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Spatiotemporal distribution of power
outages with climate events and social
vulnerability in the USA

Vivian Do 1, Heather McBrien1, Nina M. Flores1, Alexander J. Northrop 2,
Jeffrey Schlegelmilch3, Mathew V. Kiang 4 & Joan A. Casey 1,5

Power outages threaten public health. While outages will likely increase with
climate change, an aging electrical grid, and increased energy demand, little is
known about their frequency and distribution within states. Here, we char-
acterize 2018–2020outages, finding an average of 520million customer-hours
total without power annually across 2447 US counties (73.7% of the US
population). 17,484 8+ hour outages (a medically-relevant duration with
potential health consequences) and 231,174 1+ hour outages took place, with
greatest prevalence in Northeastern, Southern, and Appalachian counties.
Arkansas, Louisiana, and Michigan counties experience a dual burden of fre-
quent 8+ hour outages and high social vulnerability and prevalence of
electricity-dependent durable medical equipment use. 62.1% of 8+ hour
outages co-occur with extreme weather/climate events, particularly heavy
precipitation, anomalous heat, and tropical cyclones. Results could support
future large-scale epidemiology studies, inform equitable disaster prepared-
ness and response, and prioritize geographic areas for resource allocation and
interventions.

As climate change intensifies, the power grid ages, and energy demand
from population growth increases, power outages will likely increase1.
In 2020, US electricity customers faced slightly over 8 h of electricity
interruptions on average – the highest on record—primarily driven by
major events such as hurricanes, wildfires, and snowstorms2. When
outages occur, human health suffers3. The United States Federal
Emergency Management Agency (FEMA) identifies the power grid
among Community Lifelines, which are fundamental services that
society needs in order to operate3. Documented health effects include
carbon monoxide poisoning from improper generator use, anxiety,
stress, and exacerbation of existing cardiovascular and respiratory
conditions4. Because outages can prevent the use of temperature-
controlling devices, risk of hypothermia and heatstroke can increase
when outages occur during extreme cold spells and heatwaves5.

Moreover, outages can lead to acute food insecurity when refrig-
erators lack power6, fear related to personal safety7, and economic
losses in commercial and industrial sectors8.

Power outages represent acute health hazards for certain vul-
nerable groups. Those using electricity-dependent durable medical
equipment (DME), such as oxygen concentrators, infusion pumps, and
mobility devices rely on electricity to maintain their health9, 10. Others
vulnerable to power outages include under-resourced communities
and historically marginalized groups. Pathways include disrupted
hourly employment, older and less-insulated housing stock resulting
in dangerous indoor temperatures, lack of access to cooling facilities,
and a higher burden of underlying chronic diseases sensitive to
extreme temperatures11,12. Other historically marginalized groups may
face more adverse health outcomes following outages, or worse
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outage exposures4,13. Communities with a higher proportion of His-
panic/Latino residents may experience longer outages following hur-
ricane and winter storm-related events14–16.

Although technical problems such as equipment failure and sup-
ply shortages can cause outages, severe weather events, which can
physically damage the grid, are major drivers4,17. Power distribution
infrastructure suchas transmission lines are also vulnerable to extreme
environmental events such as high temperatures, wildfires, and
floods18. From 2000–2021, storms and severe weather caused 83% of
large-scale outages affecting at least 50,000 customers in the US1.
There is limited work on the link between environmental events and
smaller-scale (but more frequent) outages.

No standard method exists to measure power outages of health
relevance, making it challenging to compare outage events19. Most
population health power outage studies have focusedon a single, large
event, such as Hurricane Sandy in 2012 or Hurricane Irma in 20174.
These studies generally didnotmeasure customerswithout power and
instead used the timing and location of the disaster as a proxy for
outage exposure4. Presently, no national power outage datasets exist
at the temporal or spatial resolutions necessary for health studies.
Here, we address this gap by creating relative and absolute measures
to characterize power outages across the US from 2018–2020 by hour
at the county-level. The relative metric accounts for population size,
while the absolute metric identifies counties with the largest count of
customers without power. Both metrics provide important informa-
tion about which counties to prioritize for intervention and resource
allocation, especially in the context of social and medical vulner-
abilities. In secondary analyses, we determine the overlap between
weather events occurring on the same day as 8+ hour (a medically-
relevant duration with potential health consequences) county-level
outages and clustering of counties experiencing high outage burden
and high social vulnerability.

Between 2018–2020, we identified 231,174 1+ hour outages and
nearly 17,500 8+ hour (medically relevant) outages at the county-level.
62.1% of the 8+ hour outages co-occur with an extreme weather or
climate event and 8+ hour outages are 3.4x more common on days
with a single event and 10x more common on days with multiple
events. Outages are more common in the Northeast, South, and

Appalachia. Clusters of counties in Arkansas, Louisiana and Michigan
experience a dual burden of high outage exposure and high social and
medical vulnerability.

Results
The study included2447counties (77.9%ofUS counties) ofwhich2038
(83.3%) had 2+ years of reliable data from2018–2020 after data quality
and reliability checks (Fig. 1). These counties experienced a median of
60 (IQR = 97) 1+ hour outages and 2 (IQR = 5) 8+ hour outages each
year. Between 2018–2020, over 70% of included counties experienced
at least one 8+ hour outage and a total of 231,174 1+ hour outages and
17,484 8+ hour outages occurred (Table 1). Medically relevant 8+
outages happenedmore often during the summer than the winter and
peaked during late spring and mid-summer (Fig. 2). 8+ hour outages
typically had an onset around 6 PM with a range of 3 PM-8 PM (Fig. 2),
coinciding with peak electricity use, and this pattern was especially
prominent in the South (Supplementary Fig. 2). In the ten states with
the most 8+ hour outages, outages were more common in April and
October (Supplementary Fig. 3). Our analysis did not cover all coun-
ties; states with the highest percent of counties missing all years of
data were Montana (98.2%), Alaska (93.1%), and Utah (72.4%) (Sup-
plementary Table 1).

