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Abstract
In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and
even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these
differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging
to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the
reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is
combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further
examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative
maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can
become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in
the rapidly developing field of computational imaging.

Introduction
By implementing fluorescent probes and combining

specific excitation and emission protocols, super-
resolution (SR) fluorescence microscopy breaks the dif-
fraction limit of resolution (200–300 nm)1–3, in which
many methods heavily depend on image calculation and
processing that retrieve the SR information1,4. Intrinsi-
cally, the noise and distortions in raw images caused by
the photophysics of fluorophores5–7, the chemical envir-
onment of the sample5,6,8, and the optical setup

conditions6,9–12, may influence the qualities of the final SR
images13–15. Because these factors are related to specific
experimental configurations, a reliable and reference-free
estimation of the image quality is invaluable to sub-
sequent analysis, especially at the SR scale.
Although the artifacts can be assessed by imaging

standard reference structures16,17 or benchmarking
against other higher resolution imaging methods18,19,
people have developed various ingenious methods aiming
to evaluate the SR image qualities without referencing
ground-truth to the best of their abilities. For example, the
HAWKMAN (Haar wavelet kernel analysis method for
the assessment of nanoscopy)20 was developed for the
assessment of single-molecule localization microscopy
(SMLM)18,21,22, and the SIM-check23 was provided for
specially quantifying the structured illumination micro-
scopy (SIM) images. In addition to these domain-specific
methods, the Fourier ring correlation (FRC)24 was devel-
oped to evaluate the global effective resolution in general,
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describing the highest reliable cut-off frequency of an
image. This effective resolution, or equivalently the
spectral signal-to-noise ratio (SNR), is one crucial SR
image quality metric, reflecting the authentic resolvability
or the uncertainty25. However, an unavoidable issue is the
heterogeneity of resolution, and in other words the local
resolution may vary dramatically over the imaging field.
For example, in SMLM systems18,21,26, the practical
resolutions at different local regions are generally deter-
mined by the corresponding molecule active intensity and
density, as well as the local background level13. To mea-
sure this resolution heterogeneity, the block-wise FRC
calculation24,27 was introduced, but it is still too coarse to
describe the SR scale spatial separation of the resolution
variation. Therefore, the upscaled resolvability of SR
imaging requires a more elaborate evaluation.
Here, we propose a rolling Fourier ring correlation

(rFRC) method to draw the resolution heterogeneity
directly in the SR domain, which allows for mapping at an
unprecedented SR scale and seamlessly correlates the
resolution map with the SR content. The variations of
different SR reconstruction methods are usually on a fine
scale, and our rFRC provides a prerequisite for assessing
these methods objectively. Thus, it enables advancing
process procedures to improve image restoration quality,
such as fusing SMLM images reconstructed by different
algorithms to yield SR images with better quality.
Although we are limited to calculate the errors as without
ground-truth comparing, we can measure the uncertain-
ties by this rFRC to uncover the errors contained in the
corresponding SR images. In other words, the lower
spectral SNR (effective resolution) gives a higher prob-
ability of the error existence25, and thus we can use it to
represent the uncertainty revealing the error distribution
(Supplementary Note 1).
As a model-independent assessment, the rFRC using

two independent captures may fail to identify regions that
were always incorrectly restored during different recon-
structions, possibly due to systematic image processing
bias (model bias). On the other hand, the resolution-
scaled error map (RSM)27 can evaluate reconstruction
errors against the simultaneously acquired high SNR
wide-field reference, assuming a spatially invariant
Gaussian kernel and homogenous illumination. However,
RSM suffers from false-negative identifications when the
assumptions fail, and its detectable error scale is limited
by the diffraction barrier. In this sense, RSM can only
estimate the large-scale errors, such as the complete
absence and distortion of structures, possibly induced by
model bias, which can be a complementary module. In
this work, we also accompany our rFRC with a truncated
RSM, namely PANEL (Pixel-level ANalysis of Error
Locations), pinpointing the regions with low reliability for
subsequent biological profiling. Then we applied our

quantitative maps in many imaging approaches, including
SMLM, SR radial fluctuations (SRRF)28, SIM15, and
deconvolution29,30, demonstrating its effectiveness and
stability. To expect our method can be a routinely used
local quality evaluation tool, it has been implemented as
an open-source framework; the related MATLAB and
Python libraries and the out-of-the-box Fiji/ImageJ31

plugin are available on GitHub (Methods).

Results
rFRC mapping and PANEL pinpointing
Systematically, the reconstruction qualities of the cor-

responding SR modalities are influenced by two types of
degradation, i.e., the model bias and the data uncer-
tainty32. The model-bias-induced errors (model error) are
primarily caused by the difference between the artificially
created estimation model and its physical, real-world
counterpart, which can be detected and minimized by
carefully calibrating the optical microscopy system and
measuring its characteristics12,33,34. On the other hand,
the data uncertainties are mostly introduced by joint
effects of the noise condition and sampling capability of
the hardware equipment, such as the sensors and cameras
in microscopy systems. In other words, the reconstruc-
tions from the inevitably deviated observations (left panel
of Supplementary Fig. S13a) may also break away from the
real-world objects in the target SR domain (right panel of
Supplementary Fig. S13a). Therefore, the data uncertain-
ties are generally inevitable, hard to be suppressed by
system calibrations, and free from the model, which may
be more critical in quantitative biological-image analysis.
Heuristically, we can capture statistically independent

images of the object by imaging the identical object with
the same configurations. The data uncertainties can be
highlighted by the difference between these individual
reconstructions (Supplementary Fig. S13b, Supplementary
Note 1). In this sense, the conventional pixel-wise spatial
evaluation methods, such as spatial subtraction or stan-
dard deviation of the individually reconstructed results
may quantify the distance between the recorded images.
However, by measuring the ‘absolute differences’, the
subtraction between this image pair is susceptible to the
intensity fluctuation and subpixel structural motions35,
producing false negatives in distance maps that over-
shadow genuine errors. To minimize the false negatives,
we repurposed the Fourier ring correlation (FRC)24 to
quantify the distance between two individual SR recon-
structions in the Fourier domain. By calculating the
‘relative error’ or ‘saliency-based error’, the FRC is
insensitive to intensity fluctuations or structure move-
ments, thus more robust (Supplementary Note 1, Sup-
plementary Fig. S14).
To provide local distance measurements, we trans-

formed the conventional FRC framework into a rolling
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FRC (rFRC) map, which directly evaluated spatial
information at the SR scale (Fig. 1a, Methods). The
rFRC calculation is similar to that of a moving filter on
an image. We assigned the corresponding FRC resolu-
tion in each block by sliding a window through the
image. (i) To calculate the FRC of pixels at the image
boundaries, we padded the input image symmetrically
around a half size of the block (Step 1, Fig. 1a). (ii) To
eliminate background-induced false negatives, we
avoided calculating areas indistinguishable from the
background (Methods, Supplementary Fig. S2), in which
we assigned the calculated FRC resolution to the center
pixel of each block only if its mean intensity was larger
than a given threshold (Steps 2–4, Fig. 1a). To avoid
overconfident and unstable determinations from small
image blocks, in this work we used the 3σ curve36 as
criterion (Methods, Supplementary Note 2.1). (iii)
Afterward, the same procedure was repeated block by
block throughout the entire image. Compared to the
block-wise FRC map27, our rFRC achieves the pixel-
level mapping sensitivity by rolling operation; elim-
inates the potential false-negative by background
threshold; and increases the robustness of small image
estimation by using 3σ curve as criterion. Using the
above rFRC as the metric we can quantitatively map the
uncertainties in the SR reconstructions at their SR scale
(Supplementary Note 2.2). Notably, this SR scale
representation of the local qualities essentially denotes
the measurement sensitivity (the direct evaluation in SR
domain) rather than the SR imaging resolution (Ray-
leigh resolution) (Supplementary Note 2.2).

