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Abstract
Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in
many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape
precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental,
and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and
sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel
Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral
fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second
without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal
fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm (L1) compared to
established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400%
accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in
paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images,
especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different
spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening
with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a
scenario of high throughput, cross-device, various analyte complexity, and diverse applications.

Introduction
Raman spectroscopy is an interdisciplinary analysis

technique based on spectra detection, chemometrics, and
informatics1. It provides volumetric chemical-specific

information in a non-destructive and label-free manner,
is valuable in characterizing biological and material
samples, and has become an emerging omics technology
for clinical research and applications2–7. It also showed
tremendous value in label-free rapid intraoperative diag-
nosis8–11. However, its analysis is inevitably hampered by
noise and slowly fluctuating background signals12,13.
Noise signals typically come from cosmic rays, ambient
light, and the dark current from devices. The slowly
fluctuating background signals caused by residual Ray-
leigh scattering and fluorescence signals are also called
baseline signals12. This interference affects the intensity of
Raman peaks and distorts their shapes14. Spectral
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preprocessing, including denoising and baseline correc-
tions, is the first step and one of the predominant chal-
lenges for complex analyte analysis, cross-device, and high
throughput applications.
In essence, the spectral noise refers to higher frequency

information than ideal Raman peaks, and the baseline
signals refer to the trend line with lower frequency
information, which usually conceals the actual Raman
signal (Fig. S2). Over the decades, mathematical methods,
including iterative fitting and frequency domain-based
methods, have been used in Raman spectral denoising and
baseline corrections. In brief, the iterative fitting includes
Polynomial fitting15, Iterative morphological operations16,
and Penalized least squares17. The commonly applied
Polynomial fitting method functions by iterative fluctu-
ating signal elimination. Iterative morphological opera-
tions and Penalized least squares work by iterative
baseline fitting based on spectral trends. However, these
methods require a manual selection of iteration cycles to
adjust their fitting ability. The representative frequency
domain-based methods are the Fourier transform18 and
Wavelet transform19. The Fourier transform converts
spectra into frequency-domain signals to isolate noise and
baselines from Raman peaks. However, due to the lack of
periodic changes in the entire spectra, this method cannot
decompose the frequency of each wavenumber signal in
all Raman shifts. It has a limited effect in full-length
spectral preprocessing compared to Wavelet transform.
The alternative method, Wavelet transform, uses a fre-
quency series decomposition scheme to achieve higher
analytical resolution with a locally adaptive transforma-
tion strategy. Although Wavelet transform has a better
preprocessing effect, this method still requires manual
selection of the series number for different spectral par-
titions. In summary, math-based preprocessing methods
are unsuitable for high throughput and cross-device
applications but are valuable in developing new methods.
Deep learning-based spectral preprocessing schemes

offer an appealing approach to auto-extract spectral fea-
tures and distinguish Raman peaks from noises and base-
lines in a data-driven manner20. Within these approaches,
neural networks were established to learn the nonlinear
mappings from the given input (raw spectra) and label
(ideal spectra) pairs, then generate internal criteria for
spectral preprocessing. It solves the complex inverse pro-
blem of noise and baseline signal deprivation. Recently,
Kung21 and Liu22 et al. used Lorentzian peaks and analog
noise, like Gaussian white noise, to generate simulative
spectral pairs for ResNet model training, showing a better
spectral preprocessing result than mathematical methods.
Additionally, Chen23 et al. combined the UNet structure
with a ResNet network to improve the abstraction ability of
high-level features during Downsampling. This modifica-
tion improves the spectral preprocessing fidelity.

Although deep learning-based methods showed higher
efficiency than conventional mathematical methods, they
were not widely adopted. Unsatisfied spectral fidelity and
preprocessing capacity in cross-device, cross-sample, and
cross-spectral type applications are the barriers to uni-
versal adoption. The performance of supervision-based
neural networks relies on the quality and quantity of
training data13,20,24,25. However, ideal spectra without
noises and baselines cannot be experimentally obtained.
The recently reported training data are mathematical
simulative spectra. Their Raman peaks, noises, and base-
lines are derived from Lorentzian peaks, Gaussian white
noises, and multipoint fitting functions. Unfortunately,
real Raman spectra have more features derived from
diverse instruments and samples that are hard to mimic
by mathematical methods26 (Fig. S2), which leads to
unsatisfied spectral fidelity. Therefore, researchers
obtained abundant experimental training spectra and
averaged thousands of repeatedly collected spectra as
ideal spectra (ground truth) in coherent Raman hyper-
spectral imaging to achieve higher spectral fidelity20.
However, a new training dataset is required when trans-
ferring to another application with a different sample type
or device. As far as we know, this method has yet to be
reported in spontaneous Raman spectroscopy due to the
unaffordable time consumption and the lack of baseline
correction capacity (Fig. S1). To solve this problem, we
propose to generate a high-diversified training dataset for
cross-applications from actual and wide-source Raman
spectra as part of our self-supervised learning pre-
processing scheme. Since Raman spectra follow the
spectral-physical composition relationships, we will
design a chimera network combining physical equations
and neuron networks to intelligently learn the features
from actual spectra under the guidance or restriction of
physical laws of Raman spectra. Moreover, the potential of
generative adversarial neural networks (GAN) theory in
data generation inspired us in the spectral diversity
amplification26–30. The proposed auxiliary task, Raman
spectral generation adversarial network (RSGAN), aims to
transform finite real spectra into amplified high-diversity
and high-fidelity spectra with paired ideal spectra as
labels.
Except for the quality and diversity of the primary

training dataset generation, a model with remarkably
improved feature learning ability is also critical for the
spectral preprocessing capacity. Here, we proposed a novel
Raman spectral preprocessing model, Raman spectral
Background-Estimation-Patches convolutional neural net-
work (RSBPCNN), with a dedicated structure according to
the inherent characteristics of Raman spectra. Its first
pipeline uses a patches strategy to avoid intensity inter-
ference from the baselines before Raman peak feature
abstraction. The second pipeline preliminarily recognizes
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noises and baselines as part of the self-supervision strategy.
These two pipelines merge into a well-designed Down-
sampling-Upsampling submodule for multi-scale feature
extraction and reconstruction. After training with the
RSGAN-generated data, the parameters will self-optimize
with a double-loss function system. This scheme enables
parameter self-optimization without human intervention.
It can function independently in arbitrary cross-device
spectral denoising and baseline corrections without further
data training. Except for the experimental data trial, we will
validate its capacity in various applications using different
spectral types, devices, excitation wavelengths, and sample
types in multiple laboratories.

Results
Research pipeline
The proposed RSPSSL scheme consists of original

training datasets with actual Raman spectra from various
analytes and devices with or without Raman enhance-
ment, an auxiliary task model RSGAN for high-fidelity
labeled spectra creation, and a multiscale feature fitting
spectral preprocessing model RSBPCNN (Fig. 1a, b). We
evaluated the scheme performance through an experi-
mental data preprocessing trial and the contributions of
RSPSSL (RSBPCNN#) in various biomedical applications,
including cancer diagnosis (classification), paraquat con-
centration quantification, and hyperspectral image pre-
processing (Fig. 1b). These results will compare with
established typical spectral preprocessing methods, such
as Polynomial fitting, Wavelet transform, Residual CNN*

(Fig. S23), and UNet-1D* (Fig. S24).

