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Abstract 

Single Cell Protein (SCP) refers to dry cells of microorganisms, and it constitutes a highly 

promising and alternative protein source for multiple applications. SCP presents a rich nutritional 

profile containing valuable amino acids and fatty acids, nucleic acids, minerals, and several 

vitamins. Several businesses worldwide have introduced SCP into their production cycles, hence 

expanding the scope of its application in value added market chains such as the edible food 

packaging. SCP is produced by a plethora of microorganisms, including fungi, yeasts, bacteria, 

and algae while many of them are Generally Recognized as Safe (GRAS). Selected microbial 

strains present satisfying growth capability with high yields when cultivated in renewable 

feedstock. Thus, production rates and process sustainability could be enhanced via the valorization 
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of industrial and agricultural wastes as the nutrient sources, combined with optimization of process 

parameters, i.e fermentation mode and feeding strategy, pH, temperature, C/N ratio, agitation rate 

and oxygen supply. This review addresses the latest developments made towards the SCP 

production, highlighting efficient microbial SCP producers, and production systems that valorize 

solid and liquid streams from several agricultural wastes. Potential applications, challenges in 

sensorial-, and safety-aspects as well as consumers perception issues of SCP incorporation into 

food-related matrices are also discussed. 

 

Keywords: alternative protein, sustainability, sensorial aspects, safety, food and feed, packaging 

applications  

 

1. Introduction 

The modernization of world and the necessity for prosperous societies have increased the 

standards of living and thus food safety and quality levels. Predictions for global population growth 

up to 9.7 billion by 2050 [1] will inevitably lead to increased competition for land, water, and 

energy. Sustainable food systems based on renewable food ingredients are vital to be developed. 

As a result, issues related to greenhouse gas emissions (GHG) [2], increased usage of fresh water 

(～70%) for agriculture [3] and GHG emissions related to livestock production (up to 18%) as 

well as ammonia utilization could be overcome or at least deteriorated [4]. 

Alternative proteins sources such as plant by-products, insects, and microorganisms have 

attracted scientific attention since they do not demand arable land and they can be produced 



utilizing renewable feedstock (waste and/or by-product streams) derived from numerous agri-food 

residues. Among these non-conventional sources, microorganisms present enhanced protein 

contents. Dry cell biomass has been described as ‘single cell protein’ (SCP) or ‘microbial protein’ 

[5]. SCP is primarily sourced from microorganisms, and it constitutes an eco-friendly substitute 

for animal-derived proteins. The global demand for proteins is continuously growing while 

advances in the food processing sector are likely to trigger SCP importance, although the latter 

still holds a small market share. More specifically, the market of SCP is forecast to exceed $18.5 

billion by 2030 [6]. Recent studies have evaluated a variety of microorganisms such as bacteria 

[7], [8], [9], algae [10], [11], [12], yeasts [13], [14], [15] and other fungi [16],[17],[18] for SCP 

production. Production of SCP is characterized by convenience, due to fast growth of microbial 

cells, high yields, and use of a wide range of fermentation substrates [19]. High promising 

fermentation media for SCP production should be non-toxic, non-exotic, non-seasonal, renewable, 

and cost-effective [20]. Industrial waste streams, such as paper and pulp effluents [21], methanol, 

oil [22], latex waste [23], and crude glycerol [24], have been efficiently utilized as unconventional 

substrates to produce SCP. Other food industry-derived streams i.e waste cooking oil, seems to be 

also promising [24], [25], while fruit waste (peels or extracts) [26], [27], [28], [29], leaf juice, 

poultry and slaughterhouse waste [20] and lignocellulosic wastes [30] have been already used for 

SCP production as demonstrated in Figure 1. 

SCP can be involved into a plethora of applications including both agricultural and 

commercial sector. More specifically, SCP has been used as a protein source for fish-meals [31], 

[32], foam-stabilizing agent [33], in paper and leather processing [34], potential packaging 

material [35] and as a good candidate for animal feed supplements [36] due to its nutritional value 

(Figure 2) as well as due to the potential influence in reduction of enteric CH4 emissions in 



ruminant animals [37]. Moreover, it has been proposed that SCP could be used as resilient food 

for catastrophes [38] or even as alternative food source in space missions [39], [40]. 

This review deals with the latest advances made towards the SCP production, reporting the 

microbial strains that have been so far used for its biosynthesis. Different production systems that 

valorize renewable streams derived from several agricultural wastes are highlighted. Potential 

applications of SCP are also included. Challenges in sensorial-, and safety-aspects as well as 

consumers perception issues of SCP incorporation into food-related matrices are also emphasized. 

 

2. SCP producers 

Many fungal species including Kluyveromyces [41], Candida [42], Saccharomyces, 

Meyerozyma [43], Pichia, Galactomyces [15], Nectaromyces [14], Rhodotorula [44], Aspergillus 

[45], Fusarium [46], Aureobasidium, Neurospora and Trichoderma spp. [16] have been employed 

for the production of SCP due to their chemical composition, nutrients (vitamin B-complex and 

folic acid) and amino acid profile (rich in essential amino acids i.e lysine and threonine), which 

complies with standards of FAO [47], [48]. Fungi can reach protein contents from 30% to 50% in 

case that the fermentation optimization targets cells protein increase [47]. Numerous studies 

concluded that fungi and yeasts are ideal candidates to produce SCP (Table 1), single cell oil [49] 

and other added-value compounds [50]. However, factors such as high nucleic acid content of 

fungi and yeasts (up to 10%) and low cell-wall digestibility [34], limit their wide applicability and 

must be taken into consideration prior to their use. Difficulties in digestibility of cell walls could 

lead to low bioavailability of proteins, allergies, intestines problems or even skin problems [51]. 

