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A B S T R A C T

The construction of replication strategies for contingent claims in the presence of risk and market
friction is a key problem of financial engineering. In real markets, continuous replication, such as
in the model of Black, Scholes and Merton (BSM), is not only unrealistic but is also undesirable due
to high transaction costs. A variety of methods have been proposed to balance between effective
replication and losses in the incomplete market setting. With the rise of Artificial Intelligence (AI),
AI-based hedgers have attracted considerable interest, where particular attention is given to
Recurrent Neural Network systems and variations of the Q-learning algorithm. From a practical
point of view, sufficient samples for training such an AI can only be obtained from a simulator of
the market environment. Yet if an agent is trained solely on simulated data, the run-time per-
formance will primarily reflect the accuracy of the simulation, which leads to the classical problem
of model choice and calibration. In this article, the hedging problem is viewed as an instance of a
risk-averse contextual k-armed bandit problem, which is motivated by the simplicity and sample-
efficiency of the architecture, which allows for realistic online model updates from real-world
data. We find that the k-armed bandit model naturally fits to the Profit and Loss formulation of
hedging, providing for a more accurate and sample efficient approach than Q-learning and
reducing to the Black-Scholes model in the absence of transaction costs and risks.
1. Introduction and motivation

The construction of dynamic hedging strategies lies at the core of the valuation and risk-management of derivative contracts in
investment firms. The modern hedging theory came to light with two seminal articles of Black and Scholes (1973) andMerton (1973) on
the valuation of European options in an idealized economic model. This model, commonly known as the BSM economy, is characterized
by continuous-time trading, a complete and frictionless market and stock price processes of geometric Brownian motion type.
Black-Scholes and Merton construct a self-financing trading strategy in a riskless security (cash) and a risky stock, which perfectly
replicates the option's payoff at maturity, thus hedging the option's risk. The absence of arbitrage implies that the price equals the value of
the replicating portfolio over the whole lifetime. In particular, the price of the option at inception is defined as the cost of setting up the
replicating portfolio.
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In reality, continuous time trading is, of course, impossible. It cannot even serve as a reasonable approximation, due to the high
resulting transaction costs. Instead, a replicating portfolio is adjusted at discrete times, optimizing between replication error and trading
costs. The acceptable deviation from the exact hedge depends on the risk tolerance of the investor. As a consequence, the best hedging
strategy constitutes a trade-off between replication error (risk) and trading costs. To quantify this trade-off it is common to introduce a
utility function, which reflects the investor's preference. The investor's decisions are then guided by the maximization of expected utility
over the investment horizon. Utility-based hedging entails a significant complication of the BSM approach: instead of minimizing the
immediate replication error, the investor is faced with a multi-period planning problem, whose goal is the optimal trade-off between risk
and accumulated transaction costs. Furthermore, in the context of incomplete markets, it is far less immediate what the price of a
derivative contract should be. This can possibly give rise to the bid-ask spread for the derivative contract, which tends to be extraor-
dinarily wide in the absence of a portfolio based approach. In fact various concepts of price occur in the literature, two common examples
being the “indifference” and “minimum-risk” prices. Indifference purchase/sell prices are the amount of money that makes an investor
indifferent, in terms of the expected utility, between trading in a market with and without purchasing/selling the derivative. The
minimum-risk price is the amount of initial capital that maximizes an investor's utility given an optimal sequence of hedging decisions.
Thus, pricing typically requires the solution of an exogenous optimization problem on top of an existing hedging strategy, e.g. to
minimize the global risk. Utility-based hedging and indifference pricing have been introduced in pioneering work by Hodges and
Neuenberger (Hodges and Neuberger, 1989). Minimum-risk prices were first studied in (Schweizer, 1995). Hodges and Neuenberger
also interpreted hedging in the language of dynamic programming and solved the respective Bellman equations, anticipating some of the
modern developments.

With the rise of AI, an entire area of research emerged around learning solutions of dynamic programming problems, which gained
wide public audience under the name of Reinforcement Learning (RL). Architectures that combine RL with deep Neural Networks (NNs)
have proven super-human capabilities in various domains. The classical examples include video games of increasing complexity such as
Atari (Mnih et al., 2013) and Starcraft (Vinyals et al., 2019), and strategic (P-) games like Hex (Anthony et al., 2017), Go and Chess
(Silver et al., 2016, 2017). Several publications have also reported on promising hedging results by RL agents, see e.g (Hodges and
Neuberger, 1989; Kolm and Ritter, 2019; Qlbs, 2020; Cao et al., 2021). In terms of the choice of algorithm (Kolm and Ritter, 2019; Qlbs,
2020; Cao et al., 2021), focus on variations of the Q-learning algorithm (Watkins and Dayan, 1992) for the approximation of optimal
policies in the hedging problem. The article (Qlbs, 2020) proposes Q-learning as a tool for training hedging agents with a quadratic
utility functional, but with no transaction costs (Cao et al., 2021). applies double Q-learning (Van Hasselt et al., 2016) to take account of
stochastic volatility in the hedging problem. The articles (Buehler et al., 2019, 2019) take a slightly different approach to hedging,
interpreting multi-period utility optimization as a supervised learning problem. In this setting a recurrent NN is trained via simultaneous
optimization over an entire sequence of predictable hedging decisions. The recent contributions (Murray et al., 2022; Mikkil€a and
Kanniainen, 2023; Cao et al., 2023) in this area appeared during the review of this article. Deep Q-Learning (DQN) (Osband et al., 2016)
is a variation of Q-learning, which combines Q-learning with deep NNs to represent quality of state-action values. The article (Kolm and
Ritter, 2019) applies DQN to study a discrete-time hedging problem in the presence of transaction costs and served as the motivation for
the investigation at hand. As compared to (Hodges and Neuberger, 1989; Qlbs, 2020; Cao et al., 2021; Buehler et al., 2019, 2019) this
article focuses on the hedging (rather than valuation) of option contracts assuming that price information is given in an exogenous form
(e.g. through a dedicated pricing engine). This assumption leads to what is called the accounting Profit and Loss (P&L) formulation of the
hedging problem, see (Cao et al., 2021). In this formulation the investor's exercise is to balance between transaction costs and expected
deviation from the price process. In contrast, in the Cash Flow formulation the investor is only aware of the contractual payoffs of the
derivative, which leads to a full-fledged RL problem.

The mentioned publications (Hodges and Neuberger, 1989; Qlbs, 2020; Cao et al., 2021; Buehler et al., 2019, 2019; Kolm and Ritter,
2019) assume an accurate market simulator to train their AI agents. However, setting up such a simulator leads to the classical financial
engineering problem of model choice and calibration. This might be seen as a bottleneck for applying those hedging systems in practice
as the run-time performance of the AI will often merely reflect the accuracy of the simulator. In this sense it can also hardly be claimed
that the trained agents operate in a fully model-free setup. This would apply if enough market data was available for training, which is
rarely the case in realistic derivative markets. In reality, run-time performance will be driven by the accuracy of the market simulator -
making an AI-based approach awfully similar to standard Monte Carlo methods in use for decades - unless the agent can quickly adapt to
unseen scenarios. At this point sample efficiency (see Section 2.6 for a definition) is key, as the comparatively small amount of real-world
data that the agent encounters in operation will otherwise not influence the training in a statistically significant way. Similarly, an agent
trained on simulated data will usually not acquire the knowledge to appropriately capturemarket impact in a practical setting. The latter
would require training on samples with market impact, which will often be hard to provide in sufficient amount. In the case of a
simulated market impact, such samples will simply present the modeled cost of the market impact. The main use-case for current AI
systems can thus be seen in hedging of complex derivatives or large derivative portfolios that cannot be efficiently handled using
conventional pricing engines as in (Buehler et al., 2019, 2019).

The article at hand argues that - in a practical setting - a bandit-type RL algorithm can be used to address hedging in the P&L
formulation. Our theoretical considerations are accompanied with extensive computer experiments comparing the hedging performance
of our NN bandit algorithm versus DQN. The k-armed bandit is the prototypical instance of RL and has been studied extensively within
diverse areas such as advertising selection, clinical trials, finance, etc., see (Sutton and Barto, 2018) for examples. As compared to
Supervised Learning, the bandit algorithm adapts to newmarket data online, i.e. in the course of its execution, by collecting information
about realized utility/reward signals. As compared to full-fledged RL, in particular, to variants of Q-learning, the bandit is characterized
by the assumption that rewards at different time steps are independent and identically distributed. As a consequence each action only
determines the immediate reward but has no influence on the future. In terms of hedging, this implies that the agent optimizes for an
2
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immediate utility signal and the agent's choices do not dynamically impact the market. As compared to DQN, bandit algorithms are
simpler, better studied, possess stronger performance guarantees, are easier to train, and results can be interpreted more immediately.
Most importantly, significantly less samples are required during the training process with well-known optimal regret estimates (Auer
et al., 2002). In summary the perspective taken in the article at hand is as follows.

(i) Standard microscopic market models employed to train AI agents do not model market impact. In practice, strong market impact
usually signifies a singular situation with little available real-world data.

(ii) Any AI trained on simulated data acquires a behavior typical of the simulation and it will perform well mostly in situations that
are similar to the simulation. In particular, it will not be able to make informed decisions in an unusual market state.

(iii) If the number of available training samples is limited, the restricted planning capability of the k-armed bandit as compared to
more sophisticated RL systems is more than out-weighted by its higher sample efficiency.

The article is structured as follows. Section 2 describes the methodological background for this article, introducing utility-based
hedging in Section 2.1 and relevant background from RL in Sections 2.3 and 2.4. Section 3 provides technical details of the algo-
rithms chosen for our experiments. Specifically, Section 3.1 describes the NN-based contextual bandit and Section 3.2 the deep Q-
learning algorithm. Our experimental findings are presented in Section 4. Section 5 concludes the presentation.

2. Background and methodology

2.1. Hedging and pricing

We first describe the full dynamic-programming approach to hedging in incomplete markets in the Cash Flow formulation and
specialize to the P&L formulation later. We assume a random financial market that can be described in terms of Markov processes and
where trading occurs at discrete times t¼ 0, 1, 2,…, T. A stochastic process St describes the price of a risky asset (stock) and a process Bt
describes a riskless security (cash). Suppose a small1 investor (agent) with bank account holdings Bt enters into a derivative contract with
underlying St at time t ¼ 0. The investor ‘sells' the contract, i.e. an immediate profit is credited to the bank account as an initial capital
B0 � 0 but the contract also creates a random liability of ZT � 0 at maturity T > 0. In order to off-set the risk from this liability the
investor maintains a hedging portfolio. Assume this hedging portfolio is composed of nt shares of stock St, and Bt units of cash on the
bank account, and let Πt denote its value at time t:

Πt ¼ ntSt þ Bt:

For shorter notation we assume that there is no compounding on the cash holdings, since this can be incorporated in straight-forward
way into our framework. The agent receives new market information at a series of times t ¼ 1, 2, …. < T, re-balancing the hedging
portfolio immediately once the new information becomes available. In other words at each time step t the agent chooses the number ntþ1

of shares for the forthcoming period. While the agent adjusts the number of shares, any purchase or sell is equally billed to the bank
account Bt, which corresponds to a self-financing trading strategy. In the presence of transaction costs any trading activity is accompanied
with an additional loss, cost < 0, and the trading constraint becomes:

ΔΠtþ1 ¼ ntþ1Stþ1 þ ΔBtþ1 � ntSt þ costðnt; ntþ1; StÞ
¼ ntþ1ΔStþ1 þ costðnt ; ntþ1; StÞ:

(1)

here and in what follows we adopt the convention ΔXtþ1:¼Xtþ1 � Xt. In utility-based investment theory economic agents plan their
investments in such a way as to maximize the expected utility of terminal wealth. The terminal wealth wT is the sum of the replicating
portfolioΠT and the payoff ZT of the contract at maturity. The hedger's goal is to choose hedging decisions (n1, n2,…, nT) to maximize the
expected utility:

max
ðn1 ;n2 ;…;nT Þ

E½uðwTÞ�; (2)

where the utility function u(⋅) is assumed to be smooth and increasing. The expectation is computed with respect to the real-world
probabilities, although our experimental framework equally applies to the risk-neutral case. Notice that here the price B0 is given
exogeneously, i.e. (2) applies in a situation, where the derivative contract has already been sold irrespective of risk management.
Equation (2) can also serve as a basis to introduce a concept of price in an incomplete market setting. For example the investor might
want to optimize2 the sell price B0 to simultaneously maximize the expected utility over B0 and (n1, n2,…, nT). Minimum-risk pricing is
the prototypical example of this strategy, see (Schweizer, 1995) and more recently (Buehler et al., 2019). Another pricing concept is
indifference-pricing (Hodges and Neuberger, 1989), where B0 is determined such as to stay indifferent in terms of the expected utility
between 1) selling and hedging the contract in the market or 2) trading in the market without entering into the contract at all, see again
(Buehler et al., 2019) for a recent discussion.
1
’Small’ means that the investor's actions have no influence on the market behavior.

2 Depending on technical conditions an optimum might or might not exist, e.g (Schweizer, 1995).
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The dynamic-programming view on hedging is as follows: one time step before maturity the agent chooses an action nT to maximize
the conditional expectation:

E½uðZT þΠT ÞjF T�1�:
Conditioning on the filtration F T�1 means that all market information at time T � 1, including ST�1, ΠT�1,…, has been realized and

is available for decision making. See (Buehler et al., 2019) for a rigorous construction of such a filtration based on market information in
the context of hedging in incomplete markets. The agent proceeds by planning backwards in time. Two steps before maturity the agent
chooses action nT�1 to maximize the above expectation conditioned on F T�2, three steps before maturity nT�2 to maximize conditioned
on F T�3, and so on. The optimal course of action corresponds to an optimal value function for the hedging problem:

V*ðt; St;ΠtÞ ¼ maxn1 ;n2 ;…E½uðZT þΠT ÞjF t�:
It is a classical result that this function can be obtained as a solution of the Bellman optimality equation (Puterman, 1994). RL is

concerned with the learning of approximate solutions to this equation. Remark that the successive optimization of utility expectations
corresponds to the Cash Flow formulation for the hedging problem.