Auxiliary task: The RSGAN Model
To create labeled high-quality spectra, we designed the

RSGAN model with a spectra decomposition and recon-
struction strategy to generate ideal spectra as labels and a
personalized GAN submodule to create simulative spectra
with high fidelity and diversity (Fig. 2a). In the beginning,
a total of 1 000 randomly selected Raman spectra from the
RRUFF and self-collected dataset are decomposed into 1
000 sets of noises and baselines and 6 000 Raman peaks,
respectively. During this process, we isolate noise and
baseline signals using Wavelet transform and separate
Raman peaks by a differential method. Later, the labels,
10 000 ideal spectra without noise and baseline, were
randomly assembled as 5–20 Raman peaks per spectrum.
Simultaneously, their corresponding reference spectral
dataset is synthesized by a random combination of ideal
spectra, extracted noises, and baseline signals. By con-
trolling the superposition coefficient of the noise and
baseline signals in synthetic Raman spectra, diverse
signal-to-noise ratios (SNR) and baselines are created
(Fig. S4). This process can synthesize many reference
spectra with corresponding ideal spectra as labels. The

more diverse original spectra used, the better spectral
fidelity to achieve. Finally, the GAN submodule, consist-
ing of a generator and a discriminator, is involved in this
data enhancement process. In detail, the generator uses
ideal spectra and random Gaussian signals as input to
produce primary analog spectra by varying the random
Gaussian signals. The discriminator distinguishes syn-
thetic reference spectra from generator-produced spectra
until they are too similar to identify. After training, the
high-fidelity and diversified property of the output labeled
simulative spectra are endowed by the confrontation of
the generator and discriminator. In this submodule, the
UNet network is modified into UNet-1D to absorb its
excellent detail-feature reconstruction ability (Fig. S3).
Here, we built three UNet-1D blocks instead of a simple
CNN algorithm in the generator block. The discriminator
is a classifier for judgment, so we apply a modified
ResNet-1D block to achieve excellent classification accu-
racy31. The RSGAN model structure, loss function, and
training process are provided in the supplementary
information (Fig. S3).

The spectral preprocessing model: RSBPCNN
The RSBPCNNmodel requires a higher multi-scale feature

abstraction ability to adapt the diversified property of training
spectra. The proposed Raman-Patches and Background-
Estimation with Pre-Encoder blocks are critical designs to
improve the fitting ability and efficiency (Fig. 2b). The self-
constructed Downsampling and Upsampling submodules are
the core of this model for multiple feature extraction. During
the training process, we input RSGAN-generated spectra in
parallel to the Raman-Patches and Background-Estimation
submodules and then output the data to their respective Pre-
Encoder submodules for parameter consistency adjustment.
Their subsequent output data is subtracted and imported
into the Downsampling-Upsampling block for spectral fea-
ture abstraction and reconstruction. Finally, we compare the
output preprocessed spectra with corresponding ideal spectra
(label) and baseline outlines (products of the Background-
Estimation block) for automatic parameter optimization with
a double-loss function system. Until now, the well-trained
RSBPCNN model (RSBPCNN#) can be used directly without
additional training for arbitrary Raman spectra preprocessing
obtained from different devices.
For details of the model design, the Raman-Patches

submodule functions in splitting input spectra into par-
titions by a sliding window method, with window stride
length and step size as variable parameters (Fig. S5). This
submodule uses a small-unit strategy to enhance the
spectral fitting ability. Parameters of window stride length
and step size are tunable during the RSBPCNN model
training. Once accomplished, both parameters become
fixed for all spectral preprocessing. In parallel, the
Background-Estimation submodule preliminarily fits the

Hu et al. Light: Science & Applications           (2024) 13:52 Page 3 of 21



noise and baseline signals of the input spectra by contour
extraction. It uses a U-shape structure with three pairs of
convolution and deconvolution networks, further
improving the baseline correction ability (Fig. 2b, S6).
These two parallel pipelines link to each Pre-encoder
submodule for the output data parameter adjustment
before passing them to the down-strain submodules like
Downsampling and Upsampling submodules. The Pre-
encoder submodule also consists of three convolutional
layers to keep consistency.
The high-level feature extraction and reconstruction

mainly depend on the Downsampling and Upsampling
submodules. Since the reported ResNet model contains only
one Downsampling module that may cause information
loss23,32, we construct a U-shaped Down-Upsampling sub-
module with an Inception network to avoid this problem.
This structure has parallel connections between the

previous and sequential layers (Fig. S6). Each layer learns
the sparse features with larger kernels and the non-sparse
features from smaller kernels. The design with multiple
kernel sizes enhances the multi-scale feature learning
ability of the Inception network. The Downsampling
submodule includes Stem, Inception_A, Inception_B,
Inception_C, Reduction_A, and Reduction_B subnet-
works (Fig. S6). Spectra in these neural networks are all
matrix operations. The corresponding subnetwork
modulates the channel and feature dimensions of each
spectrum. The Stem subnetwork creates features and
channels by 1/4 and 4 times the input. The Inception_A,
Inception_B, and Inception_C subnetworks maintain the
dimensionality of input data. The Reduction_A and
Reduction_B halve the features and double the channels.
This Downsampling submodule extracts wrought multi-
scale spectral features through the above subnetworks to

Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL)
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provide information for the subsequent Upsampling
submodule33. The Downsampling submodule utilizes
Inception, rather than a simple stack of convolutional
layers, to increase the feature extraction granularity and
hierarchy.
The Upsampling submodule is devoted to recon-

structing the preprocessed spectra with features
obtained by the Downsampling submodule, which are
output data of the RSBPCNN model. These restored
spectra removed noise, and baseline signals will
benchmark to the ideal spectra (label) and the contour
of the background signal extracted by the Background-
Estimation submodule during model training to opti-
mize the fitting parameters. In the Upsampling sub-
module, we use one-dimensional transposed
convolutional layers (ConvTranspose1d) and one-
dimensional convolutional layers (Conv1d) to main-
tain the dimensional consistency with the Down-
sampling submodule (Fig. S6). In summary, the
strategy of this U-shaped Down-Upsampling sub-
module is to enhance crucial features like Raman peaks

and weaken invalid signals such as noise and baseline
signals of the preprocessed spectra.
The training process of the RSBPCNN model is divided

into two steps with two loss functions, which are defined
as,

LBEðx; yÞ ¼ 1
n

X
i
zBE�i ð1Þ

LðyÞ ¼ λ
1
n

X
i
zi þ ð1� λÞLBEðx; yÞ ð2Þ

zBE�i ¼
0:5½BðxiÞ � yi þ xi�2; if xi � yi

�� ��< 1

BðxiÞ � xi � yi
�� ��� 0:5; otherwise

(
ð3Þ

zi ¼
0:5½PðxiÞ � yi�2; if xi � yi

�� ��< 1

PðxiÞ � yi
�� ��� 0:5; otherwise

(
ð4Þ

LBEðx; yÞ is the loss function for Background Estimation
submodule training, and the LðyÞ function is applied to

Part I: The RSGAN model: Raman spectral generation adversarial network

Part II: The RSBPCNN model:Raman spectral background-estimation-patches convolutional neural network
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train the entire model. xi and yi refer to the RSGAN-
generated high-fidelity simulative and corresponding ideal
spectra, respectively. BðxiÞ and PðxiÞ correspond to the
output of the Background Estimation submodule and the
RSBPCNN model, respectively. Since the RSGAN-
generated high-fidelity simulative spectra have severe
baseline shifts and fluctuations compared to synthesized
ideal spectra, the loss function here is designed based on
the Huber loss function. It converges faster than the mean
absolute error (MAE) index and is not as sensitive as root
mean square error (RMSE) to outliers during training.
The training sequence goes firstly to the Background
Estimation submodule and then the entire RSBPCNN
model to maximize the preprocessing effect. A weight
coefficient λ is employed to balance the feedback of these
two pipelines. When the value of λ increases, the
Background-Estimation submodule weighs less in the
training procedure, and vice versa. The preprocessing
effect of the RSBPCNN# model is optimal when λ ¼ 0:2.

