(ω, θ)dω/σ 2 and θm =

∫ 2π
0 D(θ)θdθ is the mean 

direction. Note that ω0 = ωm

√
1+ ν2 . An alternative measure of spectral bandwidth is given by the Boccotti 

parameter ψ∗ = ψ(τ ∗) , which is the absolute value of the first minimum of the normalized covariance func-
tion ψ(τ) = η(t)η(t + τ)/σ 2 of the zero-mean surface displacement η(t) , which is attained at τ = τ ∗66 and 
ψ̈∗ = ψ̈(τ ∗) the corresponding second derivative with respect to τ66.

The wave skewness �3 and the excess kurtosis �40 of the zero-mean surface elevation η(t) are given by

Here, overbars imply statistical averages and σ is the standard deviation of surface wave elevations. Note that 
�3 was first derived by67. For second-order waves in deep water25

and18

Here, ν is the spectral bandwidth defined above and the characteristic wave steepness µm = kmσ , where km 
is the wavenumber corresponding to the mean spectral frequency ωm

23. For narrow-band waves, ν tends to zero 
and the associated skewness �3,NB = 3µm

23–25. The excess kurtosis of weakly nonlinear random seas

comprises a dynamic component �d40 due to nonlinear quasi-resonant wave-wave interactions17, 26 and a Stokes 
bound harmonic contribution �b4020. In deep water it reduces to the simple form �b40,NB = 18µ2

m = 2�23,NB
20, 26, 68 

where �3,NB is the skewness of narrowband waves23. In deep water, the dynamic component �d40 is given in terms of 
a six-fold integral17, 19 that depends on the Benjamin-Feir index BFI =

√
2µm/ν and the parameter R = σ 2

θ /2ν
2 , 

which is a dimensionless measure of the multidirectionality of dominant waves19, 26, 69.

The Tayfun‑Fedele model for crest heights.  The probability P(ξ) that a wave crest observed at a fixed 
point of the ocean in time exceeds the threshold ξHs can be described by the third-order Tayfun-Fedele model24,

where ξ0 follows from the quadratic equation ξ = ξ0 + 2µξ 20
23. Here, the Tayfun wave steepness µ = �3/3 is 

of O(µm) and it is a measure of second-order bound nonlinearities as it relates to the skewness �3 of surface 
elevations25. The parameter Λ = �40 + 2�22 + �04 is a measure of third-order nonlinearities and is a function 
of the fourth order cumulants �nm of the water surface elevation η and its Hilbert transform η̂24. In particular, 
�22 = η2η̂2/σ 4 − 1 and �04 = η̂4/σ 4 − 3 . In our studies Λ is approximated solely in terms of the excess kurtosis 
as Λappr = 8�40/3 by assuming the relations between cumulants70 �22 = �40/3 and �04 = �40 . These, to date, 
have been proven to hold for linear and second-order narrowband waves only27. For third-order nonlinear seas, 
our numerical studies indicate that Λ ≈ Λappr within a 3% relative error in agreement with observations71, 72.

For second-order seas, referred to as Tayfun sea states73, Λ = 0 only and PTF in Eq.  (22) yields the 
Tayfun (T) distribution23

For Gaussian seas, µ = 0 and Λ = 0 and PTF reduces to the Rayleigh (R) distribution

Fedele and Tayfun25 proved that the Tayfun distribution represents an exact result for large second order wave 
crest heights and it depends solely on the steepness parameter defined as µ = �3/3.

The modified narrowband (MNB) model.  Tayfun and Alkhalidi41 introduced the MNB model as an 
improvement of the conventional weakly-nonlinear second-order finite-depth narrowband model so as to avoid 
certain unrealistic features of that model in relatively shallow waters and to extend its applicability to highly 
nonlinear waves propagating from deep water to the shoaling and surf zones. The MNB exceedance probability 
for crest heights is given by

(18)�3 = η3/σ 3, �40 = η4/σ 4 − 3 .

(19)�3 ≈ 3µm(1− ν + ν2),

(20)3µm(1−
√
2ν + ν2) ≤ �3 ≤ 3µm.