In addition to local quality assessment, we calculate
two global metrics, the rFRC value, a dimensionless
metric with values starting at 0 reflecting the dete-
rioration rate across the imaging field, and the rFRC
resolution, representing the averaged resolution
(Methods). We also offer two optional colormaps that
may be more suitable for human intuition37 to display
the uncertainties (shifted Jet, sJet; and black Jet, bJet)
(Step 5, Fig. 1a, Methods, Supplementary Fig. S3a).
Beyond that, we realized that the rFRC may not identify
the regions that were always incorrectly restored during
different reconstructions due to the model bias. For
example, if the two reconstructed images lost an iden-
tical component, the rFRC may indicate a false positive
in the corresponding region. To moderate this issue, we
combined a modified RSM (Methods, Supplementary
Fig. S4) with our rFRC to constitute the PANEL (Fig. 1b,
Methods), for pinpointing such regions with low relia-
bility. As small intensity fluctuations can lead to
potential false negatives, we truncated the RSM with a
hard threshold (0.5, Methods), only including promi-
nent artifacts such as misrepresentations or the dis-
appearance of structures. To filter the regions with high
quality (high FRC resolution), we adopted the Otsu-
based38 segmentation to highlight regions giving a
higher probability of the error existence (Methods,
Supplementary Fig. S3b). We then merged the filtered
rFRC map (green channel) and RSM (red channel) to
create the composite PANEL map (Fig. 1b). Note that
our PANEL cannot fully pinpoint the unreliable regions
induced by the model bias at present, which would
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require more extensive characterization and correction
routines based on the underlying theory of the corre-
sponding models12,34,39,40.

Validating with SMLM simulations
To test our quantitative maps with known ground truth,

we used simulated datasets of SMLM from the EPFL
challenge13 (Methods, Fig. 2a). These datasets consisted of
high-density (HD, 361 frames) and low-density (LD,
12,000 frames) emitters per frame to simulate excessively

low or optimal illumination intensity conditions. The
images were divided into two statistically independent
subsets (odd and even frames), yielding two SR recon-
structions obtained using the maximum likelihood esti-
mation (MLE)41, for our rFRC mapping (Methods, 5th
column in Fig. 2a). Between MLE reconstructions and
ground-truth images, their differences in space indicate
the locations and scales of different artifacts (first two
columns in Fig. 2a). From this spatial difference and
localization uncertainty maps (Supplementary Fig. S5a,
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S5b), we found that the reconstructed SR image under the
HD condition was much more blurred than that of the LD
condition, possibly due to more overlapping emitters
being excited simultaneously. This was affirmed by the
larger rFRC value (Methods) of the HD-MLE image than
that of the LD-MLE image (0.61 versus 0.04, 5th column
in Fig. 2a), in which the rFRC map uncovered all the
subtle errors (as pointed by white arrows). In contrast,
distinctly, the previous RSM and full SQUIRREL27 map
(3rd and 4th columns in Fig. 2a) cannot detect such subtle
errors, and RSM is influenced by noise-induced random
intensity fluctuations. On the other hand, we noted that
rFRC failed to detect the missing part in filaments,
mimicking defective local illumination or labeling (cyan
arrows, Fig. 2a). That was revealed by the truncated RSM,
highlighting the necessity of PANEL combination for
pinpointing different types of errors (last column in
Fig. 2a).
To demonstrate the dependence of the SMLM recon-

struction quality on the illumination intensity, we synthe-
sized a regular grid illuminated by a Gaussian beam with
high power in the center and low power toward the edges
(Methods, Supplementary Fig. S5c, S5d). Under this cir-
cumstance, molecule blinkings at the center were better
separated temporally than those at the edges27 (1st column
in Fig. 2b, Supplementary Fig. S5d), which was clearly
revealed on the rFRC map (5th column in Fig. 2b). Inter-
estingly, examining the different filaments both at center
(33 nm FWHM versus 29 nm FRC resolution) and edge
(80 nm FWHM versus 80 nm FRC resolution) regions, we
found these measured FWHMs (full width at half max-
imum) nicely match the corresponding estimated resolu-
tions. In contrast, because the space-invariant reconstructed
PSF assumption did not hold up here, RSM and full
SQUIRREL map incorrectly provided the estimated errors
(3rd and 4th columns in Fig. 2b, 0.40 a.u. at the center and
0.17 a.u. at the edge, Supplementary Fig. S5e), which was
opposite to the reference (2nd column in Fig. 2b, 0.75 a.u. at
the center and 1.00 a.u. at the edge).
Next, we extended our test to the issue of spatially

variant PSF (Fig. 2c), which is induced by gradually
defocusing in three stages toward the edges. It is con-
ceivable that the localization precision will drop corre-
spondingly due to this defocusing effect. Because of the
spatially variant PSF, the RSM and full SQUIRREL map
(3rd and 4th columns in Fig. 2c) incorrectly provided the
opposite evaluation and visualization for reconstruction
quality. We demonstrated that our rFRC map and full
PANEL map accurately represented this spatially variant
resolution across the imaging field, and the estimated FRC
resolutions closely fit the three-stage distribution that
manually measured from the FWHM values, i.e., 26 nm,
34 nm, and 64 nm in FRC values versus 27 nm, 38 nm, and
63 nm in FWHM values.

Although the RSM is incompatible with volumetric
datasets, the rFRC can be directly extended to a 3D ver-
sion when applying plane-by-plane calculations (Meth-
ods). Here, we also presented the simulated 3D dataset
from the EPFL SMLM challenge42, including both LD and
HD emitters (Methods, Supplementary Fig. S6). Similarly,
compared to the reconstruction with LD emitters per
frame, the rFRC analysis demonstrated lower quality with
HD emitters (3D rFRC value LD: 4.9, HD: 7.0, Supple-
mentary Fig. S6b), confirming the real experimental
experience.