Experimental data preprocessing trial: Capacity and
fidelity of the RSPSSL scheme
We evaluate the performance of the RSPSSL scheme

and compare it to the established spectral preprocessing
techniques, including Polynomial fitting and Wavelet
transform as typical mathematical methods, Residual
CNN (ResNet) and UNet-1D (ResNet + UNet) as repre-
sentatives of deep learning methods. The details for the
above models, including RSBPCNN, can be found in the
supplementary information (Fig. S23, 24). Additionally,
since the training data quality is a critical impact factor for
deep learning performance, we will investigate the influ-
ence of training datasets, such as mathematical simulative
spectra (marked as *) and RSGAN-generated data
(marked as #) in Residual CNN, UNet-1D, and RSBPCNN.
Moreover, the accuracy metrics will include RMSE and
the infinite norm (L1) in this trial. RMSE is a measure-
ment of the numerical difference that represents a per-
ception estimation of the spectral similarity to the
corresponding ideal spectra, which indicates the denoising

and baseline correction effect. Meanwhile, L1 is a target
metric that focuses on the intensity between Raman
peaks, suggesting spectral intensity fidelity. These indi-
cators all negatively correlate to the spectral preproces-
sing capacity.
The independent validation dataset contains 100 or 3

000 randomly selected RSGAN-generated simulative
spectra with labels of corresponding ideal spectra as
ground truth (Fig. 3a–f, S10). Since mathematical pre-
processing methods require manual parameter adjust-
ment for each spectrum, we use 100 randomly selected
spectra as validation data (Fig. 3a, b, d, e). Deep learning
preprocessing methods further validated with 3 000
spectra (Figs. 3c, f, S10) show a similar pattern as the trial
with 100 spectra. In the scattering diagrams, spots with
different colors show the preprocessing effect of various
methods. Their positions relate to the values of RMSE or
L1 before (X-axis) and after (Y-axis) spectral preproces-
sing (Figs. 3a–c, d–f). We summarized these results as
mean ± standard deviations (SD) in histograms (Fig. 3b, e,
S10, Table S2).
The trial result shows that Polynomial fitting improves

spectral quality in RMSE and L1 compared to raw data
but is still not as good as other methods. Wavelet trans-
form has a better spectral preprocessing effect and spec-
tral fidelity than conventional deep-learning spectral
preprocessing methods, such as Residual CNN* and
UNet-1D*, with significantly lower RMSE and L1 values
(P > 0.001). The U-shape structure of the UNet-1D model
makes it better spectral feature extraction and recon-
struction capabilities than Residual CNN, no matter
whether using mathematical simulation (P > 0.01) or
RSGAN-generated spectra as training dataset (P > 0.001).
The RSBPCNN model demonstrates excellent denoising
and baseline correction capacity when using either
training dataset, indicating superior fitting ability. The
proposed RSPSSL scheme (RSBPCNN#) shows a
remarkable reduction of RMSE and L1 values by 99%,
88%, 91%, 90%, and 97%, 60%, 71%, 62% when compared
to Polynomial fitting (n= 100), Wavelet transform

(see figure on previous page)
Fig. 3 Results of the experimental data preprocessing trial. a–f Summary of the Raman spectral preprocessing effect evaluation matrix of
different methods (a, b, d, e: n= 100 spectra; c, f: n= 3 000 spectra). a, d Scatter diagrams show the RMSE and L1 level of preprocessed spectra
(n= 100), which reflect the denoising and baseline correction effects of different methods. Y-axis: mean ± SD of the RMSE or L1 values of
preprocessed spectra with different spectral preprocessing methods; X-axis: Raw spectra are indicated by their original RMSE or L1 values.
b, e Histograms of a, d with mean ± SD. Statistical significance was calculated using the Wilcoxon signed-rank test for two correlated samples. An
asterisk * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, **** indicates P < 0.0001. c, f Scatter diagrams show the RMSE and L1 level of
preprocessed spectra (n= 3 000) with different deep learning-based preprocessing methods. Histograms of c, f are shown in Fig. S10. g Visualization
of a randomly selected raw spectrum (navy blue, RMSE of 227.89) and its corresponding ideal spectrum (baby blue). The roseate curve subtribes the
raw spectrum and the ideal spectrum, reflecting the spectral fidelity. g–o Visualization of the preprocessed spectra using Polynomial fitting (PF),
Wavelet transform (WT), Residual CNN*, UNet-1D*, RSBPCNN*, Residual CNN#, UNet-1D#, and RSBPCNN#, respectively. A superscript asterisk * indicates
that the training dataset of this model is mathematical simulative spectra. A superscript pound sign # indicates that the training dataset of the model
is RSGAN-generated spectra. Res. CNN: Residual CNN. GT: Ground truth
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(n= 100), Residual CNN* (n= 3 000), and UNet-1D*

(n= 3 000), respectively. Moreover, by using RSGAN-
generated simulative spectra as a training dataset, the
RMSE/L1 values of Residual CNN, UNet-1D, and
RSBPCNN preprocessed spectra reduce 5%/21%, 50%/
30%, and 85%/54%, respectively. We found that the
improvement rises when the model fitting ability increa-
ses. With the advantage of high-quality training data,
UNet-1D# shows a better preprocessing effect than
mathematical simulative spectra trained RSBPCNN* with
a 27%/16% reduction of RMSE/L1. This phenomenon
further confirms the vital role of training dataset quality.
To visualize the performance of the above methods, a

spectrum (original RMSE= 277.89) is randomly selected
and compared for demonstration (Fig. 3g–o). In this
result, we found that Polynomial fitting failed to recover
the Raman peaks distorted by a cataclysmic signal (the
cliffy region of the spectrum, Fig. 3g) produced by a
multi-level grating lens switching. This phenomenon is
complex to mimic by the mathematical fitting, so it fails
to identify this mutation signal and generates a fake peak
in that spectral region (Fig. 3h). Residual CNN*, UNet-
1D*

, and RSBPCNN* also fail to deal with this mutation
signal and generate fake peaks after preprocessing due to
the lack of actual spectra features in mathematical
simulative training spectra (Fig. S2). With RSGAN-
generated training spectra, UNet-1D# and RSBPCNN#

show significantly increased preprocessing effect and
spectra fidelity, but Residual CNN# only shows a mar-
ginal improvement. This difference indicates that the
spectral preprocessing model requires higher feature
abstraction and reconstruction abilities to benefit from
high-fidelity training spectra.
Wavelet transform performs better than other estab-

lished methods with the advantage of automatic adaption
to focus the details of a spectrum, so it has better Raman
peaks recognition ability than Residual CNN*/# and UNet-
1D*. Unfortunately, the compromised denoising ability
impedes its performance in the upcoming application
trials (Fig. 3i). In Fig. 3o, the roseate curve showing dif-
ferences between RSBPCNN# and the ground truth is
smooth and horizontal, indicating outstanding spectral
fidelity of the proposed RSPSSL scheme.

Contribution in complex analyte classification: Cancer
diagnosis trial
Analyte classification is the most demanded Raman

spectroscopy application category, including drug detec-
tion, residual pesticide identification, bacteria classifica-
tion, etc9,11,12,34. Disease diagnosis is one of the worthy
applications reported in the literature. However, it has yet
to be used in clinics due to the difficulties in complex
spectral preprocessing and analysis and the immaturity of
high throughput systems. Since the diagnosis accuracy

reflects spectral fidelity, we will evaluate the contribution
of the RSPSSL scheme in cancer diagnostic accuracy using
preprocessed spectra.
This few-shot classification experiment classifies pre-

processed spectra from 27 cancer serums and 28 healthy
controls using a classification model, ResNet-1D (Fig. S8,
S25). Twelve surface-enhanced Raman scattering (SERS)
spectra for each serum sample were collected. The dataset
proportion is training cases: validation cases = 8:2 with
100 times of cross validation (Fig. 4a). All spectra are
preprocessed by the RSPSSL scheme (RSBPCNN#)
(Fig. 4c) or other established preprocessing techniques
(Fig. S7b–h) before input to the diagnostic model. The
raw spectral group plays a role of control (Fig. 4a). The
diagnosis accuracy matrices are indexes of integration
areas under the receiver operating characteristic (ROC)
curve (AUC), sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV)
(Fig. 4d–f, Table 1). After spectral preprocessing, nearly
all the spectral baselines of cancer serum (orange) and
healthy control serum (blue) are horizontal with reduced
fluctuations but different richness and intensity of Raman
peaks. The green curves showing the average subtraction
result of these two kinds of serum spectra reflect their
differences (Fig. 4b, c, S7). We found that RSBPCNN#