Characterizing outage events and customers without power
In our 2447 study counties, the highest average counts of 8+ hour
outages occurred in the South, Maine, Michigan, and Appalachia
(Fig. 3a). Figure 3 also illustrates the pattern of data availability and
reliability, with a higher prevalence of counties with 3 years of com-
plete and reliable data on the East Coast (darker shading) and a low
prevalence of availability and reliability in themiddleof theU.S (lighter
or no shading). The stateswith the highest annual average counts of 8+
hour outage events were Louisiana (n = 553), Texas (n = 527), Michigan
(n = 447), Mississippi (n = 381), and North Carolina (n = 372). When we
created deciles of county-level annual average 8+ hour outage counts,
the states with the highest number of counties in the top outage decile
wereMichigan (n = 32) and Louisiana (n = 29) (SupplementaryTable 2).

The spatial distribution of 1+ hour outages generallymirrored that
of 8+ hour outages but extended to additional counties; outages were

Fig. 1 | Flowchart ofUS counties included in the studyof poweroutages, 2018–2020.Westate the subsets of countiesused for specific analyses in coloredboxes. Power
outage data was purchased from PowerOutage.us.
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concentrated in the South, the Northeast, Appalachia, and parts of
California. The lowest counts of 1+ hour outages appeared in the
Midwest (Fig. 3b). The top 5 states for highest annual average counts of
1+ hour outages were Texas (N = 11,504), Georgia (N = 10,609), Louisi-
ana (N = 7826), Mississippi (N = 7188), and Alabama (N = 6240). Like 8+
hour outages, Texas, Louisiana, andMississippi had the largest number
of counties in the top outage decile of 1+ hour outage counts with 37,
28, and 22 counties involved, respectively (Supplementary Table 2).

The absolute annual average total customer hours without power
partially reflected population size, with a high number of customers
without power along the Gulf Coast, the Northeast Coast, and parts of
the Pacific Northwest (Fig. 4a). Outages resulted in an annual average
of 5.2 million customer-hours without power across 2447 study
counties. Some counties in Southern states suchas Louisiana, aswell as
throughout Appalachia, and the Northeast consistently experienced
both high counts of outage events and high total customer-hours out.
Overall, the state of Louisiana ledwith an annual average of >52million
customer-hours out, followed by North Carolina (38.3 million
customer-hours out), California (30.3 million customer-hours out),
Texas (30 million customer-hours out), and New York (28.8 million
customer-hours out). Counties with the highest annual average total
hours of customers without power were Calcasieu, LA (10.0 million),
Los Angeles, CA (7.8 million), Fairfield, CT (7.6 million), Davidson, TN
(7.4 million), and Jefferson, LA (6.2 million) (Supplementary Table 3).
When accounting for county-level customers, counties where the

average customer experienced a high annual average of hours without
power (107+ hours) concentrated around the Gulf Coast and the
Northeast, particularly Maine (Fig. 4b). Orleans (NY) led, where the
average customer experienced 251.4 h, or over 10 full days, without
power each year.

Severe weather and climate events and 8+ hour outages
We explored the role of severe weather and climate events in county-
level 8+ hour power outages by determining days where isolated and
multiple events co-occurred with outages in the continental counties
with 3 years of reliable data (n = 1653). Approximately 13% of county-
days (n = 22,793) had an 8+ hour outage, 62.1% (n = 14,156) of these
county-days co-occurred with one or more weather or climate events
(Table 2). Because multiple weather and climate events can occur in
the samecounty on the sameday, we divided analysis into county-days
with isolated events and county-days with multiple events. 8+ hour
outages were 3.4x more common on county-days with an isolated
event and 10x more common on days with multiple events, compared
to county-days without any severe weather or climate event. Every
severe weather or climate event we evaluated, except anomalous cold
alone, were related to increased occurrence of 8+ hour outages. Tro-
pical cyclone county-days, while not particularly common (0.2% of
outage county-days), were much more likely (13.7x) to co-occur with
an 8+ hour outage than county-days without any event. When tropical
cyclones happened with other severe weather or climate events the

Table 1 | Summary statistics of 8+ hour outages and 1+ hour outages among counties with 2+ years of reliable data

Annual average 8+ hour outage Annual average 1+ hour outage

Counties included in analysis, N 2038 2038

Counties with �1 outage, N (%) 1436 (70.5) 1530 (75.1)

Total outage count 17,484 231,174

Median (IQR) county-level outage count 2 (5) 60 (97)

Min county-level outage count 0 0

Max county-level outage count 35 414

Summary statistics refer to the average yearly totals per county, which is the total of outage types per county that are averaged across the study period (2018–2020). Power outage data was
purchased from PowerOutage.us.
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Fig. 2 | Contour plot of the counts of 8+ hour outages nationwide according to
start time of outage per month. The x-axis indicates start month, the y-axis
indicates the start hour of an 8+ hour outage in local military time, and the colors

indicate the total count of outages for that month and start hour. Power outage
data was purchased from PowerOutage.us.
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likelihoodof an 8+ hour outagewas even greater. For example, county-
days with heavy precipitation and a tropical cyclone (representing
3.0% of total outage county-days) were 37.6x more likely to have an
8+ h outage than county-days without an event. County-days with
simultaneous heavy precipitation, anomalous heat, and a tropical
cyclone were 51.6x more likely to have an 8+ h outage.