The situation is simplified drastically in the P&L formulation, where it is assumed that contract prices Zt are available a priori
throughout the planning process. These prices might be spot mid-prices in case of exchange-traded derivatives or they might originate
from an external pricing engine in case of OTC derivatives. In the presence of pricing information the agent is merely faced with an
optimization between transaction costs and the immediate risk. Assuming transaction costs and a time-additive utility, a possible choice
is the minimization of the immediate risk of the form:

Riskt ¼ E
�ðΔZtþ1 þ ntþ1ΔStþ1 þ costðnt; ntþ1; StÞÞ2jF t

�
: (3)

It should be mentioned that if Zt are computed externally by a pricing engine without accounting for transaction-costs, one might be
tempted to interpret equations of the form (3) (or (7) below) as a “way to generalize hedging” to the situation of transaction costs and
discretization error. In theory, computing hedges in this way, is not guaranteed to result in the optimal terminal utility, even
approximately. The definition of prices via risk-minimization or indifference pricing requires the full solution of the RL problem with
transaction costs, while the optimization given pre-computed prices will, in general, not provide a meaningful approximation. However,
and this is one of the main messages of the article at hand, in the practical work of an investment firm, the course of hedging decisions is
dictated rather by the availability of information than the seek for theoretically optimal pricing. In the absence of a market model the
exact computation of indifference/minimum-risk prices becomes elusive, leaving the investor with the task of choosing reasonable
hedges given available data and infrastructure. In the sequel we follow the line of Kolm and Ritter (2019) focusing on the accounting
P&L formulation, which provides an efficient approximate hedging framework in practice. In what follows we argue that, both from a
theoretical and practical perspective, if RL is applied to this problem, then a contextual bandit-type algorithm should be employed.

2.2. Dynamic programming and the BSM economy

We illustrate the dynamic programming perspective on the hedging problem by a familiar example. Consider hedging of a European
call in a frictionless market and assume that the stock price process St is of geometric Brownian motion (GBM) type. In this case the
contract liability is the option payoff

ZT ¼ CT ¼ �ðST � KÞþ:
Let the terminal wealth be split into an initial endowment and a series of wealth increments:

wT ¼ w0 þ
X
t

Δwtþ1:

In the absence of transaction costs the wealth increment is Δwtþ1¼ ΔCtþ1 þ ΔΠtþ1. Suppose an agent maximizes (2) by minimizing a
risk measure of individual increments:

Riskt ¼ E
�ðΔwtþ1Þ2jF t

�
:

This corresponds to a time-additive utility of the form u(wT)¼
P

tut(Δwtþ1) with quadratic ut. The agent then proceeds by choosing nT
to minimize RiskT�1, then nT�1 to minimize RiskT�2, etc. At each time step the price Ct can be defined as the minimizer of Riskt given the
optimal hedge. In the limit of a continuous action space and continuous time this procedure gives rise to the familiar BSM hedging. The
optimal action then becomes the δ-hedge:

δt ¼ ∂C*
t

∂St
;

where C*
t denotes the BSM option price, leading to a complete off-set of risk and a utility of 0. In the presence of transaction costs and

discretization error, risk-free hedging is not possible. The computation of optimal hedges requires the solution of the full-fledged RL
problem, because transaction costs introduce reward-dependencies even for a time-additive utility.
4
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2.3. Contextual multi-armed bandit (CMAB) model

The k-armed bandit is the prototypical instance of RL and has been studied extensively within various areas of practical interest
(Sutton and Barto, 2018). The setup involves a set of k 2 Nþ possible choices3 and a sequence of T periods. In each period t¼ 1,…, T the
learner chooses action a 2 {a1, .., ak} and receives a random reward rt(a)¼ r(a, t). The main assumption is that rewards are independent
over a and i.i.d. over t. The objective is to identify a “policy”, i.e. a probabilistic rule of action, in order to maximize the cumulative
expected reward:

XT
t¼1

E½rt�;

Over the execution episode. In the context of derivatives hedging this form of reward-optimization corresponds to a time-additive
utility functional in (2), where each rt stands for the utility of a wealth increment. In the contextual k-armed bandit setting, the agent is
faced with non-stationary reward distributions. In each round, prior to taking its decision, the agent receives context about the state of
the system. Rewards then depend on the context in a hidden way, which has to be learned by the agent. For example, an agent could be
presented with the tuple (t, nt, Ct, St) to assist the minimization of (3). The contextual bandit involves both the association of rewards
with the given context but also trial-and-error learning to search for strong actions. Contextual search tasks are an intermediate between
the prototypical k-armed bandit and the full RL problem (Sutton and Barto, 2018). They are like the full RL problem in that they involve
learning a policy, but each action affects only the immediate reward. Like any RL agent, the contextual k-armed bandit must bargain
between exploration and exploitation: is it better to choose a lucrative action given a context or should the agent explore in hope to find
something even better? A priori exploration implies risk in the sense that the agent must deviate from an optimal action. To take account
of the hedging risk we employ a risk-averse version of CMAB, which we call R-CMAB.

While in the standard bandit problem, the objective is to select the arm associated to the highest reward, the mean-variance bandit
aims at most effectively trading off expected rewards versus variance (i.e. risk). The mean-variance of action a is defined as:

MVðaÞ :¼ κμðaÞ � σ2ðaÞ; (4)

where κ 2 [0, 1] measures the risk aversion, and μ(⋅) and σ(⋅) are, respectively, the mean and the standard deviation associated to action
a. The optimization of the mean-variance under transaction costs for hedging has been proposed in Kolm and Ritter (2019) and con-
stitutes a generalization of the reward structure (3). For learning the agent builds up an empirical reward statistics. For sample outcomes
fXlðaÞgl¼1;…;T of action a, the empirical mean-variance at a given time t is:

dMV tðaÞ ¼ κbμtðaÞ � bσ tðaÞ;
with empirical mean and standard deviation given by:

bμtðaÞ ¼
1
t

Xt

l¼1

XlðaÞ; and bσ tðaÞ ¼ 1
t

Xt

l¼1

ðXlðaÞ � bμtðaÞÞ2: (5)

Notice that the functional (4) does not have the form of an expectation value and is not directly accessible to RL. The mean-variance
multi-armed bandit (Sani et al., 2012) is designed for reward signals of this form. In fact, an important motivation to study
mean-variance bandits has been the frequent occurrence of mean-variance investors in portfolio optimization (Sattar and Qing, 2016).
Similar to ordinary bandits, confidence bound-based algorithms (specifically the Mean-Variance Lower Confidence Bound algorithm)
are available for the risk-averse setting and possess of strong performance and convergence guarantees, see (Sani et al., 2012; Sattar and
Qing, 2016) for details. An alternative approach to RL with mean-variance objective proposed in Kolm and Ritter (2019) is to expand the
variance term and to approximate cross-covariances by 0. Commonly, the availability of data and practical operations at an investment
firm dictate a preference for simpler methods, which makes this approximation very reasonable from a practical perspective. To our
knowledge the article at hand contains the first application of a mean-variance contextual bandit system. There is currently no rigorous
consistency analysis for such algorithms.

2.4. Q-learning

Q-learning is a classical algorithm for the off-policy approximation of solutions to general RL problems beyond the maximization of
immediate rewards (Watkins and Dayan, 1992). The agent stores a Q-table that contains estimates of the Q-uality of state–actions pairs
(st, at) in view of their terminal reward.4 At each time step, the agent i) chooses the best action at from the table, ii) observes the
corresponding reward rt, and iii) updates the estimates of the Q-table according to a specific updating rule. For Q-learning this rule is
given by:
3 The name originates from a gambler who chooses from k slot machines.
4 Remark that the state st at time t can contain multiple items of information, e.g. st ¼ (t, nt, St, Ct) for option hedging.