enhances the prominence of diagnostic featured spectral
peaks. The intensity of peaks at 482 cm−1, 739 cm−1,
963 cm−1, 1093 cm−1, 1240 cm−1, and 1446 cm−1 was
elevated in cancer spectra compared to Raw spectra
(Fig. 4g). Since ideal spectra are inaccessible, the fidelity
can only be reflected by diagnostic accuracy. From the
result, we found that Polynomial fitting, Wavelet trans-
form, Residual CNN*, and UNet-1D* only improve the
AUC by 1–2%, indicating unsatisfied spectral preproces-
sing fidelity (Table 1). Wavelet transform performs better
than Polynomial fitting and Residual CNN* but shows no
significant difference with UNet-1D* (Fig. 3, Table S2).
Surprisingly, all the cancer diagnostic accuracy indexes

of RSBPCNN# treated spectra elevate dramatically with
increases of 10% in AUC, 8.6% in sensitivity, 6.2% in
specificity, 7.9% in PPV, and 6.8% in NPV compared to
Raw spectra. It demonstrates great potential in transla-
tional medicine. The few-shot diagnostic accuracy is 0.91
in AUC (95% confidence interval (CI): 0.85–0.94), 85.67%
in sensitivity, 87.53% in specificity, 85.93% in PPV, and
87.29% in NPV (Fig. 4c–e, Table 1, Fig. S11). The diag-
nostic accuracy will increase when the training data size
goes up. The improvement of diagnostic accuracy by the
RSPSSL scheme (RSBPCNN#) is ten times (ΔAUC) of
Polynomial fitting and Residual CNN*, and five times
(ΔAUC) of Wavelet transform and UNet-1D*. The
RSGAN-generated training dataset contributes a 75%
improvement (ΔAUC) of Residual CNN# and a 60%
improvement of UNet-1D# and RSBPCNN# in diagnostic
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accuracy. Although without a high-fidelity training data-
set, RSBPCNN* shows a 400% accuracy improvement
than Polynomial fitting and Residual CNN* and a 200%
improvement than Wavelet transform and UNet-1D*

(Table 1). When the case number of the training dataset
(training sample size) reduces, although the diagnostic
accuracy of the RSBPCNN# group declines, the advance of
this work is more remarkable. The increased AUC of
RSBPCNN# is 8%, 8%, 11%, and 15% compared to the
established preprocessing method UNet-1D* when the
training sample size is 22, 20, 15, and 10 cases, respec-
tively (Fig. 4g, Table S3). These results suggest excellent
spectral preprocessing capacity and the high fidelity of the
RSPSSL scheme in complex biomedical analytes.

Performance in quantification: Paraquat concentration
prediction
Another valuable application of Raman spectroscopy is

concentration measurement, which relies on the slight
changes in the featured Raman peak intensity of the
analyte11,35–38. This kind of application has a higher
demand for spectral fidelity, especially the intensity
fidelity of the Raman peaks. In this trial, we included
SERS spectra of paraquat solution with concentrations of
10−4 M, 10−5 M, 10−6 M, and 10−7 M (Fig. 5b) and 100
spectra for each concentration. Since the compositions of
the paraquat solution are singular, the spectra are simply
with only several Raman peaks. After being preprocessed
with different methods, the spectra with the same
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Fig. 4 Cancer diagnosis trial with spectra preprocessed by different methods. a The trial workflow. b Curves and shadows show the normalized
serum SERS spectra with mean ± SD collected from 27 Cancer (orange) and 28 healthy (blue) cases. The green curve is the subtraction of cancer and
healthy serum spectra. c RSBPCNN# preprocessed spectra of b. d–f Comparison of AUCs indicating cancer diagnosis accuracy of spectra
preprocessed by different methods (training data size: n= 22 cancer and 22 healthy cases). g Cancer diagnostic accuracy of spectra preprocessed by
different spectral preprocessing methods at different training sample sizes (case). Statistical significance was calculated using the Wilcoxon signed-
rank test for two correlated samples. An asterisk * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, **** indicates P < 0.0001
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concentration show identical features (Fig. S12). To fur-
ther evaluate the slight differences among them, we
conducted a concentration prediction trial at a series of
training sample sizes (Fig. 5a, Fig. S13) with proportions
of training and validation groups from 0.5:9.5 to 7:3. The

quantitative model here is a continuous variable regres-
sion model with a basic structure of ResNet-1D (Fig. S9).
Spectra preprocessed by Polynomial fitting show

increases in concentration prediction errors (EQ) com-
pared to the Raw spectra group in most training data
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Fig. 5 Paraquat concentration prediction trial using spectra preprocessed by different methods. a The trial workflow. b Curves and shadows
showing the normalized SERS spectra with mean ± SD obtained from paraquat solution with different concentrations (10−4 M, 10−5 M, 10−6 M, and
10−7M). c Preprocessed spectra of b using RSBPCNN#. d Comparison of average paraquat concentration prediction error EQ of spectra preprocessed
by different methods at different training data proportions (n= 100 spectra for each concentration). Statistical significance was calculated using the
Wilcoxon signed-rank test for two correlated samples between the superior established methods (UNet-1D* for proportions of 0.5:9.5, 1:9, and 2:8;
Residual CNN* for proportions of 4:6, 5:5, and 7:3) and RSBPCNN#. An asterisk * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, ****
indicates P < 0.0001

Table 1 Cancer diagnostic accuracy of spectra preprocessed by different spectral preprocessing methods

Preprocessing

methods

Evaluation indexes

AUC Sensitivity Specificity PPV NPV

Raw spectra 0.81 (0.72–0.88) 77.08% (69.63–84.10%) 81.35% (73.71–87.58%) 78.03% (70.16–83.93%) 80.50% (71.37–84.72%)

Polynomial fitting 0.82 (0.75–0.85) 73.66% (68.17–78.63%) 83.36% (78.92–86.06%) 76.20% (72.18–82.53%) 81.40% (76.38–84.19%)

Wavelet transform 0.83 (0.74–0.85) 76.66% (71.83–80.31%) 85.90% (80.37–87.95%) 78.66% (73.67–81.73%) 84.45% (79.18–87.68%)

Residual CNN* 0.82 (0.74–0.86) 74.37% (67.32–77.53%) 81.60% (77.08–85.49%) 76.10% (73.25–80.14%) 80.17% (67.32–77.53%)

UNet-1D* 0.83 (0.76–0.85) 76.03% (72.98–79.63%) 83.27% (77.64–86.90%) 77.65% (72.09–82.87%) 81.96% (76.51–85.24%)

RSBPCNN* 0.85 (0.79–0.87) 78.30% (74.86–83.93%) 84.77% (81.85–88.32%) 79.57% (75.60–82.76%) 83.70% (79.09–86.88%)

Residual CNN# 0.85 (0.78–0.88) 77.69% (73.83–83.29%) 86.46% (82.49–89.37%) 79.62% (74.95–83.97%) 85.06% (82.97–88.14%)

UNet-1D# 0.86 (0.82–0.90) 79.01% (76.86–84.47%) 84.73% (80.72–87.90%) 80.21% (74.34–84.97%) 83.75% (79.67–86.49%)

RSBPCNN# 0.91 (0.85–0.94) 85.67% (81.86–89.57%) 87.53% (84.65–90.97%) 85.93% (81.27–89.11%) 87.29% (85.31–90.03%)