Several species of bacteria have been used as a source of protein, as they accumulate 

significant protein contents (50–80% of dry weight), present fast growth rates, and they can grow 



on a wide variety of substrates, such as sugars, starches, and organic wastes [34]. Recent studies 

indicated purple phototrophic bacteria species such as Rhodospirillum, Rhodobacter and 

Rhodopseudomonas, as very appealing candidates for SCP production [52], [5], [53]. Bacterial 

SCP production should comply with certain criteria to be commercialized. To specify, the overall 

performance in terms of growth rate, pH tolerance, heat and oxygen requirements during 

fermentation, foam generation, purity and chemical profile of the final product is of particular 

importance [34]. The main disadvantage is the fact that bacterial SCP is characterized by a high 

nucleic acid content and low familiarity of consumers to this novel material. It is notable that in 

aquatic habitats such as fresh and marine water and multiple wastewaters, bacteria are the main 

decomposers of organic matter while algae are the main absorbers of nutrients. Sial et al. [54] 

studied extensively the interaction between algae and bacteria on biomass accumulation, 

wastewater treatment as long as current biotechnological applications, and demonstrated that the 

algal-bacterial complexes could lead to higher algal biomass accumulation compared to mono- 

algal cultures. 

Microalgae can convert micro-molecules, such as carbon dioxide or ammonium, into 

valuable macromolecules like proteins. Microalgae show high photosynthetic efficiency and 

growth rate, which leads to high productivity values of proteins and/or lipids [55]. Specific types 

of microalgae have SCP contents reaching up to 70%, which favor their cultivation for animal and 

human consumption [48]. Raji et al. [56] partially replaced fishmeal protein with Spirulina 

platensis and Chlorella vulgaris on African catfishes' feed and they investigated the effect of the 

algae on growth and body composition of the catfishes. They suggested that the optimum 

percentage of S. platensis and C. vulgaris was 68.5% and 69.4%, respectively. Although many 

microalgal species such as Arthrospira, Chlorella, Dunaliella, Haematococcus, and 



Schizochytrium are characterized as GRAS by the United States Food and Drug Administration 

(FDA), the food and feed applications of microalgae in commercial formulations demands 

extensive attention, due to their possible toxicity [55]. According to Roy-Lachapelle et al. [57], 

the involvement of toxin-producing microalgae or microalgae that derive from cultivation in toxic 

wastewater, could lead to the formulation of contaminated and thus dangerous for the human health 

dietary supplements. Moreover, microalgae display high nucleic acid content (up to 6%) [34], 

which as mentioned before is a limiting factor for their application in feed and food supplements. 

 

3. SCP production using agricultural waste and by-product streams 

Agricultural wastes consisted of mono and disaccharide molecules (dairy waste, and 

molasses), starch-rich sources such as grains, structural polysaccharides (including lignocellulosic 

side streams), protein or lipid-rich sources (derived from fish feed production and slaughterhouse 

wastes), or glycerol-based resources, have been proposed for SCP production. Various of these 

resources belong to food-processing and / or food-deriving residue. These can be either solid (i.e. 

waste breads, waste sugars, discarded or expired foods, etc), semi-solid (i.e. olive pomaces) or 

liquid ones (i.e. waste-waters containing significant quantities of sugars, olive-mill wastewaters, 

cheese whey, etc) [58], [59]. Moreover, these types of residues can also be either hydrophilic (i.e. 

olive-mill wastewaters, waste breads, etc) or hydrophobic (i.e. used / cooked oils, tallows, stearins, 

neutralization pastes, etc) [60]. Other types of residues are characterized as agricultural by-

products deriving from agro-industrial activities (i.e. lignocellulosic biomass, lignocellulosic 

wastewaters deriving from paper and pulp industries, volatile fatty acids originated from dark 

fermentation or other petrochemical processes, various types of sludges, etc) [58], [59]. Finally, 

residues containing increased concentrations of glycerol, can derive from biofuel production 



facilities or oleochemical units [60]. In the following table (Table 2) we can see the various types 

of agro-residues (solid, semi-solid and liquid ones) according to the previous classification, that 

have been implemented in the various types and fermentation configurations of SCP production 

process, and indicative values of dry biomass (dry cell weight; DCW in g/L) achieved in the 

mentioned cases. 

As far as the sugar-containing residues are concerned, mono and disaccharide sources 

require less pre-treatment prior to their conversion into fermentation media. On the contrary, 

starch-rich sources, structural polysaccharides sources, protein and lipid rich sources need to be 

hydrolyzed or to be mechanically, chemically or biochemically pre-treated, prior to use [61]. For 

instance, pretreatment of the residual biomass is a critical step for the subsequent conversion of 

cellulose (the main component in structural polysaccharides sources) into glucose. An efficient 

pretreatment method should decrease the crystallinity of cellulose to further facilitate the action of 

the hydrolytic enzymes. The pre-treatment stage ranks among the most expensive processes for 

the conversion of lignocellulosic feedstock into fermentable sugars. Commonly, in order to 

enhance SCP production, lignocellulosic sources such as hemicellulose are chemically pre-treated 

[62]. Efficient and cost-effective pretreatment strategies should provide optimal yields of 

polysaccharides hydrolysis, and minimum formation of inhibitory compounds i.e phenolic 

compounds, furfural, 5-(hydroxymethyl)furfural (HMF) and acetic acid. As a consequence, the 

produced fermentation media could lead to enhanced cell growth and products formation [63]. It 

should be stressed that as far as the fermentation of sugar-based substrates is conducted  for SCP 

production , sufficient oxygen-excess conditions should be provided, given that the process is 

positively influenced by the aeration imposed into the culture media, exactly as it happens with 

the process of de novo single cell oil (microbial oil) production (de novo oil production refers to 



the synthesis performed from glucose or similarly catabolized compounds, where CH3COSCoA 

constitutes the base-molecule in order for lipid to be synthesized) [64], [65]. Regarding aeration, 

previous studies have shown that the best aeration rate (volume of air, volume of medium, minute) 

and produce a higher yield of SCP is 1vvm in case of C. utilis [66] and K. marxianus [67]. When 

hydrophobic compounds (i.e. solid or liquid free fatty acids, triacylglycerols, etc) are implicated 

as the sole carbon source   for microbial cells production (mostly yeasts and fungi), irrespective of 

the nitrogen availability , it is possible that a portion of carbon flow would not be directed towards 

the synthesis of (protein-rich) cells. The accumulation of lipids could simultaneously be enhanced 

(this is the so-called “ex novo” lipid accumulation process, in which incorporated aliphatic chains 

would be directly esterified with cellular glycerol to form storage triacylglycerols) [64], [68], [69]. 