Detecting resolution heterogeneity along different
dimensions
Next, we examined the experimental SMLM micro-

tubule datasets (Methods, Fig. 3, Supplementary Fig. S7).
As visualized by the rFRC, the SR microtubule images
obtained by large-field STORM43 (Fig. 3a), small-field
SMLM13 (Supplementary Fig. S7a, S7b), and SRRF28

(Supplementary Fig. S7c) demonstrated significantly
lower resolutions at filament intersections (Fig. 3b,
Supplementary Fig. S7) and perinuclear region of the
cell (Fig. 3c). This is because the regions with more
complex structures will exhibit more simultaneous
emitters per area, inducing a relatively degraded reso-
lution. In addition to this spatially variant density, the
potential out-of-focus effects in the deeper perinuclear
region will also decrease the localization precision. In
detail, as can be seen in Fig. 3c, the perinuclear region
contains the most dense cytoskeleton, which shapes the
thickest space, and its surrounding region is the tran-
sitional subregion with the microtubules becoming
sparser. The peripheral subregion is further out, which
exists in the thin perimeter areas of the cell44, and the
microtubules appear as an expansive network. Interest-
ingly, such three-stage structural distribution-induced
resolution heterogeneity is successfully mapped by our
rFRC (Fig. 3c).
We further provided the rFRC map procedure for the

3D-STORM43 reconstruction (Fig. 3d), in which sig-
nificant uncertainties also occurred at the perinuclear
region (Fig. 3e, f). In addition to the laterally varied
qualities, it is found that the resolution also fluctuates
along the axial dimension. Under this 3D configuration,
we found that the overall most accurate axial planes for
microtubule (Fig. 3g, h) and actin filaments (Supple-
mentary Fig. S8) were located at the focal planes.
Notably, we directly applied rFRC mapping on volu-
metric datasets in a slice-by-slice manner to visualize
the quality variations on each plane. The 3D extension
of our method requires 3D rolling operation and the
Fourier shell calculation to further incorporate axial
information and measure the anisotropy of lateral and
axial resolutions45.
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Optimal fusion of SMLM
Since all current reconstruction algorithms assume

homogenous HD or LD emitters per frame, the hetero-
geneity of resolution is becoming a major problem27. By
identifying positions of high localization uncertainty with
rFRC map, we can compare the local performances of
different restoration algorithms, and fuse different
regional reconstructions (Methods, Fig. 4a). To do so, the
resolution heterogeneity and potential artifacts can be
minimized. By integrating a high-density simulated
dataset reconstructed by the multi-emitter MLE (ME-
MLE)41 and the FALCON (fast localization algorithm
based on a continuous-space formulation)46, the fused
image demonstrated better PSNR (peak signal to noise
ratio), SSIM (structural similarity), and the rFRC values
(Supplementary Fig. S5f-S5i). To further evaluate its
performance in real samples, we analyzed immunolabeled

α-tubulin filaments in fixed COS-7 cells imaged with 2D-
STORM and restored them with either the ME-MLE or
single-emitter Gaussian fitting43 (SE-Gaussian) (Meth-
ods, Fig. 4b). Although the ME-MLE method performed
better at approximating complex structures (HD emit-
ters) and provided a lower overall rFRC value, the SE-
Gaussian algorithm seemed to excel in reconstructing
some simple structures (LD emitters) (Fig. 4b, c). By
combining regions with the lowest local rFRC values
between reconstructions from either of the two algo-
rithms (Methods, third columns in Fig. 4c), the new
composite SR image demonstrated better visual quality
and the lowest overall rFRC value (0.96 versus 1.26 and
4.14, Fig. 4b). Moreover, the fused image exhibited a
more homogenous distribution of spatial resolution than
that obtained either by ME-MLE or SE-Gaussian alone
(Fig. 4d, e), reinforcing its superior performance in the
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entire FOV. Specifically, this rFRC map-guided image
fusion led to a substantially improved resolution (the
inset in Fig. 4e) in replaced regions than the SE-Gaussian

method (80.55 ± 1.52 nm, hollow), and significant
increases in local resolutions than the ME-MLE method
(4.28 ± 0.14 nm, white solid). In contrast, because the
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RSM method was incapable of revealing errors of SR
ranges, we found it failed to identify such intricate
structures from the STORM image (Fig. 4f). Similarly, the
rFRC was used to composite fusion to clathrin-coated
pits (CCPs) in COS-7 cells under 2D-STORM (Fig. 4g).
The merged SR image showed better quality and higher
mean resolution (Fig. 4g, Supplementary Fig. S9).

Evaluating diverse optical super-resolution microscopies
After establishing the validity and superiority of our

method in SMLM, we extended our analysis to other non-
pointillism SR methods. In theory, because the weight of
the optical transfer function (OTF) decreases gradually
with its spatial frequency, the noise will dominate the
high-frequency components while the low-frequency
deep inside the OTF support remains stable. The sub-
sequent reconstructions will apply more amplifications at
higher frequencies than lower ones, leading to significant
fluctuations in high-frequency components, which ren-
ders intricate structures more profoundly affected by
noise. Moreover, the variations of different SR recon-
struction methods are usually on their SR scale, and thus
an evaluation on the corresponding level is essential.
Here, our rFRC offers a well-timed solution to detect
these uncertainties at high spatial frequencies. In the
following applications, different from the SMLM cases, in
rFRC calculation, we generate two frames required by
repetitively measuring two raw images and reconstructing
them individually.

Comparisons of different assessments by simulation
First, we intend to demonstrate the reliability and

superiority of our method in evaluating the image quality
against other existing approaches. As seen in Fig. 5a, a
series of filaments with different distances were con-
voluted with a wide-field PSF (numerical aperture as 1.4).
We gradually increased the noise level in the raw image
(along the yellow arrow, Fig. 5b) and showed the results
after Richardson-Lucy (RL) deconvolution29,30 (Fig. 5c),
which has been widely applied to improve the resolution
and contrast of raw images. Compared to the ground
truth, significant artifacts appeared in the white dashed

box in Fig. 5c, which were successfully detected by our
rFRC map (Fig. 5d) but not the RSM (Fig. 5h). On the
other hand, it was found that the spatial mapping
approaches induced a strong false negative, making the
true negative difficult to dissect or even invisible (Fig. 5e).
Under the identical configurations of rFRC mapping, we
can see the structural similarity (SSIM)47 map, failed to
highlight such unreliable regions. Beyond that, it is also
worth noting that the rFRC maps formed by Reconstruc-
tion1 and Reconstruction2 (Fig. 5d) or Reconstruction1
and Ground-truth (Fig. 5f) matched perfectly, indicating
that our assessment can evaluate the reconstructed image
quality without the ground truth.
Beyond that, our rFRC map can also be used as a gen-

eralized metric to quantify the difference between the
reconstruction and ground-truth, and overcomes the
natural defects of SSIM. In the SSIM map (Fig. 5g), we can
see the existence of strong false negatives, making the true
negatives difficult to dissect. The region inside the yellow
box (Fig. 5b) was set as noise-free, thus there was no
difference between the two independent reconstructions
(Fig. 5d, e). Here, the reconstruction within this region
(Fig. 5c) was almost identical to the ground truth (Fig. 5a).
Interestingly, both the inverted SSIM map and RSM
(Fig. 5h, g) still provided small values, indicating false
negative. In contrast, the rFRC map between Recon-
struction1 and Ground-truth (Fig. 5f) remains empty for
this region, which is fairly more reasonable.

Sensitively comparing different SIM reconstructions
In SIM, frequency information is unmixed and stitched

from noisy data to achieve SR. As a result, its recon-
struction is essentially an ill-posed inverse problem, in
which the conventional Wiener reconstruction (Wiener-
SIM) will amplify the noise, leading to significant fluc-
tuations in high-frequency components. To moderate this
issue, several regularizations were proposed to constrain
the reconstruction48. For instance, the Hessian-SIM used
the Hessian matrix continuity to eliminate random and
non-continuous artifacts48. In experiments, we applied
the Hessian denoising algorithm48 on the Wiener-SIM
reconstruction49 (Fig. 6a) to obtain the Hessian-SIM

(see figure on previous page)
Fig. 4 STORM fusion using the rFRC map. a Schematic of the STORM fusion. ME: Multi-emitter MLE result; SE: single-emitter Gaussian fitting result.
b STORM results (COS-7 cells, α-tubulin labeled with Alexa Fluor 647, left) and their rFRC maps (right) are shown from top to bottom, which are
magnified views of the white box in (d). From top to bottom: ME result; SE result; the fused result from the ME and SE reconstructions. The
corresponding rFRC values are marked on the top left of the rFRC maps. c Magnified views of the dashed circles in (b). From left to right: ME results,
SE results, fusion weights (inverted rFRC maps of ME results and SE results merged as green and magenta channels, respectively), and fused STORM
results. d The entire view of the fused STORM result (COS-7 cells, α-tubulin labeled with Alexa Fluor 647). e rFRC map of (d). The inset shows the
improved resolution achieved by fusion compared with the SE (80.55 ± 1.52 nm at 22.0% region, hollow) and ME (4.28 ± 0.14 nm at 19.2% region,
white solid) results. f Enlarged regions enclosed by the yellow box in (d). The results of the rFRC map, fused STORM, and RSM are shown from top to
bottom. g Another representative example for SMLM fusion (COS-7 cells, heavy chain clathrin-coated pits labeled with Alexa Fluor 647, see also
Supplementary Fig. S9). The results of ME, SE, and fusion are shown on the left, and the corresponding rFRC maps are demonstrated on the right.
Error bars, s.e.m.; scale bars: (b, c) 500 nm; (d) 5 μm; (f) 1 μm; (g) 100 nm
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images (Methods, Fig. 6b). Then, we performed the rFRC
map to differentiate such subtle differences in the fidelity
of conventional Wiener-SIM49 versus Hessian-SIM48

(rFRC value: 1.36 versus 1.24) (Fig. 6c), and in contrast,
the RSM detected identical qualities (RSE value: 0.27
versus 0.27) (Supplementary Fig. S10e). It is found that
only the rFRC value can reflect the difference between
Wiener-SIM and Hessian-SIM. We also found that the
local qualities in SIM are correlated to the emission
intensity of the fluorescent signals (Supplementary Fig.
S10d), in which the raw images of low SNRs are suscep-
tible to artifacts. The unreliable regions pointed by
PANEL (Supplementary Fig. S10f) are correlated to the
regions under weak illumination of TIRF. Notably, the
fixed pattern artifacts of SIM caused by biased parameter
estimations or configurations (model bias)12 cannot be
detected by our rFRC method.

Determining the number of iterations by rFRC
The traditional RL algorithm risks amplifying the noise

when performing excessive iterations, which extremely
limits its applications. Although the noise-insulated low-
frequency components may stand stable, the maximum
likelihood estimation fits the noise-dominated high-fre-
quency ones to recover the high spatial frequencies, which
will lead to wide fluctuations. As an iterative process, RL
deconvolution progressively recovers the high-frequency
information step by step, and in this process, the noise

proportion is also increasing. Thus, the optimal iteration
can protect the enhancement of high-frequency infor-
mation before amplifying the noise. The common usage
requires a post hoc visual inspection to determine the best
number of iterations. Here, to ascertain the rFRC value
readouts guiding this determination for the number of RL
iterations, we applied RL to process the TIRF image (Fig.
6d) and then calculated its corresponding rFRC value of
each iteration (Fig. 6e, right panel of Fig. 6g, see also
another example in Supplementary Fig. S12). Interest-
ingly, it is noticeable that rFRC values presented a quad-
ratic distribution with the minimum value appearing after
80 iterations. It is similar to the peak signal-to-noise ratio
distribution (PSNR, left panel of Fig. 6g), in which the
TIRF-SIM (Methods) image is used as ground truth. In
contrast, the curve of the resolution-scaled Pearson
coefficient (RSP)27 failed to recapitulate this distribution
(middle panel of Fig. 5g). As demonstrated in Fig. 6f, the
RL deconvolution with 200 iterations produced
snowflake-like artifacts, as indicated by the white arrows,
which can be confirmed as nonexistent by the referenced
TIRF-SIM image. A comprehensive comparison demon-
strated that 80-iteration RL optimally enhanced the image
contrast with the slightest noise-amplification-induced
artifacts. The inverted illumination intensity map is pro-
portional to the rFRC map (Supplementary Fig. S11),
indicating that the local quality in the results of RL
deconvolution is highly correlated with the SNR.
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Extended application to coherent imaging
Fourier ptychographic microscopy (FPM)50 achieves

high resolution by iteratively stitching together a number
of low-resolution images in Fourier space, and it is a
coherent imaging modality through a combination of
synthetic aperture and phase retrieval concepts. In the
reconstruction process, it updates the objective function
between the spatial and Fourier domains iteratively with
intensity or pupil constraints. In this case, the noise-
contaminated high-frequency components can sig-
nificantly induce quality degradation during its spectrum
extension. Here, we extended our rFRC applications to
FPM to assess its reconstruction qualities. The United
States Air Force (USAF) resolution target was used as the
ground-truth sample (Fig. 6h), and we simulated the FPM
imaging process (Methods) to create the low-resolution
result (Fig. 6i) and its corresponding high-resolution FPM
reconstruction (Fig. 6j). In Fig. 6k, it can be seen that the
RSM without filtering is prone to small intensity fluc-
tuations belonging to false negative (FP, cyan arrows). In
contrast, the rFRC map (Fig. 6l) accurately represents the
quality of FPM reconstruction, pinpointing all the regions
of true negative (TN, magenta arrows in Fig. 6m).

Discussion
Without a reference in any form or its equivalent, a map

of uncertainty down to the SR scale will be crucial for
extracting reliable and quantitative information from
biological images (Supplementary Fig. S17). According to
the underlying theories of different modalities, the cor-
responding model bias can be minimized by optical sys-
tem calibrations12,34,40. On the other hand, data
uncertainty is fundamentally inevitable and difficult to
remove, and so far, there is still no effective method for its
routine evaluation. In this work, we demonstrate that the
rFRC framework with two independent captures can
measure the data uncertainty in general (Supplementary
Note 3). When the spatially different uncertainties
revealed by rFRC, the way may be paved for these state-of-
the-art imaging methods to be widely adopted in cell
biological studies. Assisted by rFRC, we anticipate the
developers and users can optimize the resolution het-
erogeneity and evaluate the performances for specific

experiments. Particularly, based on our analysis (Figs.
2–4), we uncover that the resolution heterogeneity in
localization microscopy can be a sought-after issue to be
discussed in future methodological developments and
even biological studies. We expect our rFRC can be
broadly used as a cross-modality tool, evaluating the
resolution heterogeneity for other localization-
based22,51–53 and fluctuation-based54 microscopies, offer-
ing well-founded systemic improvement schemes.
Beyond the reference-free objective quality rating, we

expect our rFRC map would become a generalized metric
and quality map in the presence of ground-truth, similar to
the structural similarity (SSIM)47, to assess image quality
closer to the human perception. Furthermore, as a model-
independent method, our rFRC can also be applied to the
recently emerged learning-based SR reconstructions55. By
developing an open-source ImageJ plug-in, and libraries in
different programming languages, we enable wide users to
apply our method. We hope this metric could benefit image-
based biological profiling and inspire further advances in the
rapidly developing field of computational microscopes.