Data are expressed by mean (95% CI). AUC area under the receiver operating characteristic (ROC) curve. NPV negative predictive value, PPV positive predictive value. *:
models are trained with mathematical simulation datasets. #: models are trained with RSGAN-generated datasets. The highest mean value of each experimental group
is highlighted in bold
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proportions, indicating unacceptable spectral preproces-
sing effect and fidelity. Wavelet transform, Residual
CNN*, and UNet-1D* preprocessed spectra also show
increased prediction errors than the Raw spectra when the
quantification training spectra are n ≥ 40 (for each con-
centration), suggesting unsatisfied spectral fidelity. How-
ever, when n ≤ 20, they show reduced prediction error of
7–24% in Wavelet transform, 21–34% in Residual CNN*,
and 27–42% in UNet-1D*. This impressive result indicates
that spectral fidelity is the predominant impact factor
when the training data size is big enough to compensate
for the disturbances of noises and baselines. When in few-
shot applications, the impact of the denoising effect
becomes critical to extract valuable features from the
interference of noises and baselines, and the denoising
effect is UNet-1D* > Residual CNN* > Wavelet transform
in this trial.
In this singular component detection trail, Residual

CNN* shows a lower prediction error than Wavelet
transform, and UNet-1D* when n ≥ 40 indicates its higher
spectral intensity fidelity in simple spectra preprocessing.
RSGAN-generated spectra trained Residual CNN# shows
a consistent advance than UNet-1D# when n ≥ 40. How-
ever, the balance changed when n ≤ 20, UNet-1D* shows a
better prediction accuracy than Residual CNN* and
Wavelet transform, indicating its better denoising capa-
city in simple spectral preprocessing. consistently, UNet-
1D# also shows advanced prediction accuracy than Resi-
dual CNN# when n ≤ 20. Unlike complex analyte appli-
cations such as cancer diagnosis, deep learning-based
spectral preprocessing methods perform better than
Wavelet transform in simple spectral applications. How-
ever, the unsatisfied spectral fidelity of the established
preprocessing methods still limits their robustness in
analytical applications.
Although RSBPCNN* preprocessed spectra show better

prediction accuracy than the established methods, the
improvement is marginal due to the simplicity of spectra.
In contrast, the contribution of high-fidelity training
spectra is remarkable. After training with RSGAN-
generated data, Residual CNN# and UNet-1D# show sig-
nificantly increased prediction accuracy in all training
proportion groups, with the prediction errors reduction
from 21–34% and 27–42% to 36–48% and 40–53% when
n ≤ 20, and from (−8)–0% and (−10)–(−1)% to 4–7% and
1–6% when n ≥ 40. This result suggests the recovery of
spectral fidelity after high-fidelity spectra training. Nota-
bly, the proposed RSPSSL scheme (RSBPCNN#) demon-
strates a remarkably higher prediction accuracy than
other preprocessing methods with error reduction from
35–44% to 47–63% when n ≤ 20 and from (−3)–5% to
2–10% when n ≥ 40, indicating excellent spectral pre-
processing capacity, fidelity, and robustness in transla-
tional applications of quantification (Fig. 4, Table S4).

Chemical resolution improvement through Raman
hyperspectral image preprocessing
With chemical fingerprint information, label-free

Raman spectral imaging is initiating a revolution in bio-
medical science and clinical applications34,39,40. New
molecular mechanisms can be discovered by inspecting
the spatial distribution of chemical bonds. Different from
classification and quantification, any residual spectral
noise and baseline signals will damage the pixel fidelity
and chemical resolution of Raman hyperspectral images.
The interpretation of Raman hyperspectral imaging
demands a high-fidelity preprocessing technique.
In this trial, we captured nine hyperspectral images

from the Hela cell line and twelve from the COS-7 cell
line with spectral integration times of 0.01 s, 0.05 s, and
0.1 s, demonstrating various spectral qualities for robust-
ness validation (Table S5). We calculated the image
spectral signal-to-noise ratio (SNRspec) by averaging the
top 10 000 spectra of 40 000 data for each image to avoid
the involvement of background signals from the blank
areas of coverslips. After spectral preprocessing, all the
image SNRspec increases except for Polynomial fitting (Fig.
6b, S16b, Table S6). When inspecting them, we found that
Polynomial fitting preprocessed spectra had higher base-
lines than the Raw data, which introduced strong back-
ground signals to the images (Figs. 6, 7, S14–16, Movie S1,
S2). Wavelet transform preprocessed spectra retain simi-
lar baselines as the Raw data, which damages their che-
mical resolution despite the SNRspec being higher than
Residual CNN* and UNet-1D*. Residual CNN* and UNet-
1D* show no significant difference in SNRspec but with
shortages of abnormal peak shape/intensity and high
baselines, respectively (Figs. 6, 7, S14–16, Movie S1, S2).
RSBPCNN* shows a ≥50% improvement in SNRspec,
indicating better denoising and baseline correction effects
than the above-established preprocessing methods. The
SNRspec of Residual CNN, UNet-1D, and RSBPCNN
increased by 1.5 dB, 2.5 dB, and 2.6 dB, with 52%, 83%,
and 43% improvements after training with RSGAN-
generated data (Fig. 6b). Their denoising effect also
increased, especially the RSBPCNN# model, showing clear
Raman peaks and radically baseline elimination with flat
Raman spectral silence zones (Fig S16b). The SNRspec of
RSBPCNN# increases by 8.55 dB compared to Raw data
and more than 4.58 dB to the established methods, which
is a 212% improvement to Raw data and a 115%
improvement to the established methods (Fig. 6b, Table
S6). Moreover, the ratio of RSBPCNN# preprocessed
image SNRspec to the superior established-method
Wavelet transform increased from 155% to 169% when
the integration times increased from 0.01 s to 0.4 s, sug-
gesting the robustness of RSBPCNN# (Fig S17, Table S7).
This result primarily indicates the stability and fidelity of
the denoising and baseline correction capacity of
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RSBPCNN# when preprocessing high-throughput com-
plex biomedical spectra with different qualities.
Except for spectral quality inspection, we evaluated the

chemical resolution improvement by mapping all the
spectral Raman shifts in hyperspectral images (Movie
S1–S3). A biological Raman spectrum usually contains a
fingerprint region (400–1800 cm−1) reflecting molecular
chemical bond variations, a silent zone (1800–2700 cm−1)
without any signals, and a life region (2700–3200 cm−1)
showing superimposed Raman peaks of biomacromole-
cules20,41 (Fig. 6a). The images of the fingerprint region
indicating chemical bond distribution are most informative
but challenging to isolate from noise and baselines (Fig. 7,
S16). The life region images play a role in morphology
control, and the silent zone images are blank control. To
quantify the image quality, we create life region images with
Raman shifts of 2928 cm−1 and 2850 cm−1 (Fig. 6, S16). The
spectral Raman shift of 2928 cm−1 corresponds to CH3

bond vibration dominating proteins/DNA showing cell
profiles12 (Fig. 6b, S14b). The lipid channel images created
by the Raman shift of 2850 cm−1 corresponding to the CH2

bond show the morphology of the cell membrane system
and organelles such as endoplasmic reticulum, Golgi
apparatus, and mitochondrion. Normalized SD of the
background (STDB) and contrast-to-noise ratio (CNR) are
image quality metrics due to a lack of ground truth (Fig. 6,
S17–19). From the result, we found that the normalized
CNR of images preprocessed by Polynomial fitting, Wavelet
transform, and UNet-1D* increased gradually from 28% to
52%, except for Residual CNN*. Residual CNN* shows
reduced normalized CNR with wide error bars due to
unsatisfied fidelity, partially rescued by RSGAN-generated
training spectra. RSBPCNN* and RSBPCNN# show
improved normalized CNRs by 73% and 91% compared to
raw data. Normalized STDB reflecting preprocessing sta-
bility is negatively related to image quality, which shows a
consistent pattern among the above preprocessing methods.
From the silent zone control spectral images of 2409 cm−1,
we found that Polynomial fitting, Wavelet transform, and
UNet-1D* preprocessed images have strong background
signals in the silent zones due to high baselines, indicating