As for the case of SCP production when sugars and related hydrophilic compounds are used (i.e. 

polysaccharides, glycerol, etc), when fatty compounds are implicated as carbon microbial sources, 

it appears that the process is significantly positively influenced by the high dissolved oxygen 

saturation content into the medium (see biomass production in shake-flask and highly agitated 

batch bioreactor experiments in which Yarrowia lipolytica was used as microbial cell factory when 

fully saturated industrial free fatty acids were used as substrate – [129]) (Table 2). 

3.1 Dairy waste 

Dairy waste (sludge and effluents) contains high level of organic matter, oil, fatty acids, and 

considerable nitrogenous compounds, while dairy wastewater mostly contains high concentration 

of dissolved organic components, such as lactose, minerals, fat, and whey protein [70]. Depending 

on the technology used in the milk processing, dairy waste can contain high levels of either lactose 

or protein, therefore it can be categorized as a monosaccharide- and disaccharide-rich source or 

protein or lipid-rich source [61]. In 2020, cheese manufacturing in Europe generated 55.5 million 



tons of whey [71], leading to the conclusion that treatment of such waste is crucial. Approximately 

50% of total milk solids are found in whey, with lactose representing the major fraction, followed 

by proteins, minerals, non-protein nitrogen and other minor compounds [72], [73]. The challenge 

for the efficient valorization of whey is to identify microbial strains that can metabolize lactose 

and bioconvert it into SCP. Yadav et al. [74] investigated the potential of co- culture of 

Kluyveromyces marxianus and Candida krusei to amplify COD removal and to produce SCP, 

while utilizing whey as substrate in batch and continues aerobic fermentations. Results indicated 

that the co- culture was able to achieve 8.8% higher COD removal efficacy, combined with 19% 

higher biomass yield and 33% productivity, compared to monocultures. A maximum SCP 

production equal to 43.4 % was reported for co-cultures. Another study evaluated the SCP 

production by K. marxianus applying different fermentation strategies (batch and continuous 

mode) while a simultaneous COD removal using cheese whey was conducted [41]. The authors 

suggested that the aerobic continuous fermentation process with cell recycling could be applied to 

SCP production. Utilization of waste milk was also examined using strains of K. lactis (TY-98) 

and Rhodotorula graminis (TY-99) to produce SCP while the fermentation parameters i.e initial 

pH, different incubation temperatures and inoculum size in monoculture, mixed culture, and 

sequential culture were investigated for maximum production [44]. Mixed culture seemed to be a 

promising approach, as they resulted in the production of 43.8 g/L dry cell weight, under optimized 

conditions.  

The production of microbial mass (i.e. yeast dry cell weight or dried pellets or mycelia) has 

been reported by various types of yeasts and fungi, cultured on cheese-whey, in several types of 

fermentation configurations. Besides cell mass, in several cases cheese-whey has been implicated 

in processes related to the production of microbial cells containing quantities of lipids (the so-



called single cell oils; SCOs) [64], [60] whereas also, besides cell mass, other valuable metabolites 

(like exo-polysaccharides) have been reported to be produced by these types of compounds [65]. 

Results demonstrating the production of cell mass during growth on media composed of lactose 

(and / or cheese-whey) are shown in Table 3.  

 

3.2Sugar Industry Wastes  

Molasses is generated from the sugar industry by repeated crystallization during sugar 

preparation [75]. Global sugar production amounted to roughly 179 million tons in 2020/2021 

[76], while an overproduction of sugar beet pulp is predicted in near future due to growing world 

population. The principal components of molasses are saccharose (30–35%), fructose and glucose 

(10–25%), non-sugar compounds (2–3%), and minerals [75]. Due to rich nutritional value, 

molasses is widely used as a fermentation substrate for production of industrially and/or 

biotechnologically valuable products such as SCP, organic acids, and biohydrogen [24], [77]. 

Coimbra et al. [43] enriched vinasses substrate with molasses in order to enhance the production 

of SCP and bio-aroma by several yeast species including Saccharomyces cerevisiae CCMA 0186 

and CCMA 0188, Candida parapsilosis CCMA 0544, C. glabrata CCMA 0193, and Meyerozyma 

caribbica CCMA 0198. Cultivation under fed-batch mode indicated that C. parapsilosis was the 

most efficient strain reaching the highest biomass formation of 8.8 g/L, in medium consisted of 

50:50 (vinasse:molasses). In another study, Rhodopseudomonas faecalis, was cultivated in media 

containing different types of wastewaters (wastewaters were collected from anaerobic pond, 

primary mechanically aerated pond and secondary mechanically aerated pond) from sugar 

processing [78]. Wastewater collected from anaerobic ponds showed a good potential for SCP 



production with protein content exceeding 50% and a valuable amino acid profile (rich in essential 

amino acids).  

 

3.3 Fruit waste  

Waste from fruit processing seems to be a serious problem in Middle Eastern and Asian 

countries. A variety of studies have investigated the potential of fruit peels or generally fruit wastes 

as substrates for SCP production, as they are considered as lignocellulosic wastes containing 

simple and complex sugars that can be metabolized by microorganisms [79]. Al-Farsi et al. [46] 

produced SCP from date waste collected from a date syrup industry, using Trichoderma reesei 

ATCC 13631, Fusarium venenatum ATCC 20334, Thermomyces lanuginosus ATCC 34626, 

Aspergillus oryzae ATCC 14895, and Fusarium graminearum ATCC 20333. Results indicated 

that protein derived from A. oryzae biomass showed a ratio of essential to non-essential amino 

acids equal to 1:1.2. In another study, a variety of fruit waste materials (including wastes of 

mangos, prickly custard apples, pineapples, papayas, bananas, mangosteens, cashew apples, 

cacaos, jackfruits and pomegranates) were used as substrates for SCP production by S. cerevisiae 

[28]. Maximum biomass and SCP production (0.4 g and 48.3%, respectively) were obtained when 

pineapple wastes were used as the fermentation feedstock. Pineapple waste (60% v/v) have also 

been used as effective media with maximum yield of SCP up to 3.0 g/L [26] when S. cerevisiae 

was used. In a recent study, Mostafa Kamal et al. [80] attempted to optimize the process variables 

using response surface methodology to improve the production of SCP of A. niger from banana 

fruit peel on submerged shake flask fermentation. Maximum biomass and SCP production reached 

24.7 g/L and 61.2 % w/w respectively, when optimized condition were applied (T= 31.02 °C, pH 

of 6.19, substrate concentration of 19.92%, 4 days of fermentation). 



