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Tunable VO2 cavity enables multispectral
manipulation from visible to microwave
frequencies
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Abstract
Optical materials capable of dynamically manipulating electromagnetic waves are an emerging field in memories,
optical modulators, and thermal management. Recently, their multispectral design preliminarily attracts much
attention, aiming to enhance their efficiency and integration of functionalities. However, the multispectral
manipulation based on these materials is challenging due to their ubiquitous wavelength dependence restricting their
capacity to narrow wavelengths. In this article, we cascade multiple tunable optical cavities with selective-transparent
layers, enabling a universal approach to overcoming wavelength dependence and establishing a multispectral
platform with highly integrated functions. Based on it, we demonstrate the multispectral (ranging from 400 nm to
3 cm), fast response speed (0.9 s), and reversible manipulation based on a typical phase change material, vanadium
dioxide. Our platform involves tandem VO2-based Fabry–Pérot (F-P) cavities enabling the customization of optical
responses at target bands independently. It can achieve broadband color-changing capacity in the visible region (a
shift of ~60 nm in resonant wavelength) and is capable of freely switching between three typical optical models
(transmittance, reflectance, and absorptance) in the infrared to microwave regions with drastic amplitude tunability
exceeding 0.7. This work represents a state-of-art advance in multispectral optics and material science, providing a
critical approach for expanding the multispectral manipulation ability of optical systems.

Introduction
The demand for advanced applications in fields such as

memories, information communication, imaging, and
medical health has spurred the development of optical
systems operating across broadband wavelengths ranging
from the visible (VIS), infrared (IR) to terahertz (THz) and
microwave (MW) regions1–3. For example, the develop-
ment of materials with high IR emittance and solar
reflectance can motivate terrestrial surfaces to cool
themselves passively by harvesting the coldness of the
universe4–6. However, optical systems with fixed spectra

may generate undesired outcomes in non-standard con-
ditions, such as overcooling7,8 and invalid conceal-
ment9–13, significantly limiting their practical
applications.
Optical systems produced by phase change materials

(PCMs)14–17 and electrochromic materials (ECMs)18–20

can overcome these challenges by dynamically changing
optical responses under external stimulations. Over-
cooling can be prevented by automatically reducing the
IR emittance when the temperature drops7. However,
the strong and ubiquitous wavelength dependence
observed in PCMs and ECMs restricts their unique
optical properties to certain wavelengths21. Moreover,
structures such as metasurfaces and optical cavities,
which are deliberately designed to improve the effi-
ciency of these materials, tend to exacerbate this lim-
itation (Supplementary Fig. S1). As a result, optical
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systems that exhibit reversible tunability face severe
challenges in achieving multispectral manipulation
(Supplementary Table S1).
A significant breakthrough occurred when Kocabas

et al.21 developed a multilayer graphene (MLG) based
electrochemical optical platform capable of dynamically
modulating reflectivity across a broad range of the swath
from the VIS to MW regions. The MLG, which possesses
high electrical conductivity (<50Ω·sq−1), was laminated
and vacuum sealed in a low-density polyethylene pouch.
With optical transparency exceeding 90%, it can replace
the top electrode and allows for broadband optical
activity, opening up a new avenue for the development of
ECMs-based optical systems. However, the ionic migra-
tion occurring inside ECMs inevitably leads to a relatively
long response time in the range of dozens of seconds and
additional energy consumption. The permanent tunable
path from high absorption to high reflectance precludes
possibilities of transmittance regulation. Despite the fair
optical tunability of PCMs under external stimulations,
their multispectral operations remain unreported due to
the unbroken wavelength dependence (Supplementary
Table S1).

In this article, we propose a universal method to
breaking up the wavelength dependence of a typical PCM-
vanadium dioxide (VO2), and demonstrate its multi-
spectral manipulation with reversible tunability covering
wavelengths ranging from the VIS to MW regions. The
VO2-based system is capable of constructing a broadband
color-changing space in the VIS region, and to the best of
our knowledge, could switch freely between three typical
optical models (transmittance, reflectance, and absorp-
tance) in the IR to MW regions for the first time. More-
over, the ultrafast phase transition of VO2 enables faster
response time of 0.9 s compared to ECMs-based systems.
The unparalleled performance is unachievable for any
reported optical system and represents a significant
breakthrough in multispectral optics.

Results
Operating principle and ideal spectrum
Figure 1a demonstrates the proposed tandem

Fabry–Pérot (F-P) cavity structure and its fundamental
operating principle. At the critical temperature of 340 K,
VO2 undergoes an ultrafast transformation from mono-
clinic VO2(M) to rutile VO2(R), accompanied by an
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Fig. 1 Schematic of proposed system with its operating principle. a Designed structures with VO2, HfO2, Si multilayers for reversible
manipulation in the VIS, IR, THz and MW regions. From top to bottom, the thickness range for these layers are VO2 (500 nm)/HfO2 (depends on the
requirement)/Si (150 nm)/VO2 (0–60 nm)/HfO2 (0–100 nm)/VO2 (0–20 nm); b Transformation of crystal and band structures during the phase
transition of VO2; c The ideal spectrum of the proposed optical system ranging from VIS to MW regions, is drawn based on the measured spectra. The
solid lines represent the spectra for VO2(M), and the dashed lines represent the spectra for VO2(R); It should be mentioned that the metallic VO2(R)
induces the perfect absorption in IR, and the absorption wavelength can be dynamically modulated by structural parameters; d The comparison of
covering bands, response time and energy consumption of different references. The spectral span is the ratio of the maximum and minimum
wavelength of the dynamic control region18,21,28–36
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energy band change that leads to the transition from
insulating to metallic behaviors (Fig. 1b). The phase
transition leads to high contrast in its optical behaviors
from VIS to MW regions, thereby endowing VO2 with the
potential for multispectral manipulation22–27. In the VIS
region, the top VO2/HfO2/VO2/Si F-P cavity (TFP)
enables the device to change reflective colors by adjusting
resonant wavelengths during the phase transition. We
choose Si, rather than the widely used Al, Ag or Au layers,
as the bottom reflector in TFP to block VIS waves,
because the transparency of Si in the IR to MW regions
ensures the optical accessibility of the bottom cavity.
Interestingly, TFP can be viewed as VO2/Si bi-layer due to
the disappeared wavelength-dependent F-P effect when
facing IR to MW waves, and determine the state of F-P
resonance in the bottom F-P cavity (BFP) by the phase
transition of VO2. Therefore, BFP can be regarded as a
VO2/dielectric layer/VO2 tri-layer typical F-P structure,
and is able to create a moveable F-P resonance peak in IR
when VO2 is metallic. The bottom VO2 in BFP can block
IR to MW waves due to the excellent conductivity of
metallic VO2(R) while being transparent for insulating
VO2(M). This is the key strategy to achieve comprehen-
sive optical manipulation involving transmittance and
meanwhile provide adequate reflectance in IR simulta-
neously. Figure 1c demonstrates the ideal multispectral
manipulation in the proposed system based on the mea-
sured data: (i) broadband color-changing ability in VIS;
(ii) drastic transmittance tunability from zero to near
unity in the IR, THz and MW regions; (iii) A dynamic
absorptance region whose peak position is also adjustable
in IR and longer wavelengths; (iv) ultrafast switching
speed. The experimental results demonstrate that our
system is the only one reported so far, achieving multi-
spectral and dynamic manipulation with ultrafast
response speed based on PCM (Fig. 1d)18,21,28–36.

Limitations of existing VO2-based systems in multispectral
operations
The ubiquitous wavelength dependence of PCMs and

ECMs confines their functionality to specific wave-
lengths21, whose modulation efficiency deteriorates ser-
iously at other bands. We explore the wavelength
dependence of VO2-based optical systems by the simu-
lated thickness-dependent VIS-MIR reflectance tunability
spectra of representative VO2-based platforms (VO2/SiO2,
VO2/Al, and VO2/HfO2/Al). As shown in Fig. 2, it is
apparent that there exists a certain region possessing the
best modulation efficiency for fixed thickness. These
regions shift to a longer wavelength with the increasing
VO2 thickness and exhibit the typical sub-wavelength
feature as a joint effect of the thickness-dependent
interference effect37 and the intrinsic absorptance of
VO2. Besides the strong wavelength dependence, the poor

color-changing ability of VO2 in VIS and the shielding
effect of common substrates (Al, Au, SiO2, et al.) in the IR
to MW regions further limit the potential of VO2 for
multispectral manipulation. Therefore, there are several
issues in achieving the multispectral manipulation based
on VO2: (i) improve the color-changing ability; (ii) over-
come the wavelength dependence and (iii) break the
shielding effect of substrates.

Structural design for TFP operating in the VIS region
The slight permittivity discrepancy in the VIS region

during the phase transition induces an inconspicuous
color change of VO2

38. (Supplementary Fig. S2a, b)
Herein, as shown in Fig. 3a, we construct a TFP structure
consisting of VO2/HfO2/VO2/Si layers to amplify the
permittivity change of VO2 in the VIS region, and realize a
reversible tuning of the reflective color. The top VO2 film
acts as the semi-transparent layer and the bottom VO2

acts as a part of the dielectric layer. A 150-nm-thick Si
layer is chosen as the substrate to block the propagation
of VIS waves, while maintaining high transparency when
facing IR to MW waves. (Fig. 3a and Supplementary Fig.
S2c) The interactive disturbance in optical designs for
TFP and BFP is simultaneously eliminated. Considering
the coherent accumulation of the partial waves reflected
from the F–P cavity39,40, the F-P resonant wavelength λ in
TFP can be calculated as:

λ ¼ 4πnDdD cos θ=ð2kπ � φ21 � φ23Þ ð1Þ
where nD is the effective refractive index of dielectric
layers consisting of HfO2 and VO2, dD is the thickness of
dielectric layers, θ is the incident angle, φ21 and φ23

represent the phase shift of the reflection coefficients at
the top VO2/HfO2 interface and the VO2/Si interface.
According to Eq. 1, nD is the primary factor contributing
to tuning λ and changing surface colors during the phase
transition. Meanwhile, different combinations of dD, φ21

and φ23 enable the construction of a broadband color-
changing gamut theoretically.

We then investigate the color-changing capacity of TFP
by simulating the temperature-dependent reflectance
spectra. For preset structural parameters (10 nm VO2/
25 nm HfO2/40 nm VO2/150 nm Si), the amplified
decrease in nD during the phase transition prompts the
blue shift of the reflectance valley from 610 nm to 575 nm,
with an encouraging color change observed from cyan to
purple (Supplementary Fig. S2d and Fig. 3b). We further
explore the potential of enriching the color-changing
space by modifying structural parameters. Our calcula-
tions, presented in the CIE 1931 color space, demonstrate
that it is achievable to gain diverse color-changing paths
by varying the thickness of VO2 layers (Fig. 3c–f). TFP
with a top-layer VO2 thinner than 20 nm exhibits superior
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dynamic color-changing capabilities across the phase
transition. The ultra-thin thickness of each layer in TFP
also ensures that it is optically accessible to BFP devices in
the IR to MW regions. This section theoretically proves
the capacity of TFP to generate broadband colors and
determines an approximate thickness range for TFP41.

Structural design for BFP operating in the IR to MW
regions
Manipulating IR waves usually changes objects’

radiative properties, and further affects their heat
exchange process. Thereby, the comprehensive capacity
to switch between the three states of transmission,
reflection, and absorption is crucial for a thermal reg-
ulator42. Constructing F-P cavities is the most common
and efficient method to enhance the capacity of dynamic
manipulating absorptance for VO2 in the IR to MW
regions. However, as mentioned before, the strong
wavelength dependence confines the spectral width, and
the dynamic manipulation of transmittance is not sup-
ported as well.

Herein, we propose a “two birds with one stone”
method that replaces the metal reflector with a VO2 layer,
whose reflection to IR, THz and MW waves is activated in
its metallic state, and therefore achieves the broadband
manipulation of transmittance while maintaining the
resonant absorption in an F-P cavity (Fig. 4a). Simulated
spectra in Supplementary Fig. S3 find that the minimum
thickness for a VO2 layer to provide adequate reflectance
in the IR region is around 300 nm. In this article, we
choose a 500 nm thickness VO2 layer as the reflector for
simulations and experiments.
Then we investigate the effect of structural parameters

in TFP on the performance of BFP. As shown in Supple-
mentary Fig. S4, the small deviations in spectra between
the two structures reveal that it is acceptable to regard the
VO2/HfO2/VO2 tri-layers in TFP as a monolayer VO2

layer whose thickness is the sum of the thickness of two
VO2 layers. Supplementary Fig. S5 indicates that arbitrary
thickness combinations of the two VO2 layers in TFP have
no impact on the IR performance when maintaining the
sum of their thickness to be a constant, but meanwhile, the
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Fig. 2 Demonstration of the wavelength dependence of common VO2-based optical systems. Simulated VIS-IR (250–25,000 nm) reflectance
tunability of (a) VO2/SiO2; (b) VO2/Al; (c) VO2/HfO2/VO2 with varying VO2 thickness and (d) VO2/HfO2/VO2 with varying HfO2 thickness. We fix the HfO2

thickness to 200 nm in (c) and fix the VO2 thickness to 50 nm in (d)
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system could exhibit diverse surface color appearances. It
represents the achievable independent spectral manipula-
tion in divided wavelengths. Meanwhile, we discover the
effect of HfO2 thickness (varies from 0 to 2000 nm) on the
IR performance of BFP and the comprehensive modula-
tion paths covering the transmittance, reflectance and
absorptance (Supplementary Fig. S6 and Fig. 4b, c). When
VO2 is insulating, the system exhibits a maximum trans-
mittance exceeding 0.7 because of the negligible optical
loss in each layer. The reflectance at regions shorter than 5
μm increases slightly as a result of the refractive mismatch
in interfaces within TFP, which indicates the sub-wave-
length, or wavelength-dependence effect of optical sys-
tems. After the phase transition, the completely forbidden
transmission in the IR region leads to a drastic transmit-
tance tunability of 0.7. The F-P resonance generates a
strong absorption peak whose position is adjustable by
varying the thickness of HfO2 in BFP. In the non-resonant
regions, the VO2(R) reflector enhances the reflectance
significantly with maximum tunability exceeding 0.7. For
potential applications requiring not only tunable ampli-
tude but a moveable absorptance peak wavelength, it is
also feasible by replacing the HfO2 layer with dielectric
materials with changeable refractive index, such as liquid
crystals43, GST alloys44.

In the THz and MW regions, the dielectric constants of
VO2 can be described using the Drude model45,46:

ε ωð Þ ¼ ε1 � ω2
p σð Þ

ω2 þ iγω
ð2Þ

ω2
p σð Þ ¼ σ

σ0
ω2
p σ0ð Þ ð3Þ

where ε∞= 12 is dielectric permittivity at the infinite
frequency, ωpðσÞ is the plasma frequency of VO2 that
dependent on conductivity,γ = 5.75 ×1013 rad· s−1 is the
collision frequency, σ0 = 3 ×105S· m−1,ωpðσ0Þ=
1.5 ×1015 rad· s−1, σ is the conductivity of VO2 (Fig. 4d
and Supplementary Fig. S7). As shown in Fig. 4e, when VO2

is insulating, BFP exhibits a completely transmissive state due
to the lossless layers and the disappearance of interlayer
interaction due to the wavelength dependence. After the
phase transition, the transmittance drastically becomes 0,
where the reflectance reaches 0.8 simultaneously. The
performance may contribute to the combined applications
of communications, computations and electromagnetic
shielding47,48. In addition, systems deposited on substrates
with different optical properties can bestow more manipula-
tion paths in the IR to MW regions. Supplementary Fig. S8
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demonstrates the simulated IR to MW spectra of systems
deposited on totally absorptive/reflective substrates (Fig. 4e
can be regarded as the spectrum of the system deposited on a
transparent substrate). The radically different features in
these spectra will activate and support much more insights
into expansive multispectral applications.

Experimental demonstration and characterization
To further validate the promise of multispectral

dynamic manipulation, we develop proof of concept
(PoC) samples. (see Methods for details) A 300 μm
thickness Si wafer with high transparency in the IR, THz
and MW regions is chosen as the substrate to discover the
consistency between experiments and simulations. The
membrane thicknesses in TFP, from top to bottom, are
15, 35, 20, and 150 nm. The samples are labeled Sample-1,
Sample-2, and Sample-3, based on the different thick-
nesses (0, 600, and 1200 nm) of the HfO2 layer in BFP.
The thickness of the bottom VO2 in BFP maintains
500 nm. (Fig. 5a and Supplementary Fig. S9) Measured
physical properties of the deposited VO2 films are pre-
sented in Supplementary Fig. S10.
In the VIS region, an apparent reflective color change

from purple to pink is observed in Fig. 5a and Supple-
mentary Movie 1 when heating the samples to 100 °C. The
color change path meets well with the simulation in Fig. 2e,

f. The blue shift of the F-P resonance in TFP during the
phase transition is also detected in the measured
temperature-dependent reflectance spectra, though errors
of optical constants induce some mismatch in the intensity
compared to the simulated spectra (Supplementary
Fig. S11). Therefore, it is achievable to generate arbitrary
colors by simply altering the layer thickness in TFP, which
expands the potential of VO2-based optical systems in the
fields of color display and adaptive camouflage. Meanwhile,
the response time can be ascertained by measuring the time
interval between the sample’s contact with the heater and
its full discoloration, which occurs in approximately 0.9 s
(Supplementary Fig. S12).
In the IR region, a measured maximum transmittance

difference of 0.6 across the phase transition of VO2 in
Supplementary Fig. S13a indicates the success in intro-
ducing the reversible tunability of transmittance into a
multispectral optical system. The system exhibits an anti-
reflection effect on the Si substrate so that the transmit-
tance at around 7 μm is even higher than that of the
substrate. The decreased transmittance in longer wave-
lengths due to the increased absorption of thicker HfO2

can be addressed by replacing the HfO2 dielectric layer
with an IR lossless material. A large reflectance tunability
of around 0.5 is also presented in Supplementary
Fig. S13b. We further investigate the adjustable
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absorption performance of the samples. Figure 5b shows
near-perfect absorption peaks generated by the F-P
resonance in BFP when VO2 is metallic in all samples,
which indicates a high absorptance tunability reaching 0.7
at resonant wavelengths, and the position can be easily
adjusted within a wide range (3-11 μm) even extended to
the THz and MW regions49,50 (Supplementary Fig. S13c).
In addition, we further verify the effect of substrates on
the dynamic manipulation path in the IR region. We put
three samples on substrates with high emittance (SiO2

wafer) and high reflectance (Al wafer), then record the
temperature-dependent IR images and videos (Fig. 5c and
Supplementary Movies 2-3). The high transparency
makes samples’ IR performance depend on the substrate
at low temperatures, while eventually coming to a
substrate-independent high absorptance state after the
VO2 phase transition. Therefore, it is achievable to con-
struct two distinctly opposite temperature-dependent
absorptance tunability paths in the IR region, which can
be adapted to requirements of different IR applications
(Fig. 5d).
In the THz and MW regions, a sharp change of con-

ductivity with more than three orders of magnitude is
observed for a 500 nm VO2 layer deposited on a Si

substrate (Fig. 4d). Measured temperature-dependent
transmittance spectra in the THz and MW regions exhi-
bit drastic transmittance tunability exceeding 0.7 for all
samples (Fig. 5e). The wavelength dependence keeps THz
and MW spectra unchangeable with varying HfO2 thick-
nesses. The absorptance of the Si substrate triggers a
slight degeneracy in transmittance when VO2 is insulating
compared to simulations.
Finally, response time, as another critical performance of

multispectral manipulation, is also crucial21. The ultrafast
phase transition of VO2 under the picosecond scale endows
this system with an incomparable response time and has
been widely confirmed51. Therefore, our work reports an
unparalleled performance in multispectral manipulation
(Fig. 1d and Supplementary Table S1).

Discussion
In summary, we propose a universal method for over-

coming the wavelength dependence of tunable optical
materials, and have demonstrated the exceptional poten-
tial of modified tandem VO2-based F-P cavities for mul-
tispectral and reversible manipulation spanning from the
VIS to MW regions. The multispectral platform achieves
unprecedented performance, including broadband color-
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changing capability in the VIS region and free switching
ability among three optical states of transmittance,
reflectance, and absorptance in the IR to MW regions.
Moreover, the ultrafast phase transition of VO2 enables a
short response time of less than 0.9 s. Our work repre-
sents the state-of-the-art level in interdisciplinary
research that interfaces multispectral optics and material
science. We believe it will open up a wide range of pos-
sibilities for advanced applications in memories, thermal
management, imaging, and communications.

Methods
Simulation method
Electromagnetic wave calculations are performed using

FDTD Solutions, a commercially available FDTD simu-
lation software from Lumerical Solutions, Canada. All of
the simulations reported in this paper are performed in
three-dimensional layouts. We use the periodic boundary
conditions along the x and y axes, and use perfectly
matched layers along the z axis. Mesh accuracy is set to 8,
and the minimum mesh step is 0.00025 μm. The mini-
mum auto shutoff is 10−5. A plane wave is chosen as the
source which injects along the z axis. The transmittance
and reflectance are monitored by power monitors. Optical
constants of used materials at different regions can be
found in the reference52. The physical optical models for
VO2 at metallic and insulating states can be described as
Eq. (4)53

ε ωð Þ ¼ ε1 þ εs � εð Þ � ωt
2

ωt
2 � ω2 þ iΓ0 � ω

þ
Xn

j¼1

f j�ω0j
2

ω0j
2 � ω2 þ iγi � ω

þ ωp
2

�ωþ iΓd � ω
ð4Þ

VO2 layer deposition
VO2 layers were deposited by a high-power pulsed

magnetron sputtering system (MS650C) purchased from
KeYou, China. During the deposition process, the Ar/O2

ratio was fixed at 81:1.9 sccm, and the sputtering power
was set to 180W. The chamber pressure, substrate tem-
perature, input pulse frequency and width were fixed at
0.9 Pa, 550 °C, 200 Hz and 50 μs, respectively.

HfO2 layer deposition
HfO2 layers were deposited by a direct current magne-

tron sputtering system (MS650C) purchased from KeYou,
China. During the deposition process, the Ar/O2 ratios
were fixed at 81:6.8 sccm, and the sputtering powers were
set to 220W. The chamber pressure and the substrate
temperature were fixed at 0.9 Pa, 400 °C, respectively.

Si layer deposition
The Si layer was deposited by a radio frequency mag-

netron sputtering system (MS650C) purchased from
KeYou, China. During the deposition process, the Ar/O2

ratios were fixed at 81:0 sccm, and the sputtering powers
were set to 100W. The chamber pressure and the sub-
strate temperature were fixed at 0.9 Pa, 100 °C,
respectively.

Measurements
The crystalline phases were characterized using X-ray

diffraction (XRD, PANalytical B.V. Model Xpert Pro). The
Raman spectrum was recorded by an inVia Laser Micro
Raman spectrometer (Renishaw, UK) equipped with a
confocal microscope and a 532 nm excitation laser source.
The cross-sectional images were evaluated by a field
emission transmission electron microscope (JEOL JEM-
F200). TEM samples were prepared by a focused ion beam
(FIB) instrument (Hitachi NX5000). Fourier transform
infrared (FT-IR) spectroscopy was performed using an
FT-IR system (VERTEX-70, Bruker) from 2.5 to 25 μm.
X-ray photoelectron spectroscopy (XPS) was performed
with a PHI 5700 ESCA System using Al Ka radiation
(1486.6 eV). XPS data were calibrated to the C1s peak and
analyzed using Casa XPS software. The IR images were
recorded by thermal imager (TIX-660, FLUKE) from 7.5
to 14 μm. The conductivity was measured by Hall Effect
Measurement System (Ecopia HMS-3000).
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