the incredibility of their fingerprint region images. RSGAN-
generated training spectra further improve the background
signal elimination effect of all deep preprocessing methods.
With high-fidelity properties, RSBPCNN# preprocessed
images demonstrate more refined and continual details of
subcellular structures, such as the tube structure of endo-
plasmic reticulum and silklike pseudopods. These results
suggest the potential of RSBPCNN# in chemical resolution
improvement of the fingerprint region images.
Since Polynomial fitting, Wavelet transform, and UNet-1D*

fail to correct the spectral baselines and Residual CNN*

cannot restore accurate Raman peak shape and intensity, the
analytical and scientific value of the spectral fingerprint
region image is like a pearl covered by dust (Figs. 6–8,
S14–16, Movie S1–S3). With the capacity of radical noise
elimination and baseline correction, together with the high
fidelity in Raman peak recovery and intensity maintenance,
RSBPCNN# preprocessed Raman spectral images show
remarkable chemical-specific resolution (Figs. 7a, 8d, S20).
Here, we demonstrated the chemical distribution images of
the Hela cell line with fingerprint region Raman shifts of
733 cm−1, 1200 cm−1, 1224 cm−1, 1320 cm−1, 1460 cm−1,
1548 cm−1, 1564 cm−1 indicating the distributions of Phos-
phatidylserine, Nucleic acids & phosphates/C-O/C-N, Amide
III (β-sheet structure), G(DNA/RNA)/CH deformation
(proteins), Lipids/collagen/deoxyribose, Tryptophan, and
COO− showing the correct location of related molecules
(Fig. 7, S22, Movie S1)42. After combining channels of Raman
shift of 733 cm−1, 1200 cm−1, and 1224 cm−1, the merged
images show a complementary distribution of lipid organelles
and nucleotides, which overlays with the distribution of
protein with Amide III β-sheet structure indicating the cell
profile (Fig. 7d). The COS-7 cell line shows similar results
(Fig. S16, Movie S2).
Then, we further investigated this novel capacity of

RSBPCNN# in chemical resolution recovery of the spec-
tral fingerprint region images of clinical tissue sections
(Fig. 8, Movie S3). We found that the spontaneous Raman
spectral images of cancer and paracancer tissues
superimposed auto-fluorescence signals in all Raman
shift channels, including the spectral silent zone, which

(see figure on previous page)
Fig. 6 Raman hyperspectral image quality enhancement. a Regions demonstration of a full spectrum. b The workflow of the Raman
hyperspectral image preprocessing trial. Samples include twelve images from the COS-7 cell line and nine from the Hela cell line with spectral
integration times of 0.01, 0.05, and 0.1 s. c SNRspec: comparison of the average SNR of the top 10 000 spectra from the Raw data or hyperspectral
images preprocessed by different methods. n= 10 000 spectra/image * 21 images. Comparison of normalized STDB and normalized CNR of the raw
images and images preprocessed by different preprocessing methods. n= 21 lipid images (Raman shift of 2850 cm−1, CH2)+ 21 protein/DNA
images (Raman shift of 2928 cm−1, CH3). The central line, box, error bar, and dots indicate the median, inter-quartile range (Q1 and Q3), min-max
range, and outliers, respectively. Statistical significance was assessed using the Mann-Whitney U Test for two independent samples and the Wilcoxon
signed-rank test for two correlated samples. An asterisk * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, **** indicates P < 0.0001.
d Visual inspection of spectral images of the Hela cell line with channels of the spectral silent zone, lipid (2850 cm−1), and proteins (2928 cm−1). The
rows show the spectral channels, and the columns demonstrate different spectral preprocessing methods. e One randomly selected spectrum with
an integration time of 0.1 s for visual inspection. Scale bar: 20 μm. PF: Polynomial fitting; WT: Wavelet transform; Res. CNN: Residual CNN
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concealed the actual signal of chemical bonds (Fig. 8b, c,
Movie S3). The severe background signals make
1129 cm−1 (blue)/1451 cm−1 (red)/1658 cm−1 (green)
merged picture show too much-unexpected overlay and
lose the complementary distribution of 1658 cm−1 with
the other two channels. The merged image of cancer
tissue also demonstrates an unexpected overlay that
leads to the gray color with the interference of noises
and baselines. After spectral preprocessing using
RSBPCNN#, the chemical bond signals are released from
noises and baselines and recover their spatial informa-
tion in hyperspectral images (Fig. 8c, d). The chemical
bonds distribution with Raman shifts of 1129 cm−1

(ν(C-C) skeletal of acyl backbone in lipid (trans con-
formation)43) and 1451 cm−1 (CH2CH3 deformation
(collagen assignment)44) are overlaid in most of the
paracancer epithelial cells but partially overlaid in can-
cer tissue, indicating multiple cell types infiltration (Fig.
8e, Fig. S26). The distribution of chemical bonds of 1658
cm−1 (Amide I (α-helix)/collagen-like proteins45)
changes from the gland surface of paracancer tissue into
single-cell parcels in cancer tissues. The three-channel
merged image of cancer tissue shows a scattering dis-
tribution of 1129 cm−1 and 1451 cm−1 double-positive
cells (purple). We also found some diverse distribution
of chemical bonds in tissues, such as phosphatidylino-
sitol (776 cm−1), phosphate (1090 cm−1), guanine
(1361 cm−1), and carbon particles (1590 cm−1), which
can be further investigated in the future (Fig. 8d, Movie
S3). In addition, we applied principal component ana-
lysis (PCA) on the hyperspectral images before or after
spectral preprocessing for feature extraction. Surpris-
ingly, the merged images of the top three PCAf channels
have consistent features with those chemical resolutions
released by RSBPCNN# with Raman shifts of 1129 cm−1,
1451 cm−1, and 1658 cm−1 (Fig. 8f, S21). This novel
chemical-specific resolution recovery function of the
high-fidelity RSPSSL scheme endows more potential for
hyperspectral biomedical imaging in biomedical
mechanism research and applications.

Discussion
Here, we report a novel high-fidelity, robust, and uni-

versal Raman spectral preprocessing scheme RSPSSL for

the prevalence of Raman spectroscopy, especially in spa-
tial chemical bond omics profiling and biomedical
mechanism screening. The broad applicability of the
proposed RSPSSL scheme relied on the innovative con-
struction of a self-supervised learning approach based on
the spectral-physical composition relationship. The per-
sonalized design of the two-stage model has dramatically
increased both the denoising and baseline correction
capacity and the spectral fidelity. The first stage of the
RSPSSL scheme self-constructs a high-fidelity spectra
dataset with diverse signals of devices, samples, and
spectral types. This RSGAN-generated dataset improves
the preprocessing capacity and spectral fidelity of all the
deep learning-based preprocessing methods. It con-
tributes an 85% reduction in RMSE and a 54% reduction
in L1 values, a 60% improvement in the cancer diagnostic
trial, a 71% (few-shot) and 52% improvement in paraquat
concentration prediction, and a 30% improvement in
SNRspec to the RSBPCNN* model (maximum = 100%).
The RSGAN-generated training data also rescues some
deficiencies of Residual CNN and UNet-1D. The second
stage of the RSPSSL scheme (the preprocessing model
RSBPCNN) demonstrates superior preprocessing effect
and spectral fidelity than other methods, either trained by
mathematical simulation or RSGAN-generated dataset,
indicating improved fitting capacity.
These improvements break the barriers of cross-device,

cross-sample, and cross-spectral type applications and
enable spontaneous Raman entire spectral-based biome-
dical mechanism screening with label-free volumetric
molecular images. Visualization of the chemical resolu-
tion in biomedical spontaneous Raman hyperspectral
imaging requires excellent denoising capacity to improve
the SNR, excellent baseline correction capacity to elim-
inate auto-fluorescence and recover the spectral intensity,
and spectral fidelity to present the actual information.
RSBPCNN# unseals the Raman chemical-specific resolu-
tion, which enables observing the chemical bond dis-
tribution of the spectral fingerprint region in biomedical
tissues. More disease-related multiplexed metabolic pro-
filing can be visualized by Raman spectroscopy with this
high-fidelity spectral preprocessing scheme in the future.
Advanced spectral unmixing techniques are required to
equip this unprecedented analytical imaging tool of