Materials and methods
FRC calculation
The FRC method measures the statistical correlation

between two bidimensional signals over a series of con-
centric rings in the Fourier domain. It can be regarded as
a function of the spatial frequency qi:

FRC12ðqiÞ ¼
P

r2qi F1ðrÞ �F2
�ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r2qi jF1ðrÞj2 �
P

r2qi jF2ðrÞj2
q ð1Þ

where F1 and F2 denote the discrete Fourier transforms
(DFTs) of the two signals and

P
r2qi represents the

summation over the pixels on the perimeter of circles of
corresponding spatial frequency qi.
Before calculation, a Hanning window is used to sup-

press the edge effects and other spurious correlations
caused by the DFT calculation. The rectangular images
should be zero-padded to produce squares to calculate the
FRC curve. To calculate the discrete values of the

(see figure on previous page)
Fig. 6 Diverse optical imaging approaches assisted and evaluated by the rFRC map. a Representative images of live human umbilical vein
endothelial cells (HUVECs) labeled with LifeAct-EGFP under Wiener-SIM (top) and TIRF (bottom) imaging. b Hessian-SIM result. c rFRC map of Hessian-
SIM. The rFRC, RSP, and RSE values of Wiener-SIM (magenta) and Hessian-SIM (cyan) are shown on the bottom right. d Representative results of fixed
liver sinusoidal endothelial cells (LSECs) labeled with DiI under RL deconvolution (top) and TIRF (bottom) imaging. e rFRC map of RL deconvolution
result. f Magnified views of the white box in (d). The original TIRF image, RL deconvolution results with 80 and 200 iterations, and TIRF-SIM results are
shown in the top left, top right, bottom left, and bottom right, respectively. g Curves of the PSNR (versus TIRF-SIM), RSP (versus TIRF), and rFRC values
over iterations. h Simulated ground-truth. i Wide-field image of (h). j Corresponding Fourier ptychographic microscopy (FPM) reconstruction. k RSM
of FPM. l rFRC map of FPM.m Merged image of PANEL (green channel) and FPM (gray channel) results. Cyan and magenta arrows represent the false
positives and the true negatives, respectively. Scale bars: (a) 1 μm; (d) 5 μm; (f) 100 nm; (j) 50 μm
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corresponding spatial frequencies, it is necessary to define
the discretization of the spatial frequencies of the FRC
curve. The maximum frequency fmax is half the inverse of
the pixel size (ps), i.e., fmax= 1/(2 ps). Then the average
filter with a half-width of the average window (equal to 3
frequency bins) is applied to smooth this noisy FRC curve.
When the FRC curve drops below a given threshold, the

corresponding frequency is defined as the effective cutoff
frequency (COF), whereas the resolution is the inverse of
the effective COF. This threshold for FRC indicates the
spatial frequency above which meaningful information
beyond random noise can be extracted. Specifically, the
common choices for the criterion/threshold are the fixed-
value thresholds or the sigma-factor curves36. The fixed
value is usually the 1/7 hard threshold, and the criterion
of sigma-factor curves can be written as follows:

σ i ¼ σ factorffiffiffiffiffiffiffiffiffiffi
Ni=2

p ð2Þ

where Ni represents the number of pixels in a ring of
radius qi and the most commonly used σ factor is 3. If the
two measurements are corrupted with excessive noise, the
FRC curve can be expressed as FRCi ¼ 1=

ffiffiffiffiffiffi
Ni

p 36.
The 1/7 hard threshold has been widely used in deter-

mining the resolution of SR images. Although this fixed-
value threshold method is incompatible with statistical
assumptions36, the resolution obtained with that criterion
is approximately accurate for SMLM24 and the stimulated
emission depletion microscopy (STED) microscopy56.
The 1/7 threshold attains a similar result for a large image
to the 3σ curve criterion (Supplementary Fig. S15a).
However, this fixed threshold is overconfident for deter-
mining the resolutions of small image blocks, which is
essential to map local SR errors in the reconstructions. In
Supplementary Fig. S15a, the 1/7 threshold is smaller than
all correlation values in the FRC curve and fails to yield
the COF of small images (red cross). On the other hand,
unlike avoiding the conservative threshold choice in
resolution determination, we prefer a moderate threshold
for quality mapping to reduce false positives. Therefore,
we choose three standard deviations above the expected
random noise fluctuations as the threshold36. This cri-
terion is robust and accurate in examining small image
blocks and calculating the FRC resolutions.

rFRC map generation
Two-frame generation
The rFRC mapping requires two independent frames of

identical contents under the same imaging conditions. For
the SMLM and the SRRF modalities (Figs. 2–4, Supple-
mentary Figs. S6-S9), these two frames were generated by
splitting the raw image sequence in half (odd and even
frames) and reconstructing the resulting two image

subsets independently. For the SIM, FPM, and RL
deconvolution (Fig. 6, Supplementary Figs. S10-S12), we
directly imaged the identical contents twice to capture the
required two frames.

rFRC mapping
Since the FRC measures the global similarity between

two images, we extend the FRC to a rolling form (rFRC) to
provide the local distance measurements at the pixel level.
We regard the FRC calculations as a filter in which the
image is scanned block by block (64 × 64 pixels as a
default size in this work), with each block assigned the
corresponding FRC resolution. First, we pad the input
image symmetrically around a half size of the block to
calculate the FRC at the image boundaries (Step 1,
Fig. 1a). Second, by setting the background threshold of
the center pixel, we avoid FRC calculation of the back-
ground area. If the mean of the center pixels is larger than
the threshold, we calculate the FRC and assign the FRC
resolution to the center pixel of each block. In contrast,
we set a zero value to the central pixel when it is smaller
than the threshold (Steps 2–4, Fig. 1a). Afterward, we run
this procedure block by block until the entire image is
finished.

Background thresholding
By labeling designated structures specifically, fluores-

cence images confer high contrast and dark background
areas containing background and readout noise. These
regions, however, result in low FRC resolutions that are
essentially false negatives. Therefore, we use two strate-
gies to threshold the background (Supplementary Fig. S2).
We determine the hard threshold according to the images
by user-defined global value adapting to their data (default
method) or by an iterative wavelet transform method57 to
estimate local values automatically. For the global
threshold, because different values lead to different
regions being interrogated, we choose the hard threshold
carefully based on two principles: (1) the removal of
background; (2) the maintenance of structures. Regarding
the local threshold, the background is iteratively estimated
from the lowest-frequency wavelet bands of the images
(Supplementary Fig. S2c). In each iteration, all image
values above the current estimation are clipped.

rFRC mapping acceleration
Although the rFRC allows evaluation at the pixel level,

the most delicate scale of detectable errors can only reach
the highest resolution allowed by the system, which
satisfies the Nyquist-Shannon sampling theorem. Thus,
the smallest error should be larger than ~3 × 3 pixels.
Therefore, we can skip 2~4 pixels for each rolling
operation to accelerate the mapping calculation 4~16
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times. The rFRC map can be resized to the original image
size by bilinear interpolation for better visualization.

Adaptively filtering the rFRC map
The FRC calculation is not always stable and may

generate aberrantly large values in neighboring pixels due
to improperly determined COFs. Thus, we create an
adaptive median filter to remove these inappropriate
values. Instead of the standard median filter that replaces
each pixel with the median of the neighboring pixels, we
develop an adaptive median filter to remove only the
isolated pixels with aberrantly large values, avoiding
blurring of the rFRC map15. If the pixel intensity is larger
than a preset fold (default as 2-fold) of the median in
the window (default as 3-pixel), the pixel is replaced by
the median value. Otherwise, the window moves to the
next pixel.

Drift correcting
To correct relative movements between measurements,

we use a method based on the phase correlation58. First,
we calculate the cross-correlation function CC of the two
images:

CCðx; yÞ ¼ ~FfFðM1Þ �FðM2Þ�g ð3Þ
where M1 and M2 represent the two images. The peak of
the CC is the shift between these two images that ensures
the best-correlated M1 and M2. After that, we find the
centroid of the distribution of intensities of the cross-
correlation function to achieve subpixel accuracy. This
operation is executed before the rFRC mapping.

rFRC colormap
Choosing a proper color map to visualize error maps is

another tricky question. The existing popular color maps,
such as Jet, use blue to red to index the different error
magnitudes. However, people usually tend to define black
(dark color) as small magnitude and white (light color) as
large magnitude, which is identical to the logic of the gray
color map. In this sense, the Jet color map may be
incompatible with human intuition37. On the other hand,
human vision is insensitive to light or dark gray levels and
sensitive to different colors. As a result, we intend to
create a color map using color to index the magnitudes
and with black/white zone to visualize the smallest/largest
values.
First, because human eyes are more sensitive to green

color, we use green to highlight errors of large magnitude.
Second, human instinct usually regards bright color
(white) as an effect of large magnitude and dark color
(black) for small magnitudes. Therefore, we involve a
black zone (0, 0, 0) and a white zone (1, 1, 1) in the color
map to visualize the smallest and largest values. Taken

together, we shift the Jet colormap (left panel of Supple-
mentary Fig. S3a) to create the shifted Jet (sJet) color map
(right panel of Supplementary Fig. S3a). Along with the
extension of the blue color component in this sJet color
map, we obtain a white zone to represent the most sig-
nificant error (even larger than those highlighted in
green). Because the background in the rFRC map means
no error, we use the black zone for the display. As shown
in Supplementary Fig. S3a, our sJet color map is more
intuitive for visualizing errors than the original Jet
color map.
In addition to the sJet colormap, we also provided another

alternative colormap, i.e., Jet with the black zone (bJet, middle
panel of Supplementary Fig. S3a) while using red color to
represent large magnitude. The readers are encouraged to try
these colormaps and select their favorite ones.

rFRC value
As mentioned above, the rFRC map can be used to

subtly visualize the local uncertainties down to the SR
scale. Here, we also intend to give two metrics for globally
evaluating the entire image quality. One metric with
dimension (resolution) represented the averaged resolu-
tion across the entire imaging field, namely rFRC reso-
lution, and its calculation is given as follows:

P
FV≠0 FV ðx; yÞ
kFV ðx; yÞk0

ð4Þ

where kFVk0 is the l0 norm, which represents the number
of nonzero values in the rFRC map, and FV denotes the
rFRC map.
Secondly, to reflect the potential deterioration rate of

the reconstructed images, we provided a more generalized
dimensionless metric, namely rFRC value. Here we nor-
malize the rFRC resolution with its corresponding mini-
mum resolution, and subtract 1 to ensure its value
starting at 0:

P
FV≠0 FV ðx; yÞ

kFV ðx; yÞk0 � minðFV ðx; yÞÞ � 1 ð5Þ

It noted that both metrics can be further extended to
three dimensions, in which the (x, y) two-dimensional
coordinates can be raised to three dimensions (x, y, z)
directly (3D rFRC value).

RSM generation
Image intensity rescaling and resolution scaling function
(RSF) estimation
To normalize the intensity between low-resolution (LR)

and high-resolution (HR) images and maximize the
similarity between them, the intensity of the original HR
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image IH needs to be linearly rescaled:

IHSðμ; θÞ ¼ IH ´ μþ θ ð6Þ

where IHS represents the HR image after linear rescaling.
The values of μ and θ in Eq. (6) should be chosen to
maximize the similarity between the LR image, IL, and IHS
convolved with the RSF. Because the RSF is an unknown
kernel used to transform an HR image into an LR image,
it can be approximatively defined by a 2D Gaussian
function with an unknown σ. The RSF is usually
anisotropic in the x and y directions. Hence unlike its
original version27, we set σ as a vector that includes two
elements, i.e., σx and σy.
Then, to estimate μ and θ for image intensity rescaling

and σx and σy for RSF parameterization, we jointly opti-
mize these four variables (Supplementary Fig. S4), i.e., μ,
θ, σx, and σy, to minimize the following function:

arg min
μ;θ;σx;σy

���IL � IHSðμ; θÞ � IRSFðσx; σyÞ
���2
2

ð7Þ

Because the gradient in Eq. (7) is difficult to calculate,
we use a derivative-free optimizer to search for the four
optimal parameters. Different from the particle swarm
optimization (PSO)59 used previously27, we chose the
pattern search method (PSM)60 to optimize Eq. (7). PSO
searches for substantial candidate solutions and may be
not necessary for a four-parameter optimization problem.
Compared to the unstable and slow metaheuristic opti-
mization approach of PSO, the PSM is stable, computa-
tionally effective, and direct. It is commonly used in small-
scale parameter optimization problems and is more sui-
table for our RSM estimation.

Metrics and pixel-wise error map of the RSM
After obtaining μ and θ (image intensity rescaling fac-

tors) and σx and σy (RSF parameters), we can transform
the HR image IH into its LR version IHL by convolving the
estimated RSF.

IHL ¼ ðIL ´ μþ θÞ � RSF ¼ IHSðμ; θÞ � IRSFðσÞ ð8Þ

To assess the global quality of the resolution-scaled-
back image IHL against the original LR image IL, we use
the common root mean squared error for the resolution-
scaled error (RSE)27 and the Pearson correlation

coefficient for the resolution-scaled Pearson coefficient
(RSP)27.

RSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y
ILðx;yÞ�IHLðx;yÞ2

n

r

RSP ¼
P

x;y
ðILðx;yÞ�ILÞðIHL�IHLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y
ðIL�ILÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y
ðIHL�IHLÞ2

q ð9Þ

In addition, to visualize the pixelwise absolute differ-
ence, the RSM between IL and IHL can be calculated by:

RSMðx; yÞ ¼ jILðx; yÞ � IHLðx; yÞj ð10Þ

PANEL pinpointing
To pinpoint regions with a high probability of error

existence, we filter both the RSM and the rFRC to create a
PANEL composite map. The small-magnitude compo-
nents contained in the RSM may introduce false nega-
tives. Therefore, we segment the RSM before integrating
it into PANEL by the following equation:

~Rðx; yÞ ¼ Rðx; yÞ; Rðx; yÞ 2 ½0:5; 1�
0; Rðx; yÞ 2 ½0; 0:5Þ

�
ð11Þ

where R(x, y) represents the normalized RSM value in the
x, y positions and ~R denotes the segmented RSM. After
this operation, the small false negative is filtered, leaving
us with strong low-resolution scale error components,
focusing on the true negatives detected by the RSM. On
the other hand, the rFRC map indicates the degree of
uncertainty. The smallest FRC value in the map may not
represent the error existence. Likewise, we introduce a
segmentation method called Otsu38, which automatically
determines the threshold by maximizing the interclass
variance, performing image thresholding to filter the
background in the rFRC map, and highlighting the
regions with a high possibility of error existence
(Supplementary Fig. S3b).
After that, considering human eyes more sensitive to

the green color, we used the rFRC as green channel for
better visualization of fine details, and leave the red
channel for RSM to display large-scale components. In
detail, first, the rFRC map and the RSM are normalized to
a 0~1 scale. Second, we filter the rFRC map and the RSM
with the ‘Otsu determined threshold’ and the ‘0.5
threshold’, respectively. Regions with values smaller than
the thresholds are set to zero, and regions with larger
values remain unchanged. Finally, we merge the rFRC
map (green channel) and the RSM (red channel), and this
operation is for qualitative pinpointing of regions with low
reliability. The original rFRC map and the 0.5 threshold
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filtered RSM can be separated if quantitative evaluations
are required.
In addition, if the datasets are three-dimensional or

under a non-Gaussian convolution relation (between the
low-resolution and high-resolution scales), we cannot
estimate the corresponding RSMs. For these datasets, the
RSM is not integrated into PANEL.

SMLM Fusion
The RSM estimates the errors at the low-resolution

scale, which is not suitable for the SMLM fusion. In
contrast, the rFRC estimates the degree of errors at the SR
scale and thus is a superior choice to guide the fusion of
SMLM. Using the rFRC quality metric, we can fuse dif-
ferent localization results according to the weights of the
rFRC maps, resulting in combined reconstructions that
perform better than any one of the reconstructions alone.

PN
n¼1 Ln � fGðσÞ � ðmaxðF1�N Þ � FnÞgPN

n¼1 GðσÞ � ðmaxðF1�NÞ � FnÞ
ð12Þ

where Ln is the result of the nth localization model, and
G(σ) represents the Gaussian kernel with σ standard
variance. The max(F1~N) is the maximum FRC value of
the total N localization results, and ⊗ is the convolution
operation. We use G (σ as 4 pixels) to slightly blur the
rFRC map, avoiding oversharpen effects.

STORM imaging
Microscope setup
After washing with phosphate buffer saline (PBS), the

samples were mounted on glass slides with a standard
STORM imaging buffer consisting of 5% w/v glucose,
100 × 10−3

M cysteamine, 0.8 mgmL−1 glucose oxidase,
and 40 µgmL−1 catalase in Tris-HCl (pH 7.5)43. Then,
data were collected by 3D-STORM43 carried out on a
homebuilt setup based on a modified commercial inverted
fluorescence microscope (Eclipse Ti-E, Nikon) using an
oil-immersion objective (100×/1.45 NA, CFI Plan Apoc-
hromat λ, Nikon). Lasers at 405 nm and 647 nm were
introduced into the cell sample through the objective’s
back focal plane and shifted toward the edge of the
objective to illuminate ~1 µm within the glass-water
interface. A strong (~2 kW cm−2) excitation laser of
647 nm photoswitched most of the labeled dye molecules
into a dark state while also exciting fluorescence from the
remaining sparsely distributed emitting dye molecules for
single-molecule localization. A weak (typical range:
0–1W cm−2) 405 nm laser was used concurrently with
the 647 nm laser to reactivate fluorophores into the
emitting state. Only a small, optically resolvable fraction
of fluorophores was emitting at any given instant. A
cylindrical lens was put into the imaging path to introduce
astigmatism to encode the depth (z) position into the

ellipticity of the single-molecule images43. The EMCCD
(iXon Ultra 897, Andor) camera recorded images at a 110-
frame-rate for a frame size of 256 × 256 pixels and typi-
cally recorded ≈50,000 frames for each experiment. In
addition, to form the 2D-STORM imaging, we removed
the cylindrical lens in the optical layout.

STORM reconstruction
The open-source software package Thunder-STORM41

and customized 3D-STORM software43 were used for
STORM image reconstruction. Images labeled ‘ME-MLE’
and ‘SE-MLE’ were reconstructed by Thunder-STORM
with maximum likelihood estimation (integrated PSF
method), and multi-emitter fitting enabled (ME-MLE) or
not (SE-MLE). The images labeled ‘SE-Gaussian’ were
reconstructed with the customized 3D-STORM software
by fitting local maxima with an (elliptical) Gaussian
function described previously in ref. 43. Drift correction
was performed post-localization, and images were ren-
dered using a normalized Gaussian function (σ as 2
pixels).

Cell culture, fixation, and immunofluorescence
COS-7 cells were cultured in DMEM (GIBCO,

21063029) supplemented with 10% fetal bovine serum
(FBS; GIBCO) in a humidified CO2 incubator with 5%
CO2 at 37 °C, following standard tissue-culture protocols.
Then, cells were seeded on 12mm glass coverslips in a 24-
well plate at ~2 × 104 cells per well and cultured for 12 h.
For STORM of actin filaments, a previously established
fixation protocol61 was employed: The samples were first
fixed and extracted for 1 min with 0.3% v/v glutaraldehyde
and 0.25% v/v Triton X-100 in cytoskeleton buffer (CB,
10 × 10−3

M MES, pH 6.1, 150 × 10−3
M NaCl, 5 × 10−3

M

EGTA, 5 × 10−3
M glucose, and 5 × 10−3

M MgCl2),
postfixed for 15min in 2% (v/v) glutaraldehyde in CB, and
reduced with a freshly prepared 0.1% sodium borohydride
solution in PBS. Alexa Fluor 647-conjugated phalloidin
was applied at a concentration of ≈0.4 × 10−6

M for 1 h.
The sample was briefly washed two to three times with
PBS and then immediately mounted for imaging. For the
imaging of other targets, samples were fixed with 3% w/v
paraformaldehyde and 0.1% w/v glutaraldehyde in PBS for
20min. After reduction to a freshly prepared 0.1% sodium
borohydride solution in PBS for 5 min, the samples were
permeabilized and blocked in blocking buffer (3% w/v
BSA, 0.5% v/v Triton X-100 in PBS) for 20min. After-
ward, the cells were incubated with the primary antibody
(described above) in a blocking buffer for 1 h. After
washing in a washing buffer (0.2% w/v BSA and 0.1% v/v
Triton X-100 in PBS) three times, the cells were incubated
with the secondary antibody for 1 h at room temperature.
Then, the samples were washed three times with the
washing buffer before being mounted for imaging.
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SIM imaging
TIRF-SIM
Our SIM system was built upon a commercial inverted

fluorescence microscope (IX83, Olympus) equipped with
a TIRF objective (100×/1.7 NA, Apo N, HI Oil, Olympus)
and a multiband dichroic mirror (DM, ZT405/488/561/
640-phase R; Chroma) as described previously48. In short,
laser light with wavelengths of 488 nm (Sapphire 488LP-
200) and 561 nm (Sapphire 561LP-200, Coherent) and
acoustic, optical tunable filters (AOTFs, AA Opto-Elec-
tronic, France) were used to combine, switch, and adjust
the illumination power of the lasers. A collimating lens
(focal length: 10 mm, Lightpath) was used to couple the
lasers to a polarization-maintaining single-mode fiber
(QPMJ-3AF3S, Oz Optics). The output lasers were then
collimated by an objective lens (CFI Plan Apochromat
Lambda 2× NA 0.10, Nikon) and diffracted by a pure
phase grating that consisted of a polarizing beam splitter,
a half-wave plate, and an SLM (3DM-SXGA, ForthDD).
The diffraction beams were then focused by another
achromatic lens (AC508-250, Thorlabs) onto the inter-
mediate pupil plane, where a carefully designed stop mask
was placed to block the zero-order beam and other stray
light and to permit passage of ±1 ordered beam pairs only.
To maximally modulate the illumination pattern while
eliminating the switching time between different excita-
tion polarizations, a homemade polarization rotator was
placed after the stop mask. Next, the light passed through
another lens (AC254-125, Thorlabs) and a tube lens
(ITL200, Thorlabs) to be focused onto the back focal
plane of the objective lens, interfering with the image
plane after passing through the objective lens. Emitted
fluorescence collected by the same objective passed
through a dichroic mirror, an emission filter, and another
tube lens. Finally, the emitted fluorescence was split by an
image splitter (W-VIEW GEMINI, Hamamatsu, Japan)
before being captured by a sCMOS (Flash 4.0 V3,
Hamamatsu, Japan) camera.

Hessian-SIM
We applied the Hessian denoising algorithm48 without

the t continuity constraint on the Wiener-SIM recon-
struction49 results to obtain the Hessian-SIM images, as
shown in Fig. 6b.

Cell maintenance and preparation
Human umbilical vein endothelial cells (HUVECs) were

isolated and cultured in an M199 medium (Thermo
Fisher Scientific, 31100035) supplemented with fibroblast
growth factor, heparin, and 20% FBS or in an endothelial
cell medium (ECM) (ScienCell, 1001) containing endo-
thelial cell growth supplement (ECGS) and 10% FBS. The
cells were infected with a retrovirus system to express
LifeAct-EGFP. The transfected cells were cultured for

24 h, detached using trypsin-EDTA, seeded onto poly-L-
lysine-coated coverslips (H-LAF10L glass, reflection
index: 1.788, thickness: 0.15 mm, customized), and cul-
tured in an incubator at 37 °C with 5% CO2 for an addi-
tional 20–28 h before the experiments. Liver sinusoidal
endothelial cells (LSECs) were isolated and plated onto
100 µg/ml collagen-coated coverslips and cultured in
high-glucose DMEM supplemented with 10% FBS, 1% L-
glutamine, 50 U/ml penicillin, and 50 µg/ml streptomycin
in an incubator at 37 °C with 5% CO2 for 6 h before
imaging. Live cells were incubated with DiI (100 µg/ml,
Biotium, 60010) for 15min at 37 °C, whereas fixed cells
were fixed with 4% formaldehyde at room temperature for
15min before labeling with DiI. For the SIM imaging
experiments, cells were seeded onto coverslips (H-LAF
10 L glass, reflection index: 1.788, diameter: 26 mm,
thickness: 0.15 mm, customized).

Open-source datasets
In addition to the custom-collected datasets, we also

used freely available simulation/experiment datasets to
illustrate the broad applicability of our method.

2D-SMLM simulation datasets
The ‘Bundled Tubes High Density’ (361 frames) and

‘Bundled Tubes Long Sequence’ (12000 frames) datasets
from the ‘Localization Microscopy Challenge datasets'13

on the EPFL website were used as the high-density and
low-density 2D-SMLM simulation datasets in this work,
as shown in Fig. 2a. The NA of the optical system was 1.4
(oil-immersion objective), and the wavelength of the
fluorescence was 723 nm.

3D-SMLM simulation datasets
The ‘MT1.N1.LD’ (19996 frames, 3D-Astigmatism PSF)

dataset from the ‘Localization Microscopy Challenge
datasets'42 on the EPFL website was used as the low-
density 3D-SMLM simulation dataset in this work, as
shown in Supplementary Fig. S6. The NA of the optical
system was 1.49 (oil-immersion objective), and the
wavelength of the fluorescence was 660 nm. All the ima-
ges had a frame size of 64 × 64 pixels (pixel size as
100 nm). Then, 20 frames from this low-density dataset
were averaged into one frame to generate the corre-
sponding high-density 3D-SMLM dataset (resulting in
998 frames).

2D-SMLM experimental datasets
The ‘Localization Microscopy Challenge datasets'13 also

contain experimental data, and 500 high-density images of
tubulins were acquired from the EPFL website (Supple-
mentary Fig. S7a, S7b). The NA of the optical system was
1.3 (oil-immersion objective), and the wavelength of the
fluorescence was 690 nm. The images were recorded with
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a camera at a 25-frame-rate for a frame size of 64 × 64
pixels (pixel size as 100 nm).

Live-cell SRRF datasets
The GFP-tagged microtubules in live HeLa cells were

imaged by the TIRF mode with a TIRF objective (100×/
1.46 NA, Plan Apochromat, Oil, Zeiss) and an additional
1.6× magnification with 488 nm laser illumination28

(200 frames in total). The open-source ImageJ plugin28

was used to reconstruct the SRRF results (Supplemen-
tary Fig. S7c).

Simulations of the grid imaged by SMLM
Following ref. 27, we created a regular grid on a pixel of

10 nm in size (Supplementary Fig. S4c). The density of the
randomly activated molecule was set as increasing gra-
dually from the center to the sides. Then, the resulting
image sequence was convoluted with a Gaussian kernel
with an FWHM of 280 nm and down-sampled ten times
(pixel size 100 nm). After that, Poisson and 20% Gaussian
noise were injected into the image sequence (Supple-
mentary Fig. S4d). Finally, the image sequence was
reconstructed by Thunder-STORM with maximum like-
lihood estimation (integrated PSF method), which enabled
the multi-emitter fitting function.

Simulation of Fourier ptychographic microscopy (FPM)
We used the United States Air Force (USAF) resolution

target as the ground-truth sample of the FPM50 (Fig. 6h).
The intensity and phase of the imaged sample were both
set as those of the USAF target with a size of 240 × 240
pixels (pixel size: 406.3 nm). Illumination from different
angles was provided by a 7 × 7 LED matrix, whose
emission wavelength was 532 nm and distance to the
sample was 90 mm. The sample was illuminated by each
LED unit, filtered by the objective (4×/0.1 NA), and
sampled by the camera (image size as 60 × 60 and pixel
size as 1.625 μm). After the LEDs illuminated the sample,
the final 49 low-resolution images were obtained. We
used the image illuminated by the LED in the center as
the initial image. Then, the amplitude and phase of the
corresponding aperture were updated in turn in each
FPM iteration. After 10 iterations, the final high-
resolution complex-amplitude image (240 × 240) was
obtained, the size of which was enlarged by 4× compared
to the corresponding low-resolution images.

Image rendering and processing
We used the custom-developed color maps, shifted Jet

and black Jet (sJet and bJet), to visualize the rFRC maps in
this work. The color maps ‘SQUIRREL-FRC'27 were used
to present the FRC maps in the Supplementary Fig. S15d,
and S17. The color maps ‘SQUIRREL-Errors'27 were used
to present the difference map in the second and third

columns of Fig. 2, the bottom panel of Fig. 4f, and the
third panel of Supplementary Fig. S7b. The volumes in
Fig. 3d–f were rendered by ClearVolume62. The Jet color
map projection was used to show the depth in Supple-
mentary Fig. S8b. All data processing was achieved using
MATLAB and ImageJ. All figures were prepared with
MATLAB, ImageJ, Microsoft Visio, and OriginPro.
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