(21)�40 = �
d
40 + �

b
40

(22)PTF(ξ) = Pr[h > ξ Hs] = exp
(

−8 ξ20
)[

1+Λξ 20
(

4 ξ20 − 1
)]

,

(23)PT (ξ) = exp
(

−8ξ20
)

.

(24)PR(ξ) = exp
(

−8ξ2
)

.
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where ξ0 follows from the quadratic equation11, 41

where

and the associated excess kurtosis

The MNB model is valid over the range of skewness values 0 ≤ �3 ≤ 2.

The Forristall model.  The exceedance probability is given by43

where α = 0.3536+ 0.2561S1 + 0.0800Ur , β = 2− 1.7912S1 − 0.5302Ur + 0.284U2
r  for multi-directional (short-

crested) seas. Here, S1 = 2πHs/(gT
2
m) is a characteristic wave steepness and the Ursell number Ur = Hs/(k

2
md

3) , 
where km is the wavenumber associated with the mean period Tm = m0/m1 and d is the water depth.

The generalized Boccotti and Tayfun models for crest‑to‑trough (wave) heights.  The third-
order nonlinear statistics for crest-to-trough wave heights is described in terms of the generalized Boccotti 
distribution42, 66.

where the Boccotti parameter ψ∗ and ψ̈∗ are defined above in the section where statistical parameters are 
described. For Gaussian seas ( Λ = 0 ), the original Boccotti model66 is recovered

The Tayfun model for wave heights is given by24, 44

where rm = r(Tm/2) is the value of the envelope r(t) of the covariance ψ(t) at t = Tm/2.

Space‑time statistical parameters.  For space-time extremes, the coefficients in Eq. (3) are given by15, 48

where

are the average number of waves occurring during the time interval D and along the x and y sides of length ℓx 
and ℓy respectively. They all depend on the mean period T  , mean wavelengths Lx  and Ly  in x and y directions:

and

(25)PMNB(ξ) = Pr[h > ξ Hs] = exp
(

−8ξ20
)

,

ξ =
(

ξ0 + 2εξ20
)

/α1,

ε = 0.3571�3 − 0.0227�23 + 0.0444�33,

α1 = 1+ 0.0146�3 + 0.0147�23 + 0.0219�33,

�40,MNB = 0.0276�3 + 1.4275�23 − 0.0063�33.

(26)PF(ξ) = exp
(

−(ξ/α)β
)

,

(27)PB(y) = Pr
[

H > y Hs

]

= 1+ ψ̈∗
√

2 ψ̈∗(1+ ψ∗)
exp

(

− 4 y2

1+ ψ∗

)[

1+ Λ y2

1+ ψ∗

(

y2

1+ ψ∗ − 1

2

)]

,

(28)PB(y) = Pr
[

H > y Hs

]

= 1+ ψ̈∗
√

2 ψ̈∗(1+ ψ∗)
exp

(

− 4 y2

1+ ψ∗

)

,

(29)PT (y) = Pr
[

H > y Hs

]

=
√

1+ rm

2rm

(

1+ 1− r2m
64rmy2

)

exp

(

− 4 y2

1+ rm

)

,

M3 =2π
D

T

ℓx

Lx

ℓy

Ly
αxyt ,

M2 =
√
2π

(

D

T

ℓx

Lx

√

1− α2
xt +

D

T

ℓy

Ly

√

1− α2
yt +

ℓx

Lx

ℓy

Ly

√

1− α2
xy

)

,

M1 =ND + Nx + Ny ,

ND = D

T
, Nx = ℓx

Lx
, Ny =

ℓy

Ly

T = 2π

√

m000

m002
, Lx = 2π

√

m000

m200
, Ly = 2π

√

m000

m020

αxyt =
√

1− α2
xt − α2

yt − α2
xy + 2αxtαytαxy .
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Here,

are the moments of the directional spectrum S(f , θ) and

Data availability
All the publicly available data for El-Faro are posted on the National Transportation Safety Board (NTSB) web-
site (https://​www.​ntsb.​gov).
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