(see figure on previous page)
Fig. 7 Chemical resolution recovery by the RSPSSL scheme. a Representative preprocessed Raman spectral image of the Hela cell line mapped
with Raman shifts of the molecular fingerprint region. b Raman shift indication on the average spectra of the corresponding Raman spectral image.
Each blue spectrum demonstrates the average of 10 000 spectra with top SNRspec of the raw data image. Each red spectrum shows the average of 10
000 RSBPCNN# preprocessed spectra with top SNRspec from the corresponding hyperspectral image. c Average 10 000 spectra with top SNRspec of
each image preprocessed by different methods. d Merged images of the Raw data or RSBPCNN# preprocessed spectra with Raman shifts of 733 cm−1

(red, phosphatidylserine), 1200 cm−1 (blue, nucleic acids & phosphates/C-O/C-N), and 1224 cm−1 (green, amide III (β-sheet structure)). Scale bar:
20 μm
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Raman spectroscopy as an emerging spatial omics tech-
nique for mechanistic research and screening.
Despite the superior spectral fidelity demonstrated

here, we have observed the presence of small spurious
peaks in some spectra of the low SNR hyperspectral
images (Fig. S14b). Although these peaks did not affect
the chemical resolution due to the randomness of its
appearance, we can improve it by involving spatial
information instead of single spectra preprocessing.
Nevertheless, as a proof of concept, the robustness and
universality of RSBPCNN# were validated by various
applications using diverse sample types, data sizes,
detection types, and devices. Its stability was also
proved in the hyperspectral image preprocessing trial.
In the future, more cross-device applications can be
conducted to promote the translational application of
the RSPSSL scheme in biomedical Raman spectro-
scopy. With minor modifications, the RSPSSL scheme
is capable of background signal elimination and
denoising of coherent Raman spectroscopy, such as the
non-resonant background (NRB) in coherent anti-
Stokes Raman scattering (CARS) and the cross-phase
modulation (XPM) in stimulated Raman spectroscopy
(SRS).

Materials and methods
Clinical samples
Clinical samples, data collection, and analysis in this

research were performed under guidelines approved by
the ethics committee of Southern University of Science
and Technology (2022GZR048). All analyses were retro-
spective and in an anonymous manner, and the informed
consent was waived by the local ethics and privacy
committee.

Materials
All the chemicals, like silver nitrate (AgNO3, Sigma-

Aldrich), ascorbic acid (AA, Sigma-Aldrich), poly-
vinylpyrrolidone (PVP, Sigma-Aldrich), sodium citrate
(Shanghai Macklin Biochemical Co., Ltd.), sodium
chloride (NaCl, Shanghai Lingfeng Chemical Reagent Co.,
Ltd.), ammonia water (Shanghai Lingfeng Chemical

Reagent Co., Ltd.), were analytical reagents without fur-
ther purification. Ultrapure water (18M\Omega·cm,
25 °C) was used for solution preparation.

Primary spectral training datasets for the RSGAN model
training
A total of 500 spectra from an open-accessed mineral

dataset, named RRuff database, generated by the RRUFF
project46 are randomly selected as one of the training
datasets for the RSGAN model. The other 500 SERS
spectra were domestically collected from 14 substances,
including Glufosinate-ammonium, Glyphosate, Dipterex,
Phosalone, Methamidophos, Parathion-methyl, Cartap,
Orthene, Aquacide, Ethyl alcohol, Hexyl alcohol, Crystal
violet 4-Aminothiophenol, and Rhodamine 6G. These
spectra were collected by Raman spectroscopy (LabRAM
HR Evolution, Horiba) with flower-like silver nano-
particles as SERS enhancement substrate. A typical
synthesis procedure was applied47. In brief, we added
0.2 mL of 1M AgNO3 solution and 2 mL of 1% PVP
solution into a beaker with 10mL ultrapure water. After
mixing evenly on a thermostat magnetic stirrer at room
temperature, 1 mL of 0.1M AA solution was quickly
added to the above-mixed solution and stirred for another
15min. Finally, the reaction product was separated from
the solution by centrifugation at 5 000 r/min for 10 min
and then washed several times with ultrapure water to
remove the impurities.

Serum SERS detection
Serum samples come from 27 cancer patients and 28

normal healthy controls. They were detected using SERS
with the enhancing substrates of silver nanoparticles
(AgNPs). The spectra were collected by a Raman spec-
trometer (Portman785, Oceanhood, China) with an exci-
tation wavelength of 785 nm, power of 50 mW, and
integral time of 8 s per spectrum. Six spectra of each
sample were collected randomly. The spectra with Raman
shift ranging from 400 cm−1 to 1800 cm−1 were included
in our analysis. AgNPs are synthesized through a seed
growth method48, which can adjust the particle size. First,
50 µL of 0.1M AA was added to a mixture that was boiled

(see figure on previous page)
Fig. 8 Chemical bond distribution in paracancer and cancer tissues. a Bright field and hematoxylin & eosin (H&E) staining images of paracancer
and cancer (nasopharyngeal carcinoma) tissues. b Raman spectral image of Raman shifts at the fingerprint region of the Raw data. Left: Raman shift
indications (gray line) on an averaged spectra of 10 000 data with top SNRspec from the corresponding Raman hyperspectral image. Right: Raman
spectral images with the indicated Raman shifts of paracancer and cancer tissues. c Comparison of the silent zone images of the Raw data (blue) and
RSBPCNN# preprocessed spectra (red). d Raman spectral images of the Raman shift at the fingerprint region of the RSBPCNN# preprocessed spectra.
Left: Raman shift indication (gray line) on average 10 000 RSBPCNN# preprocessed spectra with top SNRspec. Right: Raman spectral images with
representative Raman shifts from the spectral fingerprint region of paracancer or cancer tissues. e Demonstration of the representative Raman peaks
of the averaged spectra of 10 000 RSBPCNN# preprocessed spectra with top SNRspec of paracancer or cancer tissues. f Merged images of Raman shifts
1129 cm−1 (blue), 1451 cm−1 (red), and 1658 cm−1 (green) of the Raw data or RSBPCNN# preprocessed Raman spectral images of paracancer and
cancer tissues. Merged images of the top three PCA features abstraction (PCAf) channels. Scale bar: 40 μm
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for five minutes, consisting of 47.5 mL boiling water, 1 mL
of 1% sodium citrate, 1 mL of 1% AgNO3, and 1.25 mL of
80 µM NaCl. Then, heat and stir the new mixture solution
for one hour to ensure a complete reaction. The silver
seed solution was produced. It was cooled to room tem-
perature and stored at 4 °C. Then, the silver ammonia
mixture was prepared by mixing 800 µL saturated
ammonia water with 2 mL of 1% silver nitrate, then
incubating for 10min. To produce AgNP solution, 1 mL
silver nano-seeds solution was used to react with 700 µL
silver ammonia mixture, 20 mL 2.5 mM ascorbic acid, and
48.3 mL water successively. This solution was mixed
evenly on a thermostat magnetic stirrer at room tem-
perature for one hour. The AgNP solution was stored in
the refrigerator at 4°C for later use.