While tropical cyclones seemed to confer the greatest increase in
8+ hour outages, other events were more common. On county-days
when 8+ hour outage occurred in conjunction with a single weather or
climate event, 75.2% (n = 8507) happened with heavy precipitation.
When heavy precipitation county-days occurred, 8+ hour outages
happened 4.7x more frequently than county-days without an event.
Over a third (n = 2846) of days when a county faced 8+ hour outages
co-occurred with multiple weather or climate events. The most com-
mon multiple events co-occurring with 8+ hour outages were heavy
precipitation and anomalous heat (32.2%), heavy precipitation and
tropical cyclones (23.9%) and heavy precipitation and lightning
(22.6%). Other multiple event types occurred on the remaining 606
county-days with an 8+ hour outage and a multiple event (Supple-
mentary Table 4).

Seasonal and geographic patterns of county-level 8+ hour outage-
days and severe weather and climate type emerged. For isolated events
nationwide, heavy precipitation and snowfall predominated in the
winter months, anomalous heat in the summer months, and tropical
cyclones and wildfires played a role between July and November
(Fig. 5a). Most days with 8+ hour outages in the Northeast, Midwest,
and South happened simultaneously with heavy precipitation. Snowfall
contributed more 8+ hour outages in the winter in the West, and
wildfires made up nearly 75% of co-occurring events in the West in
September and October (Supplementary Fig. 4a). Regarding outage
county-days co-occurring withmultiple events, during summermonths
the heavy precipitation-anomalously hot temperatures combination
happened most often. During the fall, heavy-precipitation and tropical
cyclone predominated, while snowfall and anomalous cold was the
most common during winter and into spring when heavy precipitation
and lightning took over as the most frequency combination (Fig. 5b).

High 8+ hour outage exposure and vulnerability factors
Our vulnerability analyses relied on the 2038 counties with 2+ years of
reliable data. We categorized counties with SVI indices in the 4th
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Fig. 3 | County-level yearly average outage events lasting 8+h and 1+ hour in
2447 countieswith 1 + years of reliable data.Counties shaded inwhite lacked any
reliable data. a Geographic distribution for county-level yearly average of 8+ hour

outage events. bGeographic distribution for county-level yearly average of 1+ hour
outage events. Power outage datawaspurchased fromPowerOutage.us and county
basemaps were obtained from the usmap R package version 0.6.1.
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quartile (range: 0.77–1) as high vulnerability. We observed high SVI in
parts of the West Coast, the Southeast, and throughout the South
(Supplementary Fig. 5a). Counties in the highest SVI quartile experi-
enced an annual median of 3 (IQR = 5) 8+ hour outages and 80
(IQR= 83) 1+ hour outages compared to an annual median of 1
(IQR= 4) 8+ hour outages and 40 (IQR = 73) 1+ hour outages for
counties in the lowest SVI quartile (Table 3, Wilcoxon Rank Sum
p-value < 0.01). Outages for countieswith the top SVI quartile occurred
most often in April, June, and October (Fig. 6a). This trend persisted
across census regions, driven by the South (Supplementary Fig. 6).

DME analyses also included the 2038 counties with 2+years of
reliable data. The 4th quartile for our DMEmetric ranged from 74–478
Medicare DME users per 1000 Medicare beneficiaries and most
counties in this category were in the Mountain West, parts of the
South, and Appalachia (Supplementary Fig. 5b). Counties in the high-
est DME use prevalence quartile experienced a yearly median of 1
(IQR= 3) 8+ hour outages and 42 (IQR = 82) 1+ hour outages, sig-
nificantly lower counts compared to the other three quartiles (Fig. 6b,
Wilcoxon Rank Sum test p-value < 0.01).

We used bivariate LISA analysis with a false discovery rate
method to identify clusters of counties with a dual burden of high
8+ hour power outage counts and high SVI (4th quartile) or high
DME use prevalence (4th quartile). We identified 63 counties in

7 states with both high 8+ hour outages and high SVI. These high-
high county clusters were largely concentrated in Louisiana
(n = 26), Mississippi (n = 12), Arkansas (n = 9), and Michigan (n = 8)
(Fig. 7a). Among high outage-high SVI counties compared to all
others, the components of SVI contributing to a high SVI score
were higher percentages of “racial and ethnic minority” indivi-
duals (40.4% vs. 24.0%), individuals living below 150% poverty
(34.0% vs. 24.3%), and those living in mobile homes (20.1% vs.
12.4%). T-tests also showed that these differences were statisti-
cally significant (p-value < 0.05) (Supplementary Table 4). For
Medicare DME use prevalence, there were 38 counties in 8 states
with high annual average counts of 8+ hour outages and high
DME use prevalence. States with the most high-high clusters were
Arkansas (n = 12), Michigan (n = 10), and Louisiana (n = 9) (Fig. 7b).