 

3.4 Crop waste 

Crop residues constitute cheap, renewable and abundant resources[81]. Production of crop 

residues is increasing as Cherubin et al. [82] estimated the global crop residues production from 

2003 to 2013 and reported that about 3607.6 x 106 Mg of crop residues were produced from 

different crops (i.e cerals, barley, corn, millet, rice, wheat, oats, rye). They include straws, bran, 

husks, and hulls of wheat and rice, barley straw, barley husk, corncob, corn husks, oat husks, and 

oat hulls [83]. These materials mainly consist of cellulose, hemicelluloses, and lignin [81]. 

However, cellulose and hemicelluloses cannot be utilized directly by most microorganisms and 

therefore, pretreatment and enzymatic hydrolysis that can aid cellulose hydrolysis and conversion 

of hemicelluloses into monosaccharides are required [84] as shown in Figure 3. Upcraft et al. [85] 

studied the fermentation of Fusarium venenatum on sugars derived from lignocellulosic residues 

of rice straws (using ionic liquid combined with food-grade Celluclast). A subsequent techno-

economic analysis and life cycle assessment based on the proposed biorefinery model showed that 

the crude mycoprotein paste product could be produced at ~$40.04 per kg-protein. This price could 

be reduced further by improving saccharification yields and utilization of feedstocks with high 

cellulose contents. Moreover, life cycle assessment results indicated that lignocellulosic-derived 

mycoprotein, demonstrated greenhouse gas emissions less than 14% compared to protein from 

beef.  Another type of crop residue such as wheat bran, was utilized by Candida utilis and Rhizopus 

oligosporus for biomass production and after fermentation's parameters optimization the 

maximum SCP yield reached up to 41.0% [86]. In another study, three different crop residues (rye 

straw, rye bran and oat bran) were tested as substrates for the growth of Y. lipolytica [87]. 



Maximum biomass production of yeast was observed in oat bran hydrolysates while the protein 

contents in yeast biomass ranged within 30.5–44.5% of dry weight.  

 

3.5 Combined agricultural waste  

Aggelopoulos et al. [88] reported that the bioconversion of mixed substrates has several 

advantages including reduction of transportation and disposal costs. For this reason, they studied 

the potential growth of several microorganisms (S. cerevisiae, K. marxianus and kefir) in mixed 

substrates consisted of orange pulp, potato pulp, molasses, whey, Brewer’s spent grains and malt 

spent rootlets, under solid state fermentation. K. marxianus was able to accumulate the highest fat 

and protein concentration (59.2% w/w on dry basis). In a recent study, combination of vinasse and 

whey wastewaters was studied as substrate for the cultivation of filamentous fungus Neurospora 

intermedia to produce protein- rich biomass [18]. The highest production of biomass reached 12.0 

g/ L, with a SCP content of 45%, while essential amino acid contents were comparable to 

commercial sources of protein that is applied in aquatic feed production.  

 

3.6 Glycerol 

Concentrated glycerol-containing waters, with a concentration of glycerol ranging between 

65-85% w/w, called also “crude” or “industrial” glycerol” (or “glycerin”), can derive as the main 

side products of biodiesel production [89], [60]. The synthesis of 10 kg of biodiesel generates c. 1 

kg of glycerol (purity ≈90% w/w) as side-product of the process, therefore, with the constantly 

increasing quantities of produced biodiesel world-wide, very high concentrations of this feedstock 

are accumulated into the market volume, with an inevitable event the significant drop of the price 

of this side product [90], [91]. Besides biodiesel production process, significant quantities of 



glycerol-containing water can be generated through bioethanol and alcoholic beverages production 

units; for instance, during bioethanol production process, ethanol is separated via distillation while 

the liquid fraction of the remaining material (the so-called thin stillage) contains c. 2% w/v of 

glycerol [90]. Likewise, liquid waste streams containing high levels of glycerol (glycerol quantities 

of 55-90% w/v) are generated in oleochemical facilities in which transformations of vegetable or 

animal fats are implicated [60], [92]. The last years, therefore, a significant number of reports deal 

with the utilization of glycerol as renewable carbon source implicated in the Industrial 

Microbiology, and in many instances, significant dry cell weight (DCW) production was reported 

using yeast, fungal or heterotrophic grown algal strains employed as cell factories (Table 4). Kurzc 

et al. [42] studied the use of glycerol (as carbon source) and deproteinized potato wastewaters (as 

nitrogen source) for C. utilis and reported that SCP production reached 40.7% on dry weight basis. 

In another study, Y. lipolytica yeast strain YLY accumulates crude glycerol reaching 19.7 g/L of 

SCP [24]. Furthermore, as shown in Table 4. when Cryptococcus curvatus ATCC 20509 

accumulate glycerol in a fed- batch bioreactor, production of dry cell weight reached 118.0 g/L 

[93].    

 

4. SCP in animal feed supplementation  

Several yeast species have been used as potential protein alternative for fishmeal, soybean 

meal or plant-based protein. In a recent study, yeasts (autolyzed and inactive) of C. jadinii, B. 

adeninivorans and W. anomalus were used to partially substitute (up to 30% and 70%) fishmeal 

(reference) on salmons diets. Final weight and specific growth rate of salmons with 30% 

substitution were significantly different compared to the reference diet [32]. Partial or total 

replacement of fishmeal with the inactivated dry yeast product DY-Pro in fish diets was studied 



by Yossa et al. [94]. The entire substitution of fishmeal with DY- Pro improved feed and nutrient 

utilization, while no significant differences were detected in fishes’ weight, and gut length. Also, 

no negative impacts on the gastrointestinal tract of the fishes were observed. Yan et al. [24] 

engineered an Y. lipolytica strain for overproduction of lipases, and SCP on cost-effective media 

(molasses, waste cooking oil and crude glycerol). They carried out both in vitro characterization 

by mimicking a gastro-intestinal environment to determine the essential amino acids of the SCP, 

and in vivo experiments via oral feeding of fish. K. marxianus, C. utilis and S. cerevisiae have 

been studied as a potential protein source (up to 40%) on salmon diets. S. cerevisiae showed poor 

protein properties while K. marxianus and C. utilis, demonstrated very similar nutrient and amino 

acid digestibility compared to fishmeal [95]. Also, brewer's yeast was effectively used to replace 

up to 24% of soybean meal and fishmeal in shrimps feed with no significant differences in final 

biomass, survival, protein retention efficiency and feed conversion rate [96]. SCP obtained from 

Corynebacterium ammoniagenes was applied to replace up to 40% of shrimps’ diet. The best 

results were obtained at 10% substitution improving final weight, weight gain, specific growth and 

feed conversion ratio compared to higher substitution percentages [97]. SCP obtained from 

Clostridium autoethanogenum was used to replace plant proteins (up to 200g/kg) in Jian carp fish 

diets. In this case, final body weight, weight gain, specific growth rate, protein retention value, and 

protein efficiency ratio were significantly improved in fished that were fed with SCP [98]. In 

African catfish diets, substitution of fishmeal with 30% microbial protein, indicated sufficient 

results regarding weight gain, specific growth rate and metabolic growth rate, while whole body 

protein increased by 8% [99]. Alloul et al. [100] studied purple non‑sulfur bacteria as a protein 

source for shrimps feed. Results showed that higher individual weights, better feed conversion, 



and higher tolerance against ammonia were observed in diets containing SCP proteins compared 

to commercial feed.  

 

5. SCP in food packaging formulation 

Food packaging is an indispensable sector of food industry, responsible for food protection 

or damage, food degradation, hygiene and overall safety before and during storage. The most 

common materials that are used as food packaging are plastic, paper, glass and steel. In recent 

years, consumers awareness about climate change, has led to an increasing demand for more 

sustainable choices [101]. Nowadays, research has focused on biodegradable plastic materials 

[102] and edible films [103] involving proteins. Proteins could be characterized as ideal candidates 

to produce packaging materials due to their film-forming capacity, amino acid profile, 

transparency, gas barrier behavior and protein-antioxidant complexes [104]. Moreover, other 

functional properties that could influence the final biobased product, could be tailor-made after 

chemical or mechanical treatment. Usage of proteins in packaging materials displays some 

limitations including low water barrier properties and brittleness of final formulations [104]. 

Lately, usage and integration of microorganisms regarding production of sustainable packaging 

materials has become an emerging strategy. For instance, Khattab et al. [105] managed to produce 

polyhydroxyalkonates (PHAs) from bacterial strains valorizing cheese whey. In another study, 

evaluation of edible whey protein films incorporated with mycelial biomass of Trametes versicolor 

was examined [106]. SCP is of particular interest as a potential packaging material, since microbial 

treatment of biodegradable wastes enables sustainable valorization and enhances circular 

economy. Singha et al. [35] developed SCP-based films using potato starch (present in cutting 

waters) as substrate for SCP production and glycerol as plasticizer. The oxygen barrier properties 



of SCP-based films were significantly better compared to the common polyethylene packaging 

material, while biodegradation test revealed a similar degradation pattern in relation to a household 

compostable bag. 

 

5.1 Functional properties of SCP 

Physicochemical and functional properties of proteins are influenced by their source of 

origin and structure. Proteins are characterized as amphiphilic molecules and they create interfacial 

layers between hydrophilic and hydrophobic regions [104]. Among various functional properties 

of proteins, including emulsification, thickening, foaming, and gelation, solubility is the most 

important as the protein fraction must be soluble to be used in a food system [107]. The main factor 

that affects the degree of protein solubility is the pH. pH values higher than proteins’ isoelectric 

points favor solubility and induce disulphide bonds leading to more stable protein structures [104]. 

In an emulsion formulation, protein acts as a stabilizing agent, and its ability is described by protein 

emulsifying activity. Paraskevopoulou et al. [108] studied the SCP production by kefir 

microorganisms and indicated that its emulsifying properties were similar to those of the defatted 

soy flour. Regarding foaming properties, proteins should stabilize foams rapidly at various pH 

range and low concentrations [107]. Kupfer et al. [33] performed characterization of protein PAU5 

from S. cerevisiae regarding its potential foam-stabilizing properties and consequently, to clarify 

if there is a direct influence on the gushing potential of sparkling wines, with results showing that 

PAU5 has foam-stabilizing properties .According to Paraskevopoulou et al. [108] gels refer as 

aqueous solutions or dispersions of high molecular weight such as proteins, cross-linked to form 

an interconnected molecular network that restrains the volume of the liquid medium. In the same 



study, texture profile of SCP’s gels, showed that the produced structures were stronger compared 

to gels made with soy flour. 

 

5.2 Nutritional profile and safety aspects of SCP 

As mentioned above, SCP is characterized by high nutritional value. Amino acid profile, 

specifically the essential amino acid composition, is the most important criteria for the evaluation 

of the nutritional importance of SCP. A variety of studies have indicated that SCP, derived from 

several microorganisms consists of essential and non-essential amino acids. According to Agboola 

et al. [32], yeasts are particularly rich (>20 g/kg dry matter) in leucine, lysine, aspartic acid, and 

glutamic acid. Yeast species of Cyberlindnera jadinii, Blastobotrys adeninivorans and 

Wickerhamomyces anomalus showed similar amino acid profile to conventional fishmeal and 

soybean meal when they were cultivated in hydrolysates of pre-treated wood and chicken products. 