5
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bqnewðst; atÞ ← bqoldðst; atÞ þ α rt þ γmax
a

bqoldðstþ1; aÞ � bqoldðst ; atÞ ; (6)

� �

where bq denotes the empirical estimate of Q values. A key point is that being a temporal-difference method, Q-learning performs the
update (6) immediately after each time step as opposed to plain Monte Carlo methods that execute:

bqnewðst; atÞ ← bqoldðst; atÞ þ α

"XT
k¼t

rk � bqoldðst; atÞ
#
;

After each learning episode is completed. Thus (6) contains two types of estimates. First, there is the estimation of q(st, at) via aMonte
Carlo estimator bqnew∕oldðst ;atÞ. As for an ordinary Monte Carlo method, the step-size parameter α2 ð0;1� in (6) weights the relevance of
the new sample versus the held estimate bqold. Second, the quantity rt þ γmax

a
bqðstþ1; aÞ serves as a Bellman estimate of the total expected

reward. γ 2 (0, 1] is a discount factor that reduces the value of rewards that are further away in the future. Q-learning prioritizes
immediate rewards for small values of γ. When γ is close to 1 Q-learning takes account of future rewards making it a full-fledged multi-
period planning algorithm (Sutton and Barto, 2018). Some benchmarks on control environments are given inMelnikov et al. (2018). The
iterative application of the updating procedure is guaranteed to converge to the optimal policy if the step-size is small enough (Sutton
and Barto, 2018). DQN algorithms enhance this procedure by making use of a (deep) NN for the representation of Q values. The NN is
trained on Monte Carlo samples once sufficient data is available, boosting the quality of the samples of subsequent simulations, see
Section 3.2 for details.

2.5. Machine learning algorithms for financial derivatives hedging

Q-learning addresses the computation of optimal hedges in the Cash Flow formulation. In principle it can be employed in situations
of strong environment feedback, reflecting the impact of trading decisions to the market. Implementations of Q-learning for the Cash
Flow formulation can be found in Qlbs (2020); Cao et al. (2021) and for the P&L formulation in Kolm and Ritter (2019). For hedging in
the P&L formulation it is sufficient to optimize the immediate rewards, which can be achieved by contextual bandit-type algorithms. For
the P&L formulation we follow (Kolm and Ritter, 2019) in choosing the mean-variance reward function for our experiments (extending
(3)):

MVt ¼ κE½ðΔZtþ1 þ ntþ1ΔStþ1 þ costðnt; ntþ1; StÞÞjF t �
�V½ðΔZtþ1 þ ntþ1ΔStþ1 þ costðnt; ntþ1; StÞÞjF t�;

(7)

where V½X� stands for the variance of X. If κ ¼ 0 is chosen the hedging target is simply to minimize immediate variance risk under
transaction costs. A choice of κ > 0 would imply a preference towards generating wealth from the hedging strategy, although this is
rarely attempted in practice. This reward is of the form (4) and fits with the reward structure of the R-CMAB algorithm. For DQN we
approximate the variance as proposed in (Kolm and Ritter, 2019).

RL algorithms are capable of learning without human supervision and experience. This comes at the cost of a larger computational
effort and less sample efficiency as compared to problem-tailored methods and supervised learning. In the derivative hedging area, the
articles (Buehler et al., 2019, 2019) interpret the optimization problem (2) as a supervised learning exercise. The expected utility is
maximized by an optimization over the whole predictable sequence of hedging decisions (n1, n2, …, nT) by training a recurrent NN on
random market paths. In sophisticated domains like the games of Chess or Go the gradient descent-based optimization of rewards will
usually get stuck at a poor local maximum because of the high complexity of the value function or non-differentiable reward structure.
However, in hedging scenarios, where a market model is available, gradient descent-based optimization provides a sample-efficient and
stable approach to the hedging problem, which also scales favorably in multi-asset portfolio optimization tasks (Buehler et al., 2019,
2019). Q-learning, as a model-free RL algorithm, is capable of learning solely from a reward signal and does, in principle, not require an
explicit environment for training. However, practical consideration usually dictate the requirement for a market model in the context of
derivatives hedging: there is simply no real-world data to train a model-free algorithm like Q-learning, see below for various training
procedures and required data sizes. Variations of Q-learning have become somewhat outdated for planning problems, when an explicit
model (e.g., the rules of a game, or a market) is available as the capability of learning without an environment model comes at the price
of a larger number of required training samples (Sutton and Barto, 2018; Botvinick et al., 2019). Model-based algorithms, such as Neural
Monte Carlo Tree Search (MCTS), learn stronger policies faster by leveraging the environment in a target-oriented way, see e.g (Bot-
vinick et al., 2019; Silver et al., 2017; Anthony et al., 2017). MCTS is a genuine planning algorithm, that combines RL with search
techniques to direct the learning process to promising courses of actions (Browne et al., 2012). As compared to Monte Carlo methods
(including Q-learning), MCTS builds a problem-specific, asymmetric and heavily restricted Monte Carlo decision tree. The performance
of the famous Atari DQN (Mnih et al., 2013) has, for instance, been improved using MCTS (Guo et al., 2014). Similar to (Buehler et al.,
2019, 2019), MCTS easily learns the hedging of financial derivatives in the Cash Flow formulation (Szehr, 2021) in case that a market
model is given a priori. MCTS has also been used for hedging (and portfolio optimization) with real-world data when price information is
available (Vittori et al., 2021). In case no market model is available, the exact solution of the hedging and pricing problems in the Cash
Flow formulation will often be elusive. The only viable option seems to revert to a bandit model and P&L hedging as a practical
approximation. This is illustrated by our experimental findings, Section 4, which give a detailed comparison of our CMAB algorithm to
DQN.
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Table 1
Heuristic comparison of some features of algorithms for derivatives hedging in the literature.

Existing Approaches Market Model Data Consumption Training Stability Generalization Capability Cash Flow/P&L

Superevised Learning Recurrent NN/LSTM Required Medium High Low Cash Flow
Reinforcement Learning CMAB(proposed) Not Required Medium High Low P&L

Q-Learning Not Required High Low Low Cash Flow/P&L
MCTS Required Medium High High Cash Flow/P&L
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As a summary of this discussion and a general orientation for the reader, a heuristic comparison of machine learning algorithms is
provided in Table 1. A crude classification of learning methods is given in the “Existing Approaches” column. It should be said that
many variations of these methods (such as the application of NNs, the specific architecture of NNs, the structure of the reward signal in
case of RL) have been studied, and each one comes with its own specific features. The “Market Model” column shows if a market model
is required in principle (i.e. if the algorithm is model-free or not), although in realistic operations all algorithms will require a market
simulator due to lack of data. The absence of an environment model comes at the price of a higher data consumption and a lower
stability of training. An orientation on the amount of data required for training and adaptation is given in the “Data Consumption”
column. For DQN and R-CMAB a comparison of data consumption during training is given in Section 4.1. Section 4.4 reports on data
required to adapt to previously unseen market scenarios. The “Training Stability” column refers to the empirical variance of terminal
rewards obtained over multiple training cycles, see again Section 4.1. The generalization capability “Generalization Capability” of ML
methods refers to their performance on unseen scenarios. For hedging there is currently not much research on this topic; most systems
being designed to “overfit” to a specific market model or data set. The table therefore reflects our experience with such algorithms on
other domains. Finally the “Cash Flow/P&L” column reports on whether or not the algorithms have been applied with external price
information in the literature.
2.6. Sample efficiency

Roughly speaking, the sample efficiency of a RL algorithm is a measure of how much data it is required to achieve a certain level of
performance. We give now a formal definition, which suits our online learning setting. In RL an agent/algorithm A interacts with an
environment E by taking actions and receiving subsequent rewards in an iterative process until a planning horizon T (assumed finite
here) is reached. The dynamics follow a Markov decision process (Sutton and Barto, 2018). The agent's actions are guided by a policy π,
i.e. a probabilistic rule of action thatA optimizes as to maximize the accumulated reward over a given planning horizon. The value Vπ of
π is the expected accumulated reward that is generated by E when A follows π. During training the interaction of A with E is executed
over a number K of episodes, and E is reset to its original state after each episode. A collects all observations over all episodes in an

observation history of the formHK ¼ fðhk; kÞgKk¼1, where each hk ¼ fðsðtÞ; aðtÞ; rðtÞÞgTt¼1 contains the observed state, the taken action and
the observed reward from time step t ¼ 1, …., T of episode k. In online learning, A executes actions and observes the impact to the
environment through state and reward signals. Notice that new observations are sampled based on probabilities that depend on E but
also on the current policy π (and thus on A. A will also update its policy in the course of the training process (e.g. after each episode).
Finally, the choice of policy by A contains inherent randomness reflecting unobserved internal states in A (such as the weights of a
neural network or the choice of a random batch for stochastic gradient descent). In other words A can be viewed as a random mapping
that assigns a random policy to an observation history π ¼ AðHKÞ (suppressing the dependency on the internal state of the algorithm in
this notation). We say thatA1 has higher efficiency thanA2 after K episodes with respect to E, if after K episodes of interaction with E the
realized policy generated by A1 has higher value than the policy generated by A2 in expectation:

EHK;1 ;π1¼A1ðHK;1ÞVπ1 > EHK;2 ;π2¼A2ðHK;2ÞVπ2 :

The expectation values are taken over choices of training histories HK;i made of K episodes of interactions of Ai with E, and over
policies generated by Ai, i ¼ 1, 2. The policy is updated in the course of the training process, which affects the probabilities of
consecutive observations, which then affect the choice of the new policy, and so on. This makes the computation of the probabilities
behind the above expectation values an iterative process (we assume that, in the absence of a training history, the algorithms return a
policy uniformly at random). Given the iterative nature of the involved expectations, the only viable option to assess this inequality is
(Monte Carlo) simulation. We do this by i) initializing the algorithms at random, ii) by training them over K episodes, and iii) by
estimating for each episode the value of the current policy, see Section 4. For completeness we mention that the sample efficiency of A
with respect to E at K episodes can be defined as the fraction of the value V* ¼ Vπ* of the optimal policy π* that is gained after K episodes
in expectation: SEðA;KÞ :¼ EHK ;π¼AðHK ÞVπ=V*. In other words, given r 2 0;1, the sample efficiency of A with respect to E is the smallest
episode count K so that SEðA;KÞ � r.

3. Algorithms

This section summarizes the chosen architectures for the contextual bandit and Q-learning algorithms, which are well-known in the
literature. In general RL algorithms operate by executing episodes of actions and considering the obtained rewards in order to improve
subsequent courses of action. In order to achieve high rewards the algorithm needs to exploit the reward-information acquired from
7
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previous episodes; in order to improve performance it needs to explore potentially sub-optimal courses of action. Broadly, the various RL
algorithms differ in the ways how the acquired information is represented and how they handle the trade-off between exploration and
exploitation. To achieve a good performance, appropriate representation power and an intelligent coordination of explore/exploit
decisions over the learning process are key. In the implementation at hand these points are addressed by the usage of NNs to link
contexts and rewards and by making use of Bayesian posterior sampling to coordinate the courses of action. Bayesian posterior sampling
maintains a Bayesian estimate of a distribution over reward models through the entire learning process. As reward observations are
gathered, this distribution is updated according to Bayes' rule, sharpening it around the expected rewards of each action. At each de-
cision step a set of parameters is sampled and the best action is taken according to the resulting model. As compared to just taking the
action of highest estimated reward, this sampling procedure ensures a sufficient level of exploration, where the concentration of the
posterior around the expected reward reflects the increasing confidence in the reward estimate. The entire procedure leans at Thompson
sampling (Thompson, 1933; Chapelle and Li, 2011) in the non-contextual case but can be viewed as a method to approximate
non-tractable Bayesian updates also in the presence of a complex context model. Since market moves are random, the RL agents must
operate in an environment of high stochasticity. While hedging has been explored with Q-learning, the application of bandit-type al-
gorithms in such an environment seems new. We have experimented with different architectures, including purely linear inference,
variational inference and plain Monte Carlo, similar to (Riquelme et al., 2018), where the chosen design has shown the best perfor-
mance. All experiments were conducted using PyTorch libraries on an ordinary notebook, Intel(R) Core(TM) i7-8565U CPU@ 1.80 GHz
and 16 Gig of RAM.

3.1. Neural network R-CMAB algorithm

To achieve high representation power for the contextual bandit the association of contexts to rewards is reflected by a NN. A direct
way to coordinate exploration is to assume a linear Bayesian regression model on top of the last hidden layer of the NN as in Riquelme
et al. (2018); Snoek et al. (2015). While the NN is trained to accurately predict rewards, a sampling procedure replaces the deterministic
output layer. Concretely, the predicted value va for action a is given by va ¼ βTa zx. Here zx denotes the output of the last hidden layer
given context x and the parameter vectors βa are sampled from the posterior corresponding to action a. The posterior at step t is
computed following πtðβa;σ2aÞ ¼ πtðβajσ2aÞπtðσ2aÞ, where σ2a reflects our confidence about the reward from a and we assume σ2a � IG, and
βajσ2a � N with an Inverse Gamma and Normal distribution, respectively. The exact rules for the parameter updates are given in
Riquelme et al. (2018); Snoek et al. (2015). The correlations present in the sequence of contexts might cause instability of the training
process as the NN tends to overfit to this correlation. As a commonmethod to remedy this instability we employ a memory buffer, which
stores the transitions (st, at, rt, stþ1) for a given time step. During the training process random batches are sampled from this buffer,
breaking the inter-temporal correlations. The neural network and the posterior model are updated asynchronously at given updating
frequencies. The neural R-CMAB algorithm is summarized in Algorithm 1.

3.2. Neural network Q-learning

The DQN algorithm has been originally designed for learning from alternating visual data (Mnih et al., 2013). Our architecture
orients itself broadly at the Atari game example of Mnih et al. (2013) and the R-CMAB above. Similarly to the CMAB algorithm, the
Q-values are represented internally by a NN, which is trained on approximate reward targets and exploration is managed as in Mnih
et al. (2013) by adding random noise with decaying probability. Following the temporal-difference paradigm the parameters of the NN
are updated intra-episode as in (6) on Bellman targets of the form rtþ1 þ γmax

a
bqðstþ1;aÞ. The gradient then points into the direction of

rtþ1 þ γmax
a

bqoldðstþ1; aÞ � bqoldðst ; atÞ as in (6), where α takes the role of the learning rate. As opposed to supervised learning, where
8
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learning targets are fixed, the Bellman targets depend on the NN parameters themselves, which would lead to training the NN on a
sequence of targets that change at each learning iteration. Two instances of the same NN equipped with different suits of parameters are
employed to stabilize the learning process. The policy NN provides the estimates bqold and is trained at each iteration on the Bellman
targets. The target NN provides the action values for the computation of Bellman targets. The parameters of the target NN are updated
asynchronously every C iteration of the learning process with the parameters of the policy NN. As for the CMAB we employ a replay
memory buffer, which stores the transitions (st, at, rt, stþ1) for a given time step. During the training of the policy NN random batches are
sampled from this buffer. The NN is then updated by the batch stochastic gradient descent algorithm, which serves to stabilize the
update via (6). The described DQN algorithm is summarized in Algorithm 2. Typical values for the discount factor γ found in the
literature fall in the range 0.99, chosen in Mnih et al. (2013), to 0.999 (Lin, 1992). The effect of a small value for γ is that DQN prioritizes
the optimization of immediate rewards over planning for potential future rewards. Finally, let us mention that many variations of the
DQN design have appeared in the literature, where more recent architectures are known to outperform the original design in terms of
stability and sample efficiency, see e.g (Hessel et al., 2018).

4. Proof of concept and experimental findings

This section compares the performance of R-CMAB and DQN in view of a potential deployment in a setting, where training data is
limited. We study the P&L formulation, which means that the hedger has access to price information, e.g. through an exogenous pricing
engine, and we compute rewards via (7). We focus on the hedging of a short European option contract in a discrete-time setting, but we
expect similar outcomes for more general derivative contracts. As is standard in RL the training process is organized in independent
“training episodes”, see (Sutton, 1988) for an introduction. An episode corresponds to the full life-time of the option contract from
inception tomaturity. All relevant option andmarket data is reset to the same values at the beginning of each episode. Each episode is split
into a number of equal time intervals, where hedging decisions occur in the beginning of each interval. Training proceeds by considering
“reward-samples” (i.e. market-feedback) that the agent receives as a consequence of the preceding hedging decision over multiple epi-
sodes. In what follows we will usually start the training process “tabula rasa”, i.e., the agent possesses no prior information but learns
solely from the observed reward statistics. We will not attempt to train an agent “to perfection” on simulated data, but rather we are
interested in the performance after a comparatively small number of training episodes. For better orientation we provide a summary of
this section.
9
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Overview over Section 4: Sections 4.1 and 4.2 compare the training and test performance of R-CMAB versus DQN hedgers. Section 4.3
compares the hedgers in the presence of transaction costs. Section 4.4 addresses the capability of pre-trained hedgers to adapt to new
market scenarios. Section 4.5 discusses the practical implications of our experimental findings.

Summary of basic experimental setup.

� Option contract: Short Euro vanilla call with strike K ¼ 1.0 and maturity T ¼ 60 days.
� Market: Underlying stock price is given by a Geometric Brownian Motion, S0 ¼ 1.0, with μ¼ 0.01, σ ¼ 0.3. Flat interest rate market.
� Hedging agent: Hedging proceeds in discrete time. Each training episode (corresponding to T ¼ 60 days) is discretized into a
number 10, 20 or 60 time steps (samples).

� State space: The state variable (i.e., the context in case of R-CMAB) is given by the tuple (St, T � t). In Section 4.3 the state will also
include the number of current holdings nt. In Section 4.4 the state will include information about market events.

� Action space: The agents can choose from 51 actions, corresponding to 25 buy/sell actions and one hold. These actions are gauged
to the interval [�1, 1]. In Section 4.4 short selling will be switched off, which results in 26 actions. The actions are gauged to [0, 1] in
this case.

� Reward: The reward function for both DQN and R-CMAB agents is given in (7). For DQNwe approximate the variance as outlined in
Kolm and Ritter (2019).

� Transaction costs: Transaction costs are considered in Section 4.3 only. They are set to 0 for all other experiments.

Summary of algorithm setup.

� R-CMAB algorithm: NN composed of 3 layers with 20 fully connected nodes each. ReLu activation. SGD optimizer with initial
learning rate of 0.001.

� DQN algorithm: NN composed of 3 layers with 20 fully connected nodes each. ReLu activation. SGD optimizer with initial learning
rate of 0.001.

On the role of the discount factor γ: For the comparison of training and test performance in Sections 4.1 and 4.2 a small discount factor
of γ ¼ 0.5 has been chosen in DQN. In multi-period problems discount factors are typically chosen close to 1, see above. The small value
of γ brings DQN closer to a contextual bandit algorithm, which creates favorable training conditions in the P&L formulation of the
hedging problem, see (7). Our choice gives DQN an artificial advantage for the comparison with our CMAB algorithm. However, we
stress that this choice defies the purpose of a multi-period algorithm in the first place. Sections 4.3 and 4.4 cover our experiments on
transaction costs and pre-training. Because these experiments concern DQN's ability to plan ahead, we run them with the more realistic
value γ ¼ 0.9, see below. Unsurprisingly the training speed of DQN deteriorates as γ is increased towards higher values, which is
illustrated in Section 4.2 and discussed in Section 4.5. In addition we grant DQN a two times larger training set for all experiments.

4.1. The training process

We compare the training processes of CMAB and DQN algorithms by presenting some descriptive statistics from learning in a
quintessential hedging scenario. In this scenario transaction costs are switched off and we consider purely variance-based hedging
(i.e.κ ¼ 0 in (7)). For DQN γ ¼ 0.5 is chosen. At each time step the agent chooses from 51 possible hedging decisions, corresponding to 25
buy/sell actions and one hold. (Short-selling is explicitly allowed here, although we are hedging a short call option). To gain a basic
quantitative picture we begin with a situation, where we pass the exact expectation value (7) as a reward after each time step. Notice that
the computation of this expectation requires information about the underlying market model, which often will not be available in
practice. In what follows we call this the “deterministic scenario”. The deterministic scenario serves as a benchmark for the subsequent
experiments providing estimates on the number of required training samples and training stability in a “trivial” setup. Fig. 1 presents a
comparison of episodic rewards during the training process in the deterministic situation. We ran 100 independent training cycles of
CMAB (with 100 training episodes) and DQN (with 200 training episodes) for this comparison. Rewards are compared for three distinct
hedging frequencies. In Fig. 1(a)–(b) the portfolio is re-balanced 10 times over the option's lifetime (i.e. hedging occurs once every 6
days), in Fig. 1(c)–(d) it is re-balanced 20 times (i.e. hedging occurs once every 3 days) and in Fig. 1(e)–(f) it is re-balanced 60 times (i.e.
hedging occurs daily). Notice that a larger hedging frequency implies a slower training progress because less samples are presented to
the algorithms until maturity. Rewards increase consistently for both algorithms but CMAB learns faster on the deterministic benchmark
reaching a near 0 mean reward in all cases.

In the absence of a market model, the expectation (7) is unknown and the agent learns from the random rewards obtained during the
training process. In this situation the agent is left with choosing hedges and building up an internal model of the market's hidden reward
structure according to the realized rewards. We call this the “non-deterministic scenario”. The training progress in the non-deterministic
situation is presented in Fig. 2. As for the deterministic case we ran 100 independent training cycles of CMAB (with 100 training ep-
isodes) and DQN (with 200 training episodes) for this comparison. As before rewards are compared for three distinct hedging fre-
quencies. In Fig. 2(a)–(b), the portfolio is re-balanced 10 times over the option's lifetime, in Fig. 2(c)–(d) it is re-balanced 20 times and in
Fig. 2(e)–(f) it is re-balanced 60 times. As before a larger hedging frequency implies a slower training progress because less samples are
presented to the algorithms until maturity. Since the agent decides on a hedge first and the reward is realized only one time-step later,
this setting comes with an inevitable residual risk (here “residual variance” since κ ¼ 0) that cannot be hedged away. In other words, as
compared to the familiar BSM economy, time- and action-space discretization entail a minimum rate of hedging error in the setting at
10



Fig. 1. Comparison of training progress of CMAB (left column) and DQN (right column) in the deterministic scenario. Graphs show descriptive
statistics of episodic rewards obtained from 100 independent training cycles.

L. Cannelli et al. The Journal of Finance and Data Science 9 (2023) 100101

11



Fig. 2. Comparison of training progress of CMAB (left column) and DQN (right column) in the non-deterministic scenario. Graphs show descriptive
statistics of episodic rewards obtained from 100 independent training cycles.
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hand. We compute this risk for an optimal oracle hedger that knows the underlying market model and chooses hedges to maximize the
reward (7) and depict it by horizontal lines in Fig. 2. For CMAB the terminal mean episodic rewards in Fig. 2 (a),(c),(e) demonstrate that
the mean error per hedging decision obtained after training decreases as the hedging frequency increases. This is in line with the
theoretical expectation that CMAB hedging should converge to riskless BSM hedging in the continuous limit.
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4.2. Comparison after training

We compare the performance of CMAB and DQN hedgers after training in the scenario of Section 4.1. As an illustration Fig. 3 shows
exemplary P&L hedging paths obtained after training. To highlight the impact of discretization error, we also added the aforementioned
oracle agent, that knows the underlying market model and takes the optimal actions accordingly. We evaluate the hedging performance
by measuring the terminal P&L on 100 GBM paths that share the same parameters but are not contained in the original training set. The
Fig. 3. Exemplary P&L of hedging paths from trained CMAB and DQN agents.
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resulting histograms of terminal P&L are shown in Fig. 4 for the deterministic and in Fig. 5 for the random market. As for the training
progress P&Ls are compared for three distinct hedging frequencies (where in Figs. 4 and 5(a)–(b) the portfolio is re-balanced 10 times, in
(c)-(d) 20 times and in (e)-(f) 60 times). Increasing the hedging frequency leads to an increasing concentration of the P&L statistics
around 0 witnessing an improvement in the overall hedging performance. To obtain a clearer picture about the actions chosen by the
trained agents we compare them to the respective BSM δ on 1000 test samples, where the impact of discretization becomes apparent.
Figs. 6 and 7 show the dependency of the chosen actions on the underlying stock price for three hedging frequencies (corresponding to
10, 20 and 60 re-balancings). Finally Fig. 8 demonstrates the deterioration of DQN's performance as γ increases in the non-deterministic
scenario.

4.3. Transaction costs

DQN is designed to address the full-fledged RL problem surpassing the planning capability of the CMAB algorithm. In this section we
aim for evidence whether or not this capability aids in planning hedging decisions in the presence of transaction costs. For our
experiment we consider proportional transaction costs of the form

costðnt; ntþ1; StÞ ¼ �η � St � jntþ1 � ntj;
Fig. 4. Histograms of the terminal P&L measured on 100 test paths of CMAB (left column) and DQN (right column) agents in the determin-
istic scenario.
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Fig. 5. Histograms of the terminal P&L measured on 100 test paths of CMAB (left column) and DQN (right column) agents in the non-
deterministic scenario.
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where nt denotes the number of shares currently held, ntþ1 is the number of shares chosen for the coming period, and η� 0 is a constant
pre-factor. We choose η ¼ 0.1 for our experiments. The current holdings nt are passed to the agents as part of the context or the state. To
asses whether the planning capability of DQN reduces transaction costs we choose a slightly different experimental setup for both
agents. DQN is set up as a multi-period planning algorithm, which minimizes transaction costs over the entire lifetime of the option
contract (γ ¼ 0.9). The current holdings nt are part of the state, both during training and testing. In contrast, the CMAB algorithm is
trained to optimize immediate rewards by providing random context about the number of shares. For testing, however, the choice nt of
the previous period becomes the context of the next period. This corresponds to hedging in the real world, where the current holdings
are a consequence of the preceding investment decision.

As before we grant 100 training episodes to CMAB but, this time, 5000 episodes to DQN. The accumulated transaction costs from a
test set of 1000 unseen episodes are compared in Fig. 9. As an immediate benchmark we also added the transaction costs that would
emerge from rounding BSMmodel hedges to the closest possible action. Notably, our transaction cost histogram for CMAB is comparable
to the one obtained for DQN in [15, Exhibit 4]. While (Kolm and Ritter, 2019) reports training on 5 batches of 15000 episodes with 50
time steps each, we have used 100 episodes with 60 steps.
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Fig. 6. Comparison of agent actions versus BSM δ at the mid-point of the investment horizon in deterministic scenario. X-axis: Value of underlying, y-
axis: hedging action.
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Fig. 7. Comparison of agent actions versus BSM δ at the mid-point of the investment horizon in non-deterministic scenario. X-axis: Value of un-
derlying, y-axis: hedging action.
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Fig. 8. Deterioration of training and test performance of DQN for P&L hedging. Left column: Descriptive statistics over 100 training cycles with 60
samples per episode. Right column: Exemplary terminal P&L histograms on 100 test GBM paths.
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4.4. Pre-training and adaptation

In the practical work of an investment firm the availability of real-world data for training will be the bottle-neck for the deployment
of any form of AI for hedging. We have seen in Section 4.1 that training from real-world market data (i.e. in the non-deterministic
scenario) is data costly, even for the minimalist' CMAB agent. A potential way out is that in applications the AI is pre-trained on
18



Fig. 9. Histograms of accumulated transaction costs measured on 1000 testing episodes for CMAB (left) and DQN (right).
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simulated data and then fine-tuned on available real-world data. In this process sample-efficiency is key because only an efficient AI can
adapt sufficiently fast to the new information. An inefficient AI, to the contrary, would simply over-fit to the chosen simulation models
(for markets, transaction costs, etc …) and ignore the important real-world information. To analyse the adaptation capability of the
CMAB and DQN algorithms we have designed the following experiment:

In the non-deterministic scenario the agent is pre-trained until it reaches the maximum reward threshold (300 episodes of 60 samples
for CMAB, 600 episodes of 60 samples for DQN, γ ¼ 0.9). This training process mimics the “training on simulated data” in practice. Once
the model is fully trained we investigate how quickly it adapts to a previously unseen market reality. For this we invent random market
catastrophe events, which are provided as an additional binary context to the trained agent. In case of market catastrophe the agent
should sell all holdings in the underlying immediately, otherwise it receives a large negative reward. In the absence of a catastrophe the
agent should hedge as learned in pre-training. In the sequel we investigate the adaptation of the pre-trained agents to the new scenario.
Since catastrophic events are rather sparse on the real markets we choose 10 such events per training episode. An important point is that
while catastrophes occur at the same time steps at each episode during training, in testing catastrophe events occur at random times. In
other words we recycle the same sparse catastrophe data for training but we test in a more realistic setting with unpredictable times of
catastrophe. Given the large consumption of data of DQN in preceding experiments we switched off transaction costs and short-selling
for this experiment. The re-training progress of the pre-trained CMAB and DQN agents on episodes with added catastrophe events is
depicted in Fig. 10.