Paraquat solution SERS detection
Flower-like silver nanoparticles were used as SERS

substrates. Raman signals were enhanced by mixing sam-
ples with flower-like nano-silver. SERS spectra of paraquat
solution with concentrations of 10–4 M, 10–5 M, 10–6 M,
and 10–7 M were collected by a Raman spectrometer
(Renishaw Ina, USA) with an excitation wavelength of
785 nm, power of 50mW, and integral time of 8 s. One
hundred spectra were collected from each concentration.
The Raman shifts ranging from 620–1800 cm−1 of the
spectra were used in data analysis.

Cell culture and tissue preparation
HeLa (Procell, CL-0101) and COS-7 (Procell, CL-

0069) cells were obtained from Procell (Wuhan, China)
and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Procell) supplemented with 10% fetal bovine
serum (Procell) in a humidified 5% CO2 atmosphere at
37 °C. For cell imaging, HeLa and COS-7 cells were
seeded on glass slips placed in TC-treated 6-well plates
(LabServ™, ThermoFisher) and culture for 24–48 h.
Cells were washed twice with PBS and dried for image
capture. Formalin-fixed paraffin-embedded tissues were
dewaxed by dimethylbenzene, rehydrated in alcohol
gradients, and dried at room temperature before
hyperspectral imaging.

Raman hyperspectral imaging
Raman hyperspectral images were captured by a

confocal Raman microscope (WITec Alpha 300 R, UK)
using an excitation laser with a wavelength of 532 nm.
The laser beam was focused on tissue or cell samples by
a 100X or 50X objective with a numerical aperture
(NA) of 0.9 or 0.75. Forty thousand spectra per image
were collected. The Raman shifts of each spectrum
range from 400 cm−1 to 3200 cm−1. We activated the
focus-tracking function for auto-focus during image
acquisition.

Accuracy metrics
In the experimental data preprocessing trial, the root

mean squared error (RMSE) and the infinite norm (L1)
are used to evaluate the spectral preprocessing effect and
fidelity. Their functions are as follows,

RMSEðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i
ðyi � xiÞ2

r
ð5Þ

L1ðx; yÞ ¼ max jn½yi � xi�j ð6Þ
Where x and y represent the preprocessed spectrum and
ideal spectrum, respectively. n represents data points of
the spectrum.

In the cancer diagnosis trial, the accuracy metrics
include area under the curve (AUC), sensitivity, specifi-
city, negative predictive value (NPV), and positive pre-
dictive value (PPV). Their functions are as follows,

AUC ¼
Pðmi; njÞmi>nj

M � N
ð7Þ

Sensitivity ¼ TP
TP þ FN

ð8Þ

Specificity ¼ TN
TN þ FP

ð9Þ

PPV ¼ TP
TP þ FP

ð10Þ

NPV ¼ TN
TN þ FN

ð11Þ

The TP, FN, FP, and TN stand for true positive, false
negative, false positive, and true negative, respectively. M
represents the number of true positive samples, N
represents the number of true negative samples, mi

represents the prediction score of true positive samples,
and nj represents the prediction score of true negative
samples. All these indexes correlate positively to the
diagnosis accuracy. Within these indexes, AUC is a
comprehensive indicator for accuracy evaluation.

We use quantitative error (EQ) as an indicator in the
paraquat concentration prediction trial. Its function is as
follows,

EQðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼1

n
ðlogðyiÞ � log ðxiÞÞ2

r
ð12Þ

Where y is the actual concentration, x is the predicted
concentration from the quantitative model, and n is the
number of samples. The value of the quantitative error EQ

correlates negatively to the prediction accuracy.
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We use spectral signal-to-noise ratio (SNRspec), the
normalized standard deviation of background (STDB),
and contrast-to-noise ratio (CNR) to evaluate spectral
quality, noise level, and contrast of images, respectively, in
the Raman hyperspectral biomedical image preprocessing
trial.
The function of SNRspec is defined as follows,

SNRspec ¼ 10lg
1
s

Pi
2800<s<3200Is

1
n

Pi
1800<n<2800In

 !
ð13Þ

Where Is represents the intensity of the C-H vibration
region (2800–3200 cm−1), and In represents the signal
intensity of the silent region (1800–2800 cm−1). The
silent region only contains noise signals in the spectra of
label-free cells, so SNRspec is the signal-to-noise ratio of
the spectra.

The normalized STDB and normalized CNR are defined
as follows,

CNR ¼ ðCsig � CbgÞ=σbg ð14Þ

STDB ¼ σbg
p ð15Þ

Normalized STDB ¼ σbg
r

σbg
p ð16Þ

NormalizedCNR ¼ CNRr

CNRp ð17Þ

Where Csig and Cbg are the means of the signal and
background. σbg is STDB. The σbg

r and σbg
p are STDB of

the raw and preprocessed data. The CNRr and CNRp are
CNR of the raw and preprocessed data. In this metric, we
need to tag the regions of the sample and background in
images. We implemented these evaluation processes with
Python 3.11.2.

Established spectral preprocessing methods
Polynomial fitting uses a numpy 1.23.5 built-in function

to obtain polynomial coefficients and reconstruct base-
lines. They were followed by the error calculation with
the original spectra after baseline corrections. When the
iteration error was less than 5%, we terminated the
iteration. The denoising process is with a similar process
and calculation window of 50 pixels.
Wavelet transform is based on implementing the

PyWavelets 1.4.1 with eight-layer decomposition using
the wavelet base of “dB8” and then selects three to six
layers as spectral signals for reconstruction. We run the
iteration cycle 100 times to achieve a better denoising and
baseline correction effect.

We provided the model structures and training pro-
cesses of the Residual CNN*/# and UNet-1D*/# models in
supplementary information (Fig. S23, S24).

Statistics and reproducibility
Other than specially stated, quantitative data are pre-

sented as box-and-whisker plots with a center line
demonstrating the median, limits indicating 75% and 25%,
whiskers showing maximum and minimum, or bar charts
with mean ± SD. The AUC of the 100 times cross vali-
dation results are expressed as a mean with 95% con-
fidence intervals. We used the Wilcoxon signed-rank test
for correlated samples to calculate the statistical sig-
nificance between two experimental groups in the
experimental data preprocessing trial, cancer diagnosis
trial, paraquat concentration prediction trial, hyperspec-
tral image STDB, and CNR. We performed the Mann-
Whitney U test for independent samples to calculate the
statistical difference between two experimental groups for
the SNRspec of the Raman hyperspectral cell image. Type I
error correction has been carried out between each pair-
wise comparison. All the statistical tests are implemented
with Python 3.11.2 (scipy 1.10.1). Statistical significance at
P < 0.05, 0.01, 0.001, and 0.0001 are denoted by *, **, ***,
and ****, respectively.

Acknowledgements
This work was supported by National Natural Science Foundation of China
(62220106006); Shenzhen Science and Technology Program
(SGDX20211123114001001, JSGGKQTD20221101115656030); Guangdong Basic
and Applied Basic Research Foundation (2021B1515120013).
The authors acknowledge the assistance of SUSTech Core Research Facilities.

Author details
1State Key Laboratory of Optical Fiber and Cable Manufacture Technology,
Guangdong Key Laboratory of Integrated Optoelectronics Intellisense,
Department of EEE, Southern University of Science and Technology, Shenzhen
518055, China. 2College of Optical and Electronic Technology, China Jiliang
University, Hangzhou 310018, China. 3Department of Nasopharyngeal
Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of
Oncology in South China, Collaborative Innovation Center for Cancer
Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma
Diagnosis and Therapy, Guangzhou 510060, China. 4Department of Ocean
Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China. 5Department of Nephrology, Chaozhou People’s
Hospital, Chaozhou 521011, China. 6Clinical Research Design Division, Sun Yat-
sen Memorial Hospital, Guangzhou, Guangdong 510120, China. 7School of
Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072,
China. 8Department of Biomedical Engineering, The Chinese University of
Hong Kong, Hong Kong, