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ABSTRACT: Radical initiators such as azo compounds and force radical chain
organic peroxides have been widely used to facilitate numerous (ball milling) reaction
transformations of free radicals, which enable the efficient synthesis E§ R . RS —>

of structurally complex molecules, natural products, polymers, and ‘ -
functional materials. However, these high-energy reagents are .

potentially explosive and thus often require special precautions or mechanoradlcal radical transfer to
delicate operating conditions. We postulated that a more ,\/\/ as initiator small molecules

convenient and safer alternative for radical chain initiation could ) R—Y

be developed by mechanical activation of thermodynamically stable commodity R-Y

covalent bonds. Here, we show that commodity plastics such as plastics \/\/

polyethylene and poly(vinyl acetate) are capable of acting as

efficient initiators for radical chain reactions under solvent-free mechanochemical conditions. In this approach, polymeric
mechanoradicals, which are generated by homolytic cleavage of the polymer chains in response to the applied mechanical energy
provided by ball milling, react with tris(trimethylsilyl)silane to initiate radical chain dehalogenation of organic halides. Preliminary
calculations support our proposed force-induced radical chain mechanism.

B INTRODUCTION

Free radicals are exceptional synthetic intermediates for the
preparation of various valuable functional molecules in the
fields of pharmaceuticals, polymers, and materials sciences."”
The use of radical initiators such as azo compounds and
organic peroxides is an established approach to achieve free-
radical-mediated organic transformations (Figure 1A). 36
Organometallic reagents such as Et;B/O, and Et,Zn/O,
have also been recognized as useful radical initiators, especially
for reactions at relatively low temperature (Figure 1A).”"
However, these conventional radical initiators are highly
sensitive toward photo- or thermal stimuli and are potentially
explosive, and thus often require special precautions and/or
delicate operating conditions.”™® In fact, many accidents
involving fires and/or explosions have been caused by azo
compounds.” Despite the century-long history of research on
this class of radical transformations, these safety concerns still
represent major drawbacks to their use in radical-based organic
chemistry, especially in large-scale and industrial settings.
Since the pioneering studies by Staudinger in the 1930s, it
has been well established that mechanically stimulating (e.g.,
grinding or crushing) polymeric materials causes the homolytic
scission of covalent bonds along the polymer backbone to form
free radicals, which are known as mechanoradicals (Figure
1B)."” The direct detection of the generation of such short-
lived species using electron spin resonance (ESR) spectroscopy
in solution has been reported by Sohma.'' More recently,
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Ohtsuka has reported that polymeric mechanoradicals
generated by ball milling under solid-state conditions can be
successfully detected using a diarylacetonitrile compound as a
prefluorescent molecular probe.'”"* Although the generation
of mechanoradicals has been focused upon as a key process of
polymer degradation, significant progress has also been made
in parallel in mechanical-force-mediated polymer functionali-
zation involving mechanoradical species.'* Using this “con-
structive” approach, polymeric mechanoradicals have been
shown to react with olefinic monomers to form block
copolymers via free-radical polymerization.ls_19 Willis-Fox,
Daly, and co-workers have reported that mechanoradicals
formed under flow conditions can be trapped by 2,2’-diphenyl-
1-picrylhydrazyl to deliver a change in the optical properties of
poly(methyl methacrylate) (PMMA).>° More recently, our
group has reported that radical—radical coupling between
polymeric mechanoradicals and a prefluorescent nitroxide-
based reagent proceeds under ball-milling conditions to
incorporate a luminophore into the polymer main chains via
a covalent bond.”" Although these achievements are remark-
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Figure 1. Use of plastic materials as initiators for radical chain reactions under mechanochemical conditions. (A) Conventional initiators for free-
radical chain reactions. (B) Generation of polymeric mechanoradicals from plastic materials in response to mechanical stimulation. (C) Use of

plastic materials as initiators for radical-based reductive transformations.

able, the use of polymeric materials as a source of radical
species for small molecule synthesis has not yet been explored.

Inspired by the utility of radical-based organic syntheses and
the generation of polymeric mechanoradicals via mechanical
impact, we hypothesized that cheap and abundant plastic
materials could be used as thermodynamically stable initiators
for free-radical transformations of small organic molecules
under mechanochemical conditions (Figure 1B).”*~*° Conven-
tional high-energy radical initiators, such as azo compounds,
exothermally generate radical species upon thermal activation
and thus pose a risk of explosion (Figure 1B). In contrast, our
force-induced approach allows the generation of radical species
endothermically via the mechanical activation of thermody-
namically stable covalent bonds in plastic materials. The
generated short-lived mechanoradicals could activate small
molecules through hydrogen-atom transfer (HAT) to initiate
radical chain reactions, thereby representing a more con-

venient, safe, and industrially attractive alternative to
potentially explosive radical initiators (Figure 1B).

For a proof-of-concept study, we selected the radical chain
dehalogenation of organic halides 1 with tris(trimethylsilyl)-
silane (2) as a model reaction (Figure 1C).”'** The key step
of this transformation is the HAT from the Si—H bond of 2 to
the radical species generated from an initiator. In our
postulated mechanism (Figure 1C), the agitation of generic
polymers via ball milling generates mechanoradicals in
response to mechanical impact. According to previous polymer
functionalization studies,””~>' we expected that the thus-
formed polymeric mechanoradicals would be sufficiently
persistent to undergo HAT with 2. The generated tris-
(trimethylsilyl)silyl radical (I) would react with an organic
halide 1 via halogen-atom transfer (XAT) to form a silyl halide
II and radical intermediate III, which would undergo HAT
with 2 to give the desired reduction product (3), with
concomitant regeneration of L
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Figure 2. Suitable polymeric materials are suitable as radical initiators for dehalogenation under ball-milling conditions. Reactions were conducted
with 0.2 mmol of 1a, 0.24 mmol of 2, and 200 mg of polymer in a stainless-steel jar (5 mL) with a stainless-steel ball (diameter: 10 mm). Yields
were determined by gas chromatography (GC) analysis with an internal standard. *The reaction was conducted with 0.48 mmol of 2 and 300 mg

of polyethylene at 60 °C.

B RESULTS AND DISCUSSION

All ball-milling experiments were carried out in a Retch
MM400 mixer mill (S mL stainless-steel milling jar and 10 mm
diameter stainless-steel balls). To explore the mechanistic
hypothesis, we first attempted the proposed radical dehaloge-
nation of l-bromodecane (la) with 2 (1.2 equiv) in the
presence of commercially available polyethylene (ultrahigh
molecular weight, Aldrich, product no. 434272; 200 mg)
(Figure 2). The corresponding reduction product (3a) was
obtained in 29% yield after milling at 30 Hz for 1 h slightly
above room temperature (35 °C). The temperature inside the
mill was confirmed by thermography after opening the jar. A
small amount of 3a was obtained (10% yield) when the
reaction was carried out in the presence of polypropylene (M,
= 67 kg/mol). When other commercially available polymers
such as polystyrene (M, = 400 kg/mol), poly(1,4-phenylene
sulfide) (M, = 10 kg/mol), and poly(methyl methacrylate)
(PMMA; M,, = 120 kg/mol) were used, the reactions gave
poor results. Interestingly, we found that poly(vinyl acetate)
(M, = 35 kg/mol) provided a high yield of 3a (75% yield)
under the applied conditions. In the reaction using poly-
ethylene, increasing the reaction temperature (60 °C) using a
heat gun (for details, see Supporting Figure S3) and increasing
the amounts of 2 (2.4 equiv) and polyethylene (300 mg) also
led to substantial improvement of the product yield (82%
yield). The reaction did not proceed in the absence of a
polymeric material. Furthermore, no reaction occurred in a test
tube with a magnetic stirring bar in the presence of
polyethylene. These control experiments suggest that poly-
meric mechanoradicals generated by ball-milling-induced bond

cleavage initiate the radical chain dehalogenation reaction of
la. We also confirmed that radical chain dehalogenation
proceeded smoothly even when the reaction was carried out
under an argon atmosphere, thus ruling out the possibility of
an oxygen-mediated mechanism. Gel-permeation chromatog-
raphy (GPC) of ball-milled polyethylene and poly(vinyl
acetate) showed that the number-average molecular weight
(M,) decreased, suggesting that homolytic cleavage of covalent
bonds occurs to generate mechanoradicals under the applied
conditions (for details, see Supporting Tables S1 and S2).
With the optimized conditions in hand, we proceeded to
investigate the scope and limitations of the mechanoradical-
initiated radical dehalogenation of organic halides (Figure 3A).
Under the optimized conditions using polyethylene (condition
A), the reactions of primary (1a), secondary (1d), and tertiary
alkyl bromides (le) proceeded smoothly to give the
corresponding dehalogenation products (3a and 3b) in
good-to-high yield. Alkyl iodides (1b and 1f) also underwent
radical dehalogenation with high efficiency. However, the
reactions of alkyl chlorides (1c and 1g), which are less reactive
substrates under conventional solution-based conditions,® ~**
furnished the corresponding dehalogenation product (3a and
3b) in poor yield under mechanochemical conditions. Next, we
investigated the radical dehalogenation of benzyl- and alpha-
carbonyl bromides (1h and 1i), and the desired products (3¢
and 3d) were obtained in good yield. An alkenyl bromide (1j)
was converted into the dehalogenation product (3e) in a 32%
yield. A brominated sugar derivative (1k) afforded the
corresponding product (3f) in a quantitative yield. We also
found that the radical dehalogenation of various aryl iodides
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Figure 3. Polymeric-mechanoradical-initiated radical chain dehalogenation. (A) Substrate scope of polymeric-mechanoradical-initiated reduction of

organic halides. (B) Application to radical cyclization.

(11-1x) furnished the corresponding products (3g—3r) in
good-to-excellent yield. Similar results were obtained when the
radical dehalogenation reactions were carried out under the
optimized conditions using poly(vinyl acetate) (conditions B).
Notably, functional groups such as nonprotected amine (1r),
alcohol (1s), and alkyne (1t) are also compatible under the
applied mechanochemical conditions. Furthermore, we found
that mechanoradical-initiated radical cyclization of aryl halides

that bear an alkene moiety is also feasible (Figure 3B).** As
examples, indoline, dihydrobenzofuran, and tetrahydrofuran
derivatives (3s—3u) were synthesized via radical cyclization
using polyethylene as a radical initiator. The reaction of 1-
iodonaphthalene (11) using tributyltin hydride (n-Bu;SnH)
instead of 2 in the presence of poly(vinyl acetate) also
provided the desired product (3g) in 23% yield, suggesting
that this strategy has the potential to be applied to a variety of
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Figure 4. Synthetic applications. (A) Scale-up reaction of le using a 10 mL ball-milling jar. (B) Reduction of the toxic flame retardant 1,2,5,6,9,10-
hexabromocyclododecane (1aa) using polyethylene. (C) Use of a commercial plastic bag made of high-density polyethylene as an initiator for the

radical dehalogenation reaction.

synthetic reagents for radical chain reactions (for details, see
Supporting Figure S8).

To demonstrate the synthetic utility of this protocol, we
investigated a preliminary scale-up experiment of the radical
dehalogenation under the developed mechanochemical con-
ditions as well as the recycling of polyethylene (Figure 4A and
Supporting Table SS5). The reaction of le with 2 in the
presence of polyethylene as a radical initiator was carried out
on a 2.5 mmol scale in a S mL stainless-steel ball-milling jar
with one 15 mm diameter stainless-steel ball and provided 3b
in 85% yield (Figure 4A). After separation from the crude
reaction mixture and washing, the polyethylene could be
reused for the dehalogenation reaction of 1-iodonaphthalene
(11) under the same reaction conditions at least five times
(Supporting Table SS).

Polyhalogenated organic compounds are widely used in
industrial applications such as insulating materials and flame
retardants.” However, due to their high toxicity in even trace
amounts, these compounds represent a major class of
hazardous waste for the environment. The development of
treatment processes for these health-threatening compounds is
therefore a high priority in the chemical industry and related
areas.” To demonstrate the potential utility of the present
mechanochemical approach for the dehalogenative detoxifica-
tion of such polyhalogenated compounds, we investigated the
reaction of 1,2,5,6,9,10-hexabromocyclododecane (laa) (Fig-
ure 4B), which is known to be a toxic but still widely used as a
flame retardant and a curing accelerator for adhesives.*™’

Pleasingly, radical debromination of laa proceeded under the
developed mechanochemical conditions using polyethylene as
an initiator, and the bromine atom content was successfully
reduced (Figure 4B).

Furthermore, as part of our great interest in the effective use
of plastic waste in organic synthesis, we investigated the
mechanochemical dehalogenation reaction using a common
plastic bag made of high-density polyethylene (Figure 4C). For
that purpose, a commercial plastic bag handed out at a local
supermarket was chopped into small pieces, which were then
placed in a jar for the dehalogenation of 1. After ball milling,
the pieces of the plastic bag were converted into a fine powder
and a dark-blue mixture was obtained. Pleasingly, the desired
product 3g was obtained in a promising yield (69%). Although
there is room for further improvement, this result is expected
to inspire the development of environmentally attractive and
sustainable free-radical transformations via the utilization of
plastic waste as an efficient radical initiator.

To validate the reaction mechanism proposed in Figure 1D,
density functional theory (DFT) calculations were conducted
(Figure S). We confirmed that once the tris(trimethylsilyl)silyl
radical is formed, the subsequent radical chain dehalogenation
is a self-sustainable reaction due to the extremely low barrier
and the relatively large exergonicity (Supporting Figure S10).
Accordingly, the success of the reaction can be determined
exclusively by the radical initiation step. First, we investigated
the generation of mechanoradicals under ball-milling con-
ditions. The simulation of C—C bond cleavage under force for
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construction of the force-modified potential surface was

three different polymer surrogates (polyethylene, poly(vinyl
successfully realized using the artificial force-induced reaction

acetate), and polystyrene) is shown in Figure SA. The
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A Mechanoradicals-initiated sp3C-H fluorination
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Figure 6. Use of plastic materials as initiators for radical chain sp?C—H fluorination reactions under mechanochemical conditions. (A) Preliminary

substrate scope. (B) Postulated mechanoradical-initiated mechanism.

(AFIR) method.*"**~* Considering the time scale of our
reactions, the effective barrier of covalent bond cleavage was
set to 90.0 kJ/mol. To lower the barrier to this level, the
fracture forces for polyethylene, isotactic poly(vinyl acetate),
and isotactic polystyrene should reach 3660, 3520, and 2980
pico-Newtons, respectively. The calculations revealed that
polyethylene gave a primary carbon radical (PE_r), while
poly(vinyl acetate) and polystyrene gave both primary
(PVAc rl1 and PS rl, respectively) and secondary carbon
radicals (PVAc r2 and PS rl, respectively) via homolytic
cleavage of the C—C bond under force. Moreover, we found
that the fracture force of poly(vinyl acetate) is slightly lower
than that of polyethylene, while that of polystyrene is the
lowest. Based on these results, polystyrene is clearly the most
reactive under force and would be expected to generate the
largest amount of mechanoradicals under mechanochemical
conditions. However, our experimental results showed a
contradictory result as the yield of the desired dehalogenation
product was very low (2%) when polystyrene was used for the
reaction. This puzzling situation encouraged us to further study
the reactivity of the mechanoradicals in the radical initiation
step via HAT.

The energy profile for the HAT reaction between the
mechanoradicals and tris(trimethylsilyl)silane is shown in
Figure SB. Our calculations revealed that the primary alkyl
radicals (PE_r, PVAc rl, and PS_rl) and the secondary alkyl
radical (PVAc_r2) are all sufficiently reactive to abstract the H
atom from tris(trimethylsilyl)silane to generate a tris-
(trimethylsilyl)silyl radical, which can initiate the radical
dehalogenation reaction. However, importantly, we then
noticed that the PS_rl analogue, whose structure is similar
to that of PS_r1, can undergo an intramolecular HAT reaction
by extracting the H atom from the middle of the polymer chain
to form the more stable migrated secondary benzylic alkyl
radical PS_r3; the barrier for this process is comparable to that
of the HAT of tris(trimethylsilyl)silane by PS_r1 (Figure SB).
The A,G value for the HAT of tris(trimethylsilyl)silane by the
migrated benzylic radical PS r3 is only —5.2 kJ/mol,

suggesting that this HAT involves a fast equilibrium between
the benzylic radical and the silyl radical, and therefore, it is
unable to generate sufficient silyl radicals for an efficient
dehalogenation reaction. Similar reactivity was also suggested
for the secondary benzylic radical (PS r2) generated from
polystyrene (see Figure SB). For the primary alkyl radicals
(PE_r and PVAc rl) derived from polyethylene and poly-
(vinyl acetate), such migrated radicals are still reactive for the
HAT from tris(trimethylsilyl)silane (for calculation details, see
the Supporting information). Overall, the observed reactivity
differences among these polymeric materials could be
explained by these intramolecular HAT reactions of the
polymer chains, which lead to radicals with different reactivities
toward the HAT process. The reactivity profile suggested by
the calculations is consistent with our experimental results.

To demonstrate the broad applicability of this force-induced
strategy, we also investigated a mechanoradical-initiated sp*C—
H fluorination reaction using the polymer-grinding system
(Figure 6A),"** which is of significant importance in
contemporary synthetic organic chemistry and pharmaceutical
research because the introduction of fluorine atoms into
organic molecules often leads to compounds with unique
properties and enhanced biological activity.*”** The original
solution-based protocol using Et;B/O, as a radical initiator was
reported by Lectka and co-workers.”> The key step of this
transformation is fluoride-atom transfer from Selectfluor (5) to
the radical species generated from an initiator molecule. In our
postulated mechanism shown in Figure 6B, the generated
mechanoradicals from plastic materials under ball-milling
conditions undergo fluoride-atom transfer with Selectfluor
(5). The generated nitrogen-based radical species IV would
then react with aliphatic compound 6 via HAT to form radical
intermediate VI, which could then undergo fluoride-atom
transfer with § to give the desired radical sp>C—H fluorination
product (7) with concomitant regeneration of IV.

To explore this mechanistic hypothesis, we attempted the
proposed radical sp’C—H fluorination of adamantane (6a)
with § (2.2 equiv) in the presence of commercially available
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polymers (300 mg) and MeCN (0.5 uL/mg) as a liquid-
assisted-griding (LAG) additive under ball-milling conditions
for 60 min at 60 °C. We found that polystyrene (M,, = 350 kg/
mol) can serve as an efficient initiator for the radical chain
sp’C—H fluorination reaction to give the fluorinated products
(7a and 7b) in 47 and 11% yield, respectively (total yield:
58%; 7a/7b = 81:19). This result is comparable to Lectka’s
solution-based conditions using Et;B/O, (total yield: 50%; 7a/
7b = 84:16)." Importantly, these fluorinated products (7a and
7b) are generated in a very low yield (total yield: 4%; 7a/7b =
>99:1) in the absence of a polymeric material, suggesting that
polymeric mechanoradicals initiate the radical sp’C—H
fluorination. The use of polyethylene (ultrahigh molecular
weight) and poly(vinyl acetate) (M, = 35 kg/mol), which are
good initiators for the radical chain-dehalogenation reaction,
provided no or a very low yield of product (for details, see the
Supporting information). Under the developed mechanochem-
ical conditions using polystyrene as a radical initiator, other
adamantane derivatives (6b and 6c¢) and cyclooctane (6d)
were also fluorinated to give the corresponding products (7c—
7g) in low to moderate yields (35, 26, and 17%, respectively).
Further experimental and theoretical mechanistic studies will
be carried out in order to improve the efficiency and explain
the observed reactivity differences among these polymeric
materials for mechanoradical-initiated sp?*C—H fluorination.

Bl CONCLUSIONS

We have demonstrated that a mechanochemical approach
allows us to use cheap and abundant plastic materials as
thermodynamically stable initiators for free-radical reactions of
small organic molecules. The developed mechanochemical
conditions can be carried out without the use of large amounts
of dry and degassed organic solvents in the air, and special
operating conditions and precautions are not required.
Considering the potential hazards of conventional high-energy
radical initiators such as azo compounds, organic peroxides,
and organometallic reagents as well as the serious issues
associated with solvent waste in conventional methods, we
expect that this operationally simple and solvent-free
mechanochemical protocol using commodity plastics will
inspire the development of more convenient, safe, sustainable,
and industrially attractive free-radical reactions.
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