The experimental findings demonstrate that after approximately 8 training episodes the pre-trained CMAB agent has adapted to the
newmarket context in terms of accumulated rewards and erroneous actions on catastrophe events. First CMAB agents show 0 erroneous
actions after 4 training episodes. The DQN agent did not adapt fully to the new market setting even after 50 training episodes. To gain a
clearer picture on how well the CMAB agent adapted to the new context we compare the terminal P&L statistics and the accumulated
erroneous actions before and after re-training on 100 previously unseen samples, see Fig. 11. We observe that during the test cycle the
trained agent did not choose a single erroneous action in case of market catastrophe, although such events occurred at randommoments
in time. The P&L performance of the hedger has shown only slight deterioration. We conclude that the pre-trained CMAB agent suc-
cessfully adapted to the new market information on a set of sparse market events (that have been used multiple times in the training
cycle). This is a key feature of the CMAB agent as it is prerequisite to the deployment of pre-trained models in a practical setting.
4.5. R-CMAB versus DQN for derivatives hedging in practice

Conceptually our choice of a bandit-type formulation resembles business operations at an investment firm. It is rare that hedging
decisions target the optimization of multi-period transaction costs and prices as in the full-fledged RL problem. Instead, traders consider
the current market state and optimize for the immediate monetary targets within thresholds of immediate risk (which will almost
certainly include a mark-to-market of the traded structure to an internally approved model). Transaction costs and risk quantifiers are
monitored on a daily basis and reported to management and regulators. Most trading desks are subject to a forced liquidation upon
reaching a maximum drawdown (or risk limit): this absorbing state has a profound impact on the theoretical value of an option, yet it is
wholesale ignored in most modeling approaches. Long-term planning in the sense of taking sacrifice temporarily to achieve better
terminal reward (as it is typical for games like Chess) is therefore often an impractical goal within realistic business constraints.

Notably, in the absence of transaction costs and adjustment for trading gains the CMAB algorithm minimizes the hedging error for
each individual time period. In theory this procedure converges to the BSM δ in the limit of a continuous action space and continuous
time. Consistently, in our experiments the risk associated with CMAB hedges decreases as the hedging frequency increases. This feature
is desirable for benchmarking and not present in the Q-learning framework: While the value of an option contract in the BSM economy
follows the BSM differential equation, Q-learning is designed to approximate solutions of the Bellman equation. As a consequence it is
suitable for terminal utility hedging in the Cash Flow formulation, when the value function follows a Bellman equation, such as in
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Fig. 10. Adaptation of pre-trained CMAB (left column) and DQN (right column) agents to catastrophe context. Graphs show descriptive statistics
from independent 100 training cycles with 60 samples per episode.

Fig. 11. Comparison of terminal P&L (left column) and erroneous actions (right column) accumulated over test episodes for the CMAB agent.
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Hodges and Neuberger (1989). This discrepancy is also reflected in the optimal hedges: in the classical BSM economy the optimal hedge
is provided by the δ-hedge portfolio, where δ only depends on the current price of the underlying and the remaining time to maturity.
DQN anticipates the expected reward structure, a feature that fits naturally with the optimization of terminal utility, see Section 2.1, but
not the BSM model.

As a consequence the role of the parameter γ in DQN (see Section 2.4) is important: apart from being a discount factor, it also
regulates, in terms of the Bellman equation, the dependency between the immediate reward resulting from a given action and the future
rewards. Experimental results are in line with the expectation that hedging performance become weaker (when benchmarked against
BSM) when the DQN agent attempts to anticipate the future reward structure, see Fig. 8. But what happens in the presence of propa-
gating transaction costs? If costs are small, then probably, γ should be comparatively small. To find the optimal value for γ is a chal-
lenging task. In reality γ can thus be viewed as a delicate hyperparameter that should be tuned to the real markets. The right choice of
risk-measure is not obvious either. Indeed, the preceding articles (Hodges and Neuberger, 1989; Kolm and Ritter, 2019; Qlbs, 2020; Cao
et al., 2021; Ritter, 2017) rely on (multiple) different measures of risk. This implies that the same hedging path would be valued
differently within the various setups and makes setting up a planning algorithm even more delicate. From a practical perspective, we
remark that often Q-learning is tedious to train and unstable, especially when used in conjunction with NNs and a sparse reward signal
(Tsitsiklis and Van Roy, 1997): We experimented with hedging in the Cash Flow formulation, where the entire reward was granted to
DQN at contract maturity. We observed frequent convergence of DQN to a fixed hedging decision independent of the market state (i.e. a
poor local optimum), frequent divergence of Q-values and an overall unstable training process. In this setting DQN required an ar-
chitecture that stores snapshots of the algorithm state to allow restarting from the snapshot.

5. Conclusions

We have confirmed, following the preceding publications (Hodges and Neuberger, 1989; Kolm and Ritter, 2019; Qlbs, 2020; Cao
et al., 2021), that RL agents can be trained to hedge derivative contracts. We have introduced the R-CMAB algorithm for P&L hedging,
which is motivated by its relative simplicity and sample efficiency. During training, RL agents learn to operate within their specific
training environment. RL agents trained on simulated data perform well in market situations that are similar to the training simulations.
This reveals an important shortcoming of RL methods when applied to hedging in practice: the lack of real-world data leaves the
practitioner with little options but to train on simulated data. For full-fledged RL algorithms like DQN, the amount of simulated training
data is huge as compared to the real-world data that the agent encounters in operation. The statistical influence of the real-world data
will therefore often be negligible, leaving not much but an overfitting to the simulationmodels. We have demonstrated that the R-CMAB
algorithm addresses this issue by a much more efficient and stable learning process.

During execution, hedging agents should adapt to potential changes in the market. We have seen that the data cost of Q-learning will
often render model updates unrealistic and the proposed CMAB algorithm reacts to new market conditions faster. In similar vein,
although Q-learning is well-suited for multi-period hedging problems and for the computation of reservation and minimum risk prices,
obtaining sufficient real-world data remains elusive. Given the constraints of investment firms the practical benefit of the theoretically
more accurate prices is not obvious.

Finally, more modern algorithms, such as Supervised Learning with recurrent neural networks or neural MCTS, are available to
address the multi-period problems more efficiently. The presence of hyperparameters, such as γ in DQN, which regulates the inter-
dependency of rewards and the level of risk-aversion, which tunes between different measures of risk, makes the evaluation of hedg-
ing performance subtle. Indeed, hedges obtained from R-CMAB naturally converge to BSM deltas when no risk adjustment, dis-
cretization error and transaction costs are present. This makes R-CMAB a useful benchmark for performance comparison and the
development of more sophisticated algorithms. Direct minimization of terminal risk using Supervised Learning addresses the important
use case of hedging complicated structures that cannot be priced with standard tools, but is much simpler than DQN. While our findings
are no surprise from the perspective of AI research, the question of training-data availability has not been discussed in detail in the
hedging literature. To the contrary, we have observed a tendency towards more complex architectures in the recent publications, but
data-availability might dictate a simple model. It is not uncommon that RL is used in Finance in situations, where large data sets are
available for training. A typical example, where RL algorithms are used successfully is market-making, where trading occurs on a sub-
microsecond time scale and produces an abundance of real-world data. The application of RL algorithms in a settings that provides
relatively few data points, such as options hedging, remains an area of active research. As a future line of research and complementary to
this paper we indend to study the performance of contextual bandit algorithms on real-world data.
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