Discussion
This study used hourly county-level data between 2018–2020 from
2447 US counties, covering 73.7% of the US population, to provide a
sub-state national analysis of power outages affecting Americans. Over
70% of study counties experienced at least one 8+ hour outage during
the study period.Medically relevant 8+ hour outages were prevalent in
the South, Northeast, and Appalachia and some areas on the West
Coast, while 1+ hour outages patterned similarly with a higher
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Fig. 4 | County yearly averages of customers without power.Counties shaded in
white lacked any reliable data. a Average total customer hours without power.
b Average total customer hours without power per customer. Panel b can be
interpreted as the county-level annual averagehourswithout power that an average

customer in that county experienced. Power outage data was purchased from
PowerOutage.us and county basemaps were obtained from the usmap R package
version 0.6.1.
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concentration in the South. Most outages co-occurred with severe
weather or climate events, particularly heavy precipitation, anomalous
heat, and tropical cyclones. We observed clusters of counties facing
both frequent 8+ hour outages and high social and medical vulner-
ability measured by SVI and Medicare DME use prevalence. Louisiana
and Arkansas had many counties with high 8+ hour outage-high SVI
and high 8+ hour outage-high DME use prevalence.

Few studies have evaluated power outage exposure nationally.
Prior studies have used US Department of Energy data and char-
acterized “electric emergency incidents and disturbances” at the state-
level. This included outages affecting 50,000+ customers or an
unplanned loss of 300MW. Most such outage events affected coastal
states4, 17. The EIA reports yearly summaries of annual outage inter-
ruptions at the state level and found that 2020 had the longest average
durations of outage events2. Our county-level study evaluating
national power outage exposure at a sub-state geographic scale con-
tributes to the growing literature on outages as an environmental
health exposure.

We used commercial data from PowerOutage.us to generate rela-
tive metrics that accounted for differences in county customer counts
and an absolute metric that based on total annual customer hours
without power. Both metrics have utility but provide different infor-
mation. Relativemetrics describe disparities and are commonly used to
evaluate health inequities, while absolute metrics measure the total
burden of exposure in a population20. A strength of our study is that we
provide both types ofmetrics for use in a range of contexts, fromhealth
studies to policy to emergency preparedness and management.

We observed that most county-days with an 8+ hour outage
coincided with one or more severe weather or climate events. Prior
national state-level studies reported that storms and severe weather
led to over 50% of outages1,17. When evaluating blackouts, outages

affecting 50,000+ customers or a loss of 300MW, Hines et al. found
that wind/rain-driven blackouts increased between 1984–2006 across
all US regions21. As severe weather and climate events increase with
climate change, this trend is likely to continue22. Our study identified
specific event types most likely to co-occur with 8+ hour outages
regionally and seasonally, with heavy precipitation (year-round) and
snowfall (winter) predominating in the Northeast, Midwest, and South
and snowfall (winter) and wildfire (fall) leading in the West. Utilities,
customers, and policymakers could use this information for planning
and resource allocation. We also found that nearly 40% of county-days
with 8+ hour outages occurred without one of the included severe
weather or climate event that our study considered. These cases were
likely due to technical problems such as equipment failure or trans-
mission delays17. Although weather and climate events seem to drive
recent large-scale outages, issues with the aging electrical grid and
increases in demand remain, both of which may be contributors to
smaller-scale outages at the county level.

A robust literature has established that environmental exposures
such as air pollution and drinking water violations disproportionately
affect certain groups such as low-income, communities of color, and
under-resourced groups23,24. However, the environmental justice lit-
erature has not equally engaged with power outages, power restora-
tion, or their possible inequitable distribution. Prior energy justice
studies have noted that natural disasters can accentuate disparities in
power outages and restoration. For example, power restoration time
reflects which communities are prioritized and by extension which
communities are neglected. In Puerto Rico after Hurricane Maria,
Sotolongo et al. observed that rural and Black communities experi-
enced the longest restoration times25, and Tormos-Aponte et al. found
that social vulnerability and political marginalization were linked to
longer wait times for the arrival of restoration crews26. During the

Table 2 | County-day co-occurrence of severe weather or climate events and 8+ hour outages

Severe weather or climate event County-days, N (%) 8+ h outage county-days, N (%) Co-occurrence Ratioa

Total 1,799,319 (100.0) 22,793 (100.0) —

None 1,265,213 (70.2) 8637 (37.9) –

Isolated eventb 492,489 (27.4) 11,310 (49.7) 3.4

Heavy precipitation 267,823 (14.9) 8507 (37.3) 4.7

Snowfall 25,523 (1.4) 1172 (5.1) 6.7

Anomalous heat 131,727 (7.3) 1090 (4.8) 1.2

Anomalous cold 57,924 (3.2) 344 (1.5) 0.9

Wildfire 5381 (0.3) 84 (0.4) 2.3

Lightning 3578 (0.2) 63 (0.3) 2.6

Tropical cyclone 533 (0.03) 50 (0.2) 13.7

Multiple eventc 41,617 (2.3) 2846 (12.5) 10.0

Heavy precipitation-anomalous heat 17,415 (1.0) 917 (4.0) 7.7

Heavy precipitation-cyclone 2650 (0.2) 679 (3.0) 37.5

Heavy precipitation-lightning 8142 (0.5) 644 (2.8) 11.6

Snowfall-anomalous cold 7151 (0.1) 250 (1.1) 5.1

Heavy precipitation-anomalous cold 1779 (0.1) 134 (0.6) 11.0

Heavy precipitation-cyclone-anomalous heat 244 (0.0) 86 (0.4) 51.6

Heavy precipitation-anomalous heat-lightning 1197 (0.1) 78 (0.3) 9.5

Other 3039 (0.2) 58 (0.3) 2.8

Analysis included the 1653 continental countieswith 3 years of reliable data.Wedefined co-occurrence if theweather/climate event occurred in the samecounty on the sameday the8+houroutage
began. We separated snowfall out from heavy precipitation.
aThe co-occurrence ratiowas the proportion of county-dayswith severeweather or climate event type i that co-occurredwith an 8+hour outagedivided by theproportion of county-dayswithout any
weather or climate event that co-occurred with an 8+ hour outage. A co-occurrence ratio > 1 means that 8+ hour outages were more likely to occur on county-days with severe weather or climate
event i compared to days with no event and a ratio <1 means that 8+ hour outages were less likely to occur on county-days with severe weather or climate event i compared to days with no event.
bAn isolated event was a county-day where only a single severe weather or climate event occurred. We defined a county exposed to lightning if a lightning flash happened, tropical cyclone if the
countywas within 100 kmof a cyclone path, wildfire if the county intersects a� km2 wildfire, heat if temperatures exceed 24 °C and that is above the 85th percentile, cold if temperatures are below
0 °C and below the 15th percentile, snowfall if snow accumulation > 1 inch, and heavy precipitation if precipitation > 85th percentile.
cMultiple events indicate county-dayswheremultiple severe weather or climate events occurred.We include the top 7most commonmultiple event types (amongpower outagedays) plus all other
multiple events grouped and provide the full breakdown in Supplemental Table 3. Power outage data was purchased from PowerOutage.us.
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Texas winter storm in 2021, Flores et al. observed that counties with a
higher proportion of Hispanic/Latino residents faced more severe
outages and that Black individuals reportedmore day-long outages via
questionnaires15. In Florida after Hurricane Irma, higher percentages of
Hispanic/Latino populations were associated with longer outages14.
Our nationwide study found significantly highermedian annual counts
of 1+ and 8+ hour outages in high versus low SVI counties.

Studies have previously incorporated SVI into research about
COVID-19, heat exposure, and hurricanes27–29. Flanagan et al. demon-
strated SVI’s utility in informing policy and intervention for thosemost
affected by disaster events like Hurricane Katrina28. Our study identi-
fied counties that experienced high 8+ hour outage exposure and high

SVI, largely concentrated in Louisiana, Mississippi, Arkansas, and
Michigan. These counties versus all others had significantly higher
proportions of residents living in poverty, of “racial/ethnic minority
status,” and living in mobile homes, making them potentially more
vulnerable to disasters and likely in need of more resources to deal
with such events. For example, the co-occurrence of natural disasters
and outages has the potential to exacerbate adverse health outcomes
among vulnerable communities. This can occur in the case of co-
occurring anomalous temperatures and outages where disadvantaged
groups may have worse baseline health, lower access to generators,
higher occupational exposures, and more urban heat island effect
exposure4,30. Further, New Yorkers living in public housing after
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Fig. 5 | Monthly distribution of severe weather or climate events on days they
co-occurred with 8 + hour outages among counties with 3 years of data.
a Isolated severe weather and climate events (n = 11,310 county-days). b Multiple
severe weather and climate event combinations (n = 2,846 county-days). An iso-
lated event was a county-day where only a single severe weather or climate event
occurred and multiple events were county-days where more than one event
occurred. We defined a county exposed to lightning if a lightning flash happened,

tropical cyclone if the county was within 100km of a cyclone path, wildfire if the
county intersects a ≥ km2 wildfire, anomalous heat if temperatures exceed 24 °C
and that is above the 85th percentile, anomalous cold if temperatures are below
0 °C and below the 15th percentile, snowfall if snow accumulation > 1 inch, and
heavy precipitation if precipitation > 85th percentile. Power outage data was pur-
chased from PowerOutage.us.

Table 3 | Distribution of 1 + hour and 8 + hour outages by quartile of SVI and prevalence of Medicare DME users per 1000

Metric Quartile Quartile values Total count, N Median (IQR) count, N Max count, N

1+ hour 8+ hour 1+ hour 8+ hour 1+ hour 8+ hour

SVI Q1 [0–0.28] 22,468 1185 40 (73) 1 (4) 195 25

Q2 (0.28–0.53] 28,228 1405 57 (92) 2 (4) 217 22

Q3 (0.53–0.77] 34,911 1678 68 (99) 2 (5) 330 26

Q4 (0.77–1] 40,600 1888 80 (83) 3 (5)a 414 35

DME use, per 1000 Medicare
enrollees

Q1 [0–45] 32,211 1616 62 (95) 2 (5) 234 26

Q2 (45–58] 33,565 1704 63 (98) 2 (5) 394 35

Q3 (58–74) 35,276 1765 68 (98) 2 (5) 414 25

Q4 (74–478] 25,155 1071 42 (82) 1 (3)a 217 22

Analysis includes 2038 counties with 2+ years of reliable data.
aThe Wilcoxon rank sum test p-value < 0.01 when comparing the median of 8+ hour power outages in (1) counties belonging to the highest SVI (social vulnerability index) quartile versus all other
counties and (2) counties belonging to the highest DME (durable medical equipment) use quartile versus all other counties. Power outage data was purchased from PowerOutage.us.
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Hurricane Sandy reported inability to purchase basic necessities
because of widespread power outages in stores7. Outages shaped
some participants’ decision to remain in place despite evacuation
warnings because people worried about personal safety and property
theft7. Communities with high vulnerability face a particular set of
concerns during outage events, which have implications for their
health, so it is important to allocate resources to these communities to
support them during outage events.