Moreover, Razzaq et al. [13] investigated the nutritional properties of SCP from S. cerevisiae 

cultivation on sugar-beet bagasse and they demonstrated that SCP contained a broad spectrum of 

essential amino acids like leucine (~43.5 g/kg), valine (~38.3 g/kg), and lysine (~31.4 g/kg). 

Similarly, in another study, SCP from S. cerevisiae using sugarcane bagasse, contained 17 amino 

acids including almost all essential amino acids (except threonine and tryptophan) while it was 

suggested that the amino acid profile of SCP and soya protein were quite comparable [62]. Another 

study evaluating the nutritional properties of photo hydrogenotrophic bacteria (Rh. capsulatus, Rh. 

sphaeroides and Rps. palustris) led to the conclusion that these kinds of bacteria are able to 

produce 37.5-42.5% of total essential amino acids [5]. Rasouli et al. [10] investigated the use of 

microbial biomass (bacteria, algae, and co-cultures) as potential candidate to recover nutrients 

from industrial wastewater and upcycle them to SCP, which is suitable for animal feed. Results 



indicated that C. sorokiniana biomass contained essential amino acids for animal feed and 

Methylococcus capsulatus showed similar amino acid profiles compare to C. sorokiniana but in 

higher concentrations. However, amino acid profile of co- culture determined as most suitable for 

animal diets, due to its similarities to other commercialized protein sources, such as soy bean meal. 

Likewise, Amorim et al. [55] suggested that microalgae, like C. vulgaris and A. platensis, showed 

amino acid profiles similar to soybean which is currently the main source of protein used in feed. 

Although SCP’s amino acid content is similar to the FAO guidelines, SCP derived from certain 

species presents high nucleic acid content which could cause problems such as gout and kidney 

stones [109]. The recommended amount of SCP supplemented to human diet should have nucleic 

acid contents below 2% [20]. During human metabolism, nucleic acid is converted into purines. 

The latter raise the uric acid levels in plasma leading to several side-effects [34]. Moreover, studies 

have reported that SCP’s usage could lead to allergies, toxicity or even contamination with other 

microbes [110]. 

 

6. Sensorial aspects and consumer perception  

In recent years, there has been a shift towards investigating the usage of alternative protein 

sources and how they could possibly affect consumers' perception. Examples of alternative protein 

sources are plant- based protein, insect protein, in vitro or cultured meat, and SCP [111]. However, 

regarding consumer perception and acceptance, several factors must be taken into consideration. 

For instance, when older adults' attitudes to accept the consumption of a variety of alternative 

protein sources, such as plant-based protein, insects, SCP, and in vitro meat were investigated, 

gender and country of residence were found to influence acceptance [111]. Specifically, plant-

based protein was the most acceptable alternative reaching 58%, followed by SCP (20%), insect-



based protein (9%), and in vitro meat-based protein (6%). Siegrist & Hartmann [112] evaluated 

the influence of cultured meat among ten countries, in parameters of perceived naturalness, disgust 

and food disgust sensitivity, trust and food neophobia. Results of this study indicated that 

perceived naturalness and disgust evoked by cultured meat were significant parameters in the 

acceptance of culture meat among all countries, while there are large cultural differences regarding 

the acceptance of this alternative protein. Regarding factors that influence consumer perception 

about insect- based foods, it seems that neophobia, disgust, visibility of insects in food products 

and familiarity have key roles [113]. According to Saint-Eve et al. [114], the addition of pea flour 

on plant-based snacks affected the liking in terms of texture such as “crispy” and “puffy”, while 

flavor perception seems to be a hindrance of acceptance. The development of food products 

incorporating SCP still requires investigation regarding consumers attitudes and acceptability, as 

few studies have investigated this factor. In a recent study, SCP enriched bread was prepared by 

adding SCP, produced by food wastes, at different concentrations (4-12%) and sensory analysis in 

parameters of color (crust and crumb), aroma, flavor, taste, texture, and overall acceptability was 

conducted. Results showed that SCP concentration up to 4% can be added into the wheat flour 

without drastically affecting the organoleptic properties of the resulting bread [115]. Muniz et al. 

[116], studied protein enrichment of by-products (guava peels and cashew bagasse) using S. 

cerevisiae on cereal bars for human nutrition. Results showed an increase in the protein content 

and all cereal bars presented average scores of 7/10 for sensorial attributes and average 4/5 for 

purchase intention. Fradinho et. [117] evaluated A. platensis biomass at 2% incorporation in terms 

of color, odor, flavor, extensibility, texture, overall acceptability and buying intension in pasta 

samples, with the results showing that around 58% of consumers reported positive buying 

intension. Likewise, the addition of Arthrospira platensis (4%) to a white chocolate formulation 



increased its protein, amino acid, lipid, and mineral contents without modifying its sensory 

acceptance [118]. Garcia- Segovia et al. [119] investigated the influence of microalga- based 

breadsticks on consumer perception and acceptability. Results showed that a sensory and 

emotional vocabulary generated by trained panel including terms which describing sensory 

characteristics including “bitter”, “salty”, “crunchy”, “hardness”, “intense aroma”, “green 

particles”, “roast”, “smooth texture”, “golden surface”, “algae flavor”, as well as terms associated 

to composition, nutritional characteristics and usage including “addictive”, “expensive”, 

“nutritive”, “with fiber” and so on. Moreover, it was indicated that microalgae breadsticks were as 

acceptable as the control breadsticks and consumers consider that the product is healthier, and they 

would understand if it had greater expense.  

 

7. Concluding remarks 

The interest of researchers and businesses in SCP production is continuously increasing due 

to the inability to meet the protein requirements of the world's growing population. The 

valorization of renewable resources generated from various waste streams of the food and 

agricultural sector, could favor the SCP production in terms of socio-, economic- and 

environmental-sustainability. Especially in case that the SCP production is involved within 

biorefinery schemes, circular bio-economy concepts could be boosted, encouraging the further 

expansion of the SCP market in animal feed, innovative food formulations and bioactive food 

packaging. Important agro-industrial residues and side streams like olive-processing wastes, sugar- 

and/or lipid-rich resides, glycerol deriving from agro-industrial facilities, lignocellulosic solid 

resides or waste-waters, etc, [120], [121], [68], [122], [123] are important candidates, the 

valorization of which would certainly have much to offer on the environmental sustainability and 



the economic viability of the fermentative SCP production process. The selection of highly 

efficient microbial cells including algae, fungi, yeasts, and bacteria is a great challenge for 

enhanced SCP production enclosing value-added properties which are greatly dependent on the 

cultivation and processing conditions. The production of microbial biomass (from selected fungi 

and algae i.e.  Zygomycetes) accumulating simultaneously significant Polyunsaturated fatty acids 

PUFAs and/or polysaccharides (i.e. β-glycans) as well as  important nutraceutical compounds (i.e. 

ergothioneine, ergosterol, etc) could further increase the nutritional and economic value of the 

microbial cells produced [124], [125], [69]. The presence of anti-nutritional factors that is, nucleic 

acids, in SCP, that are found in higher amounts compared to meat- and plant-based protein sources, 

is an emerging field of scientific investigation with much space for optimization and innovation. 

The implementation of advanced downstream processes that are green and circular, combined with 

novel physical processing for nucleic acids’ elimination, might add extra value to SCP and expand 

its application pool. SCP presents a very attractive nutritional profile while it could stand as an 

alternative to partially replace so far established protein sources such as soymeal and fishmeal 

mainly in animal diets. SCP production valorizing renewable feedstock could address both food 

waste management and protein shortage issues of the modern society while consumers acceptance 

should be increased for the effective commercialization of this alternative.  
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Figure captions 

Figure 1. Properties and application of SCP. 

 

Figure 2. Renewable resources for SCP production. 

 

Figure 3. Conversion of cellulose and hemicellulose into monosaccharides. 

  



 

 

Fig 1

 

  



 

 

Fig 2 

 

 

 

  

  



 

(a) 

 

(b) 

  

 

 

 

Fig. 3 

 





Table 1. Production of SCP by various yeast species.  1 

Yeasts Renewable 

feedstock 

Fermentation mode Biomass (g/L) Protein Content 

(% w/w) 

Reference 

K. marxianus Cheese whey Batch, 

bioreactor 

6.0 (normal cell density inoculum) 

12.4 (medium-cell-density inoculum 

followed by changing to continuous 

fermentation) 

15.9 (high-cell inoculum concentration) 

42.0 

 

 

 

 

[41] 

K. marxianus 

C. krusei 

 

(mono and 

mixed culture) 

Cheese whey 

(diluted) 

Batch, 

bioreactor 

4.7 (mono culture) 

 

6.1 (mixed culture) 

43.4 [74] 

S. cerevisiae Date juice Batch, 

bioreactor 

42.8 67.8 [126] 

Y. lipolytica Waste cooking oil Batch, flasks 57.3 12.6 [25] 

C. utilis Deproteinized potato 

wastewater & 

glycerol 

Batch, flasks >30.0 40.7 

 

[42] 



C. lipolytica Olive fruit wastes 

(Alkali hydrolysis 

treatment) 

Batch, flasks 15.0 

 

17.5 (supplemented with 0.4 g/L 

peptone) 

70.0 

 

64.0 

[29] 

S. cerevisiae Fruit wastes from 

Mango, Prickly 

Custard Apple, 

Papaya, Pineapple, 

Banana, Mangosteen, 

Cashew apple, 

Cacao, Jackfruit, 

Pomegranate 

Batch, flasks 0.41 48.3 (Pineapple 

media) 

[28] 

Y. lipolytica Sugarcane molasses, 

Waste cooking oil, 

Crude glycerol 

Batch, bioreactor  39.0 (molasses-based media) 

17.9 (waste cooking oil- based media) 

19.7 (crude glycerol) 

151.2 (molasses- based media in 10L 

bioreactor) 

45- 54 [24] 

S. cerevisiae 

(CCMA 0186 

Vinasse & molasses Fed- batch, bioreactor 8.8 

(C. parapsilosis CCMA 0544) 

22.0 

 

[43] 



+ CCMA 

0188) 

C. parapsilosis 

C. glabrata 

M. caribbica 

 

(50:50 vinasse: molasses) 

P. kudriavzevii 

P. jadinii 

G. candidum 

C. tropicalis 

(MO- M5 & 

CGMCC 

2.587) 

S. cerevisiae 

(XJU-2 & JJ) 

Biogas slurry 

(derived from 

chicken manery) 

Bottles 6.8 39.4 

 

[15] 

N. rattus 

 

Biogas slurry 

(derived from 

chicken manery) 

Batch, flasks 12.6 35.9 [14] 

1 grams      

 

2 



 

Table 2. Literature results regarding biomass (dry cell weight; DCW in g/L) production by 

microorganisms cultivated on solid/ semi solid and liquid waste types.  

Solid and semi solid waste types 

Waste type Microorganism Culture 

configuration 

DCW 

(g/L) 

Reference 

Waste breads Rhizopus delemar CBS 

145940 

Fed- batch, 

bioreactor 

12.4 [127] 

Pomegranate & 

orange fruit peels 

S.cerevisiae  Batch, flasks 9.4 [128] 

Stearin (industrial 

derivative of tallow 

composed of solid 

free fatty acids) 

Yarrowia lipolytica ACA-

DC 50109 

Batch, 

bioreactor 

30.5 [129] 

Animal fat Sporobolomyces 

pararoseus CCY 19-9-6 

Batch, Flasks 8.0 [130] 

Coffee husks Rhodotorula mucilaginosa 

CCMA 0156 

Batch, Flasks 8.69 [131] 

Liquid waste types 

Waste cooking oil  

 

Y. lipolytica YLY Batch, 

bioreactor 

17.9 [24] 

Cheese whey K. marxianus strain 

CHY1612 

Batch, 

bioreactor 

4.7 [74] 



Coffee wastewaters Candida sorboxylosa Batch, Flasks 3.4 [132] 

OMWs Yarrowia lipolytica ACA-

YC 5033  

Batch, 

bioreactor 

4.8 [133] 

 

 

Table 3. Literature results regarding biomass (dry cell weight; DCW in g/L) production by yeasts 

and fungi cultivated on (enriched with salts or lactose) cheese-whey substrate.  

 

Microorganism Culture configuration DCW  

(g/L) 

Reference 

Candida curvata D Batch bioreactor 13.8 [134] 

Candida curvata D Continuous bioreactor 14.2 » 

Cryptococcus curvatus ATCC 

20509 

Batch bioreactor 23.2 [135] 

Cryptococcus curvatus ATCC 

20509 

Fed-batch bioreactor 85.0 » 

Cryptococcus curvatus ATCC 

20509 

Continuous bioreactor 21.0 » 

Cryptococcus curvatus ATCC 

20509 

Continuous bioreactor with 

recycling 

91.4 » 

Mortierella isabellina ATHUM 

2935 

Batch, shake flasks 42.3 [136] 

Thamnidium elegans CCF 1465 Batch, shake flasks 29.5 » 

Mucor sp. LGAM 366 Batch, shake flasks 28.5 » 

Cryptococcus curvatus KCTC 

27583 

Batch, shake flasks 7.2 
[137] 

Cryptococcus curvatus NRRL Y-

1511 

Batch, shake flasks 38.5 
[138] 



Cryptococcus curvatus NRRL Y-

1511 

Batch, shake flasks 10.8 
[139] 

Cryptococcus laurentii UCD 68-

201 

Batch bioreactor 14.4 
» 

Cystobasidium oligophagum 

JRC1 

Batch, shake flasks 21.0 
[140] 

Papiliotrema laurentii NRRL Y-

2536 

Batch, shake flasks 22.0 
[65] 

Papiliotrema laurentii NRRL 

YB-3594 

Batch, shake flasks 14.7 
» 

Cryptococcus curvatus ATCC 

20509 

Fed-batch, shake flasks 38.1 
» 

 

  



Table 4. Experimental results concerning biomass (dry cell weight, DCW g/L) production of 

microbial strains cultivated on pure or crude glycerol-based media. Variable quantities of cellular 

lipids and polysaccharides were reported.  

Strain Culture configuration 
DCW 

(g/L) 
Reference 

1) Yeasts    

Cryptococcus curvatus ATCC 20509  Fed-batch bioreactor 118.0 [93] 

Yarrowia lipolytica ACA-DC 50109  Single stage continuous 8.1 [141] 

Yarrowia lipolytica ACA-DC 50109  Fed Batch bioreactor 4.7 [142] 

Cryptococcus curvatus ATCC 20509  Fed Batch bioreactor 32.9 [143] 

Rhodotorula glutinis TISTR 5159 Shake flasks 5.5 [144] 

Cryptococcus curvatus ATCC 20509  Fed Batch bioreactor 22.0 [145] 

Yarrowia lipolytica MUCL 28849  Fed Batch bioreactor 42.2 [146] 

Yarrowia lipolytica MUCL 28849 b Fed Batch bioreactor 41.0 » 

Rhodosporidium toruloides AS2.1389  Shake flasks 19.2 [147] 

Rhodosporidium toruloides AS2.1389  Batch bioreactor 26.7 » 

Yarrowia lipolytica A10  Fed Batch bioreactor 23.0 [148] 

Candida sp. LEB-M3  Shake flasks 19.7 [149] 

Kodamaea ohmeri BY4-523  Shake flasks 10.3 [150] 

Trichosporanoides spathulata JU4-57  Shake flasks 17.1 [151] 

Trichosporanoides spathulata JU4-57  Fed Batch bioreactor 13.8 » 

Yarrowia lipolytica TISTR 5151 Batch bioreactor 5.5 [152] 

Cryptococcus curvatus ATCC 20509  Shake flasks 50.4 [153] 

Rhodosporidium toruloides Y4  Batch bioreactor 35.3 [154] 

Yarrowia lipolytica Q21  Shake flasks 3.85 [155] 

Yarrowia lipolytica ATCC 20460  Shake flasks 11.6 [156] 

Rhodosporidium toruloides Y4  Shake flasks 24.9 [157] 

Rhodosporidium toruloides AS 2.1389  Batch flasks 18.9 [158] 

Debaryomyces prosopidis FMCC Y69 Batch flasks 31.9 [91] 



2) Fungi and micro-algae    

Mortierella isabellina ATHUM 2935 Shake flasks 8.5 [159] 

Cunninghamella echinulata ATHUM 

4411 
Shake flasks 7.8 [160] 

Aspergillus niger LFMB 1 Shake flasks 5.4 [161] 

Aspergillus niger NRRL 364 Shake flasks 8.2 » 

Schizochytrium limacinum SR21 Shake flasks 13.1 [162] 

Schizochytrium limacinum SR21 Single stage continuous ≈11 [163] 

Mortierella ramanniana MUCL 9235 Shake flasks 7.0 [164] 

Mortierella ramanniana MUCL 9235 Batch bioreactor 9.7 » 

Cunninghamella echinulata ATHUM 

4411 
Shake flasks 6.9 » 

Cunninghamella echinulata ATHUM 

4411 
Batch bioreactor 4.2 » 

Mortierella alpina LPM 301 Shake flasks 28.6 [165] 

Mortierella alpina NRRL-A-10995  Shake flasks 26.7 » 

Schizochytrium sp. S31 Batch bioreactor ≈40 [166] 

Mortierella alpina LPM 301  Shake flasks 15.6 [167] 

Mortierella alpina NRRL-A-10995  Shake flasks 20.5 » 

 

 

  

Highlights  

• Single Cell Protein (SCP) as a promising protein alternative for multiple applications.  

• Production of SCP by a plethora of microorganisms, including fungi, yeasts, bacteria, and algae.  

• The production of SCP and process sustainability could be enhanced via the valorization of 

agricultural waste.   

• Potential application as packaging material.  



• Sensorial-, and safety-aspects as well as consumers perception issues of SCP incorporation into 

food-related matrices.  
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