We found lowermedian annual 8+ hour outage exposure (1 versus
2) in the highest quartile of Medicare DME use compared to other
quartiles. Despite this trend, it is crucial to consider thatDMEusers are

particularly susceptible to the health consequences of outages. Prior
research showed that during outages, emergency rooms saw a higher
proportion of DME users seeking care and hospitals needed to make
external referrals for treatment31,32. Medicare DME users may be
especially vulnerable because they are either older adults or indivi-
duals with disabilities. Longer outages especially endanger DME users
due to possible limited battery life of equipment. For example, typical
battery life ranges from 3–4 h for oxygen concentrators on the lowest
settings10. Emergency planning guidance tends to place the onus on
DME users to adequately prepare33. A study in Michigan found that
only a quarter of older adults using essential electricity-dependent
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Fig. 6 | Contour plot of the count of 8+hour outages according to start time of
outage per month by county SVI and DME use quartile. Analysis includes 2038
counties with 2+ years of reliable data. a SVI quartile category. bMedicare DME use

per 1000 Medicare enrollees quartile category. DME, durable medical equipment;
SVI, social vulnerability index. Power outage data was purchased from
PowerOutage.us.
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medical equipment had an alternative power source34. In New York
City, those with electricity-dependent household members had lower
perceived preparedness (32%) than those without a DME user at home
(47%)35. Data from California suggests that DME use prevalence and
equipment rental days have increased over time, particularly among
lower SES individuals (e.g., users of Medicaid)36. While we did not
identify disproportionate exposure to 8+ hour outages among Medi-
care DME users, given the growing Medicare DME population, their
high vulnerability to power outages, and our findings of geographic
clustering of high 8+ hour outage exposure and high concentrations of
DME users, emergency preparedness officials should prioritize this
demographic in planning37.

Our study identified clusters of counties that experienced high 8+
hour outage exposure andwere either socially ormedically vulnerable.
Knowledge about vulnerability can inform equitable disaster pre-
paredness and response, and several organizations have begun efforts
to collect it. Though not designed explicitly for power outages, the

California Office of Environmental Health and Hazard Assessment
created the California Communities Environmental Health Screening
Tool (CalEnvironScreen) to identify specific communities most affec-
ted by social stressors and various sources and forms of pollution38.
The tool’s purpose is to inform and guide regulations with environ-
mental justice in mind. We used other vulnerability metrics, the CDC’s
SVI and the Department of Health and Human Services’ emPOWER
dataset, which are part of larger efforts to identify vulnerable com-
munities with the goal of disaster preparation37,39. Prior studies lever-
aged medical records from hospital databases to map the location of
DME users in Massachusetts and Centers for Medicaid and Medicare
Service’s list of individuals using oxygen concentrators or ventilators
in New Orleans40, proposing that there are publicly available data and
sources for informing disaster preparedness as well22,36. While social
vulnerability is increasingly integrated into disaster management for
equitable emergency response, it lacks a major role in grid investment
strategies. Initial work has integrated social vulnerability into micro-
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Fig. 7 | Bivariate Local Spatial ClusteringAnalysis (LISA)of8+hour outages and
SVI andDMEusequartiles.The analysis includes 2038 counties. a SVI and 8+hour
outage LISA. Counties in red indicate high SVI and high 8+ hour outage counts.
b Medicare DME users and 8+ hour outage LISA. Counties in red indicate high

prevalence of Medicare DME users and high 8+ hour outage counts. DME, durable
medical equipment; SVI, social vulnerability index. Power outage data was pur-
chased fromPowerOutage.us and county basemapswere obtained from the usmap
R package version 0.6.1.
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grid strategies, considering critical infrastructure locations under dif-
ferent outage scenarios41. Our results point to US counties where
medically and socially vulnerability overlaps with high outage burden,
information that could guide investments to reduce societal burdens
from outages among the most vulnerable.

Our study had limitations, several related to the PowerOutage.us
data. Not all US utilities appeared in the dataset, with small rural uti-
lities most often absent. Due to a combination of the proportion of
customer coverage and temporal missingness, we lacked reliable data
on 563 counties, many of which were in the Midwest and Mountain
West. However, our report still represents the most comprehensive,
county-level summary of power outages todate, covering 2447 (78.9%)
US counties. Our data spanned only 3 years, so we could not evaluate
long-term trends. We assessed power outages at the county-level,
which did not account for sub-county heterogeneity in exposure. For
example, a county-level outage could occur due to either severalminor
sub-county outages or a single large outage at one sub-county loca-
tion. Further, our county-aggregated data did not ensure the same
customers were without power during 1+ and 8+ hour outages. For
example, in one outage definition, we required 0.1% of total county
customers to be without power for 8+ hours, but the composition of
the 0.1% without power could change during the outage. Spatio-
temporal granularity is necessary for accurate outage exposure mea-
surement, so future studies, particularly those interested in linking
outages to individual health outcomes, should consider exposure at a
sub-county geographic resolution such as the household or building
level, perhaps using improved power utility data, internet-connected
devices, or satellite imagery42–46. Finally, we identified county-days
where severe weather and climate events co-occurred with outages,
but due to data limitations, we could not causally link severe weather
and climate events to outages. Future studies that have access to
cause-specific outage data would add to this growing literature.

There were also limitations with selected vulnerability
metrics. As with the power outage data, county-level measures of
vulnerability may have masked sub-county level trends. While we
found a correlation between county-level outages and high SVI, it
is possible this relationship would differ with finer-scale data. SVI
is a summed rank of many vulnerability factors, which compre-
hensively describes county composition but may also include
factors less relevant to power outage vulnerability. The metric is
constructed to identify counties vulnerable to disasters but not
designed specifically for power outages. Future studies may be
interested in evaluating individual sociodemographic character-
istics or other metrics at finer spatial resolutions. Regarding DME
use prevalence, the emPOWER dataset undercounts total DME
users as it only covers Medicare recipients. However, DME use
increases with age and disability, and older adults and individuals
with disabilities are eligible for Medicare, so we likely capture the
majority of DME use36.

Despite health consequences of outages, few studies have char-
acterized their duration, geographic distribution, linkage to weather/
climate events, or exposure disparities. Policymakers andpublic health
and emergency preparedness officials need this data to equitably
allocate resources to communities most burdened by and vulnerable
to outage events. Our county-level power outage exposure data could
also support future large-scale epidemiology studies4, as we continue
to learnmore about the health effects of theseprimarily climate-driven
events. The absolute and relative power outage metrics generated
herein can inform future policy about electricity and healthcare
infrastructure planning in the face of climate change.

Methods
Ethics statement
The Columbia University Institutional Review Board approved this
research (Protocol #AAAT5765).

Poweroutages andutility customersdata. FromPowerOutage.us,we
purchased 10min resolution power outage information, which inclu-
ded the number of customers without power and the time of reporting
from 2017–2020 for counties in all US states. Due to the low spatial
coverage for 2017, we a priori excluded this year from analyses, so the
study spanned 2018–2020. Customers refers to residential consumers
such as families and non-residential consumers such as businesses.
PowerOutage.us gathered outage data at subcounty levels (e.g., cities
census-designated places) at regular 10min intervals using utility
providers’ application programming interfaces (API).

We summarized the coverage of our power outage data by utility
type using information from the US Energy Information Administra-
tion (EIA). The EIA tracks information about power usages for each US
state and should theoretically record all operating utility providers.
They have annual data on utility providers by state and service provi-
ders by county. Our power outage data captured cooperatives (59.4%),
which typically serve rural communities, and most investor-owned
utilities (84.4%), which tend to serve large populations.

To generate our outage dataset, we aggregated PowerOutage.us
data to the county and hourly level. Of the 3,142 US counties, Power-
Outage.us reported some data from 3010 (95.8%). We completed data
quality and reliability checks and removed unreliable counties from
certain analyses (Fig. 1). Broadly, we considered county APIs to be
reliably reporting on outages if the APIs report ≥50% of the time, and
we consider an API to reliably capture customers within a county if
reported customers covered ≥50% of total county customers (Sup-
plementary Methods 1.1 and 1.2). After applying these criteria, 2447
counties remained, covering 73.7%of theUSpopulation.Most analyses
focused on the 2,038 counties with 2+ years of reliable data.

Power outagemetrics: power outage event and outage experience
definitions. We set out to define a binary power outage variable for
each county-hour (1 = power out, 0 = power on). To do so, we had to
define a threshold of customers without power over which we con-
sidered the county to be experiencing an outage. This relative power
outage event definition accounted for county total customers and
enabled us to compare outage counts across counties with varying
population sizes.

We defined a power outage event as occurring whenever the
percent of customers without power met or exceeded 0.1% of the
county customers. Counts of customers without power came from
PowerOutage.us data, and we estimated the total number of county
customers based on households from the 2015–2019 American Com-
munity Survey and business establishments from the 2021 Census
Bureau (Supplementary Methods 1.1). If county A had 100,000 custo-
mers, itmet our power outage definition when 100 customers ormore
lost power; county B, with 1 million customers, would require at least
1000 customers to lose power to meet the definition. We used a 0.1%
threshold corresponding to the 90th percentile of customers out per
hour at the county-level during the study period. Prior studies have
used the 90th percentile to determine outage events35,42.

We computed the duration of outage events as the total time a
county’s percent of customers without power continuously reached or
exceeded the 0.1% threshold (Supplementary Figure 1). We considered
outages of 8+ hour and 1+ hour duration. Outages of 1+ hour duration
would disrupt commerce and other activities, and 8+ hour outages
would likely impact health by surpassing critical thresholds, including
themaximumbattery life for certainDME10. To summarize 8+ hour and
1+ hour outages, we took the average of the total number of events
annually by county over the study period. This metric is similar to the
System Average Interruption Frequency Index (SAIFI)47.

We also calculated an absolute outage metric: annual average
county-level customers without power. This metric identifies counties
where the greatest absolute count of customers experienced loss of
power. Because county-level customer density differs dramatically, we
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also computed a second absolute metric: annual average county-level
number of minutes without power per customer. Thismetric is similar
to the System Average Interruption Duration Index (SAIDI)47. It can be
interpreted as minutes without power experienced by the average
customer in a county.

Characterizing power outage exposure – especially when inves-
tigating disparities – necessitates both relative and absolute metrics.
Our relative metric for outage events accounts for county customer
density so that wemay compare across counties. Our absolutemetrics
for outage experiences identify counties with the highest count of
affected customers and the geographic distribution of total time
without power.

Severe weather and climate event data and definitions. We identi-
fied the following severe weather and climate events at the daily-
county-level: anomalous heat/cold, heavy precipitation, snowfall,
lightning, tropical cyclones, and wildfires from a variety of data sour-
ces (SupplementaryMethods 2). Data sources included the Parameter-
elevation Regressions on Independent Slopes Model (temperature,
precipitation), the National Gridded Snowfall Analysis (snowfall), the
International Space Station Lightning Imaging Sensor (lightning), the
International Best Track Archive for Climate Stewardship project
(tropical cyclones), and the National Interagency Fire Center (wild-
fires). We defined a county as exposed to an anomalous heat event if
the temperature exceeded 24 °C and was above the 85th percentile of
weekly temperatures from 1981–2010, an anomalous cold event if
temperatures dipped below 0 °C and was below the 15th percentile of
weekly temperatures from 1981–2010, heavy precipitation if daily
precipitation exceeded the 85th county percentile, snowfall if 2.54 cm
(1”) or above of snow accumulation occurred, a lightning event if a
lightning flash occurred within a county, a tropical cyclone if the
county boundary was within 100 km of a tropical cyclone track center,
and a wildfire if the county intersected with a ≥ 1 km2 wildfire. We
identified days with a single, isolated event and days with multiple
events separately as more severe and co-occurring weather and cli-
mate events likely causemore damage to the electrical grid than single
events. We did not include wind since wind and precipitation were
previously observed to be highly correlated48.

Vulnerability data and definitions. Those relying on electricity-
dependent DME require constant access to electricity to maintain
and manage their health. This vulnerability means power outages can
rapidly worsen health conditions and increase mortality risk. To
characterize this group, we generated county-level prevalence of DME
use among Medicare enrollees using the December 2020 emPOWER
dataset from the US Department of Health & Human Services. We
calculated quartiles of DME use prevalence per 1000 Medicare bene-
ficiaries in each county for analysis.

Another group vulnerable to the consequences of outages are
disadvantaged communities requiring extra support before, during,
and after disasters. To identify such counties, we used the US Centers
for Disease Control and Agency for Toxic Substances and Disease
Registry’s Social Vulnerability Index (SVI). SVI has the stated purpose
to identify specific areas that may need additional disaster-related
support. Such information about a county’s overall social vulnerability
can shape decisions about future preparedness strategies or resource
allocation, particularly in the event of longer outages that may affect
health. SVI is based on 16 census variables from the 2016–2020
American Community Survey (below 150% poverty, unemployed,
housing cost burden, no high school diploma, no health insurance,
aged 65 and older, aged 17 and younger, civilian with a disability,
single-parent households, English language proficiency, racial and
ethnic minority status, multi-unit structures, mobile homes, crowding,
no vehicle, and group quarters), which are used to create 4 vulner-
ability themes (socioeconomic status, household composition &

disability, minority status & language, housing type & transportation).
SVI ranges from 0 to 1 where county indices closer to 0 indicate lower
vulnerability and indices closer to 1 indicate higher vulnerability. We
generated quartiles of SVI for analysis.

Statistical analysis. Initial analyses were descriptive leveraging all
reliable counties in our dataset (N = 2447), reporting the frequency of
outages by county and total and average customer-hours without
power. To better understand the relationship between severe weather
and climate events and outages, we identified county-days where
severe weather and climate events co-occurred with 8+ hour outage
events. We summarized this information bymonth. Because this was a
daily analysis andweather datawas available for the continentalUS, we
used only continental counties with 3 full years of data (n = 1653).
Additionally, we calculated a co-occurrence ratio of severe weather
and climate events with 8+ hour outages. The co-occurrence ratio was
computed as the proportion of county-days with severe weather or
climate event type i that co-occurred with an 8+ hour outage divided
by the proportion of county-dayswithout anyweather or climate event
that co-occurred with an 8+ hour outage. A co-occurrence ratio >1
means that 8+ hour outages were more likely to occur on county-days
with severe weather or climate event i compared to days with no event
and a ratio <1 means that 8+ hour outages were less likely to occur on
county-days with severe weather or climate event i compared to days
with no event.

We then conducted Wilcoxon Rank Sum tests to evaluate the
relationship between county-level annual averages of 8+ hour outage
counts for counties with 2+ years of reliable data (n = 2038) and DME
use prevalence and SVI (vulnerability metrics). To identify spatial
clusters of counties with both high outage exposure and high vulner-
ability, we ran separate bivariate local indicators of association (LISA)
analyses, two-sided tests49. The bivariate analyses capture the rela-
tionship between the value of our vulnerability metric at one county
location and the spatial lag of 8+ hour outages in surrounding coun-
ties. We used the rgeoda package version 0.0.9 to run 99,999 per-
mutations, set the cluster significance at α = 0.05, and applied the false
discovery rate method to correct for multiple comparison testing50.
Because the bivariate LISA conducts multiple hypothesis testing for
each county, the probability of spurious statistical significance
increases. Applying the false discovery rate is recommended and limits
spurious positive findings51,52. We investigated whether the underlying
components of SVI differed between high-outage-high SVI county
clusters and all others and used two-sided t-tests to evaluate whether
they differed statistically. All analyses were conducted in R version
4.1.0 (2021-05-18). Code used to run the bivariate LISA can be found on
GitHub at https://github.com/viviando/National-Power-Outages53. We
used the usmap R package version 0.6.1 to generate our nationwide
maps for this study54. The package uses the U.S Census Bureau carto-
graphic boundary files and the Albers equal-area conic projection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The power outage data that support the findings of this study are
available for purchase from PowerOutage.us at https://PowerOutage.
us/products. Processed data containing annual average counts of
outage events and customers without power are available at https://
github.com/viviando/National-Power-Outages. The Centers for Dis-
easeControl and Prevention Social Vulnerability Index data is available
publicly at https://www.atsdr.cdc.gov/placeandhealth/svi/data_
documentation_download.html and the Health and Human Services
Medicare durablemedical equipment data is available for download at
https://empowerprogram.hhs.gov/empowermap. A full description of
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data used to generate severe weather and climate events is available in
Supplementary Information Methods 2.

Code availability
The code for analysis can be found at the GitHub repository55: https://
doi.org/10.5281/zenodo.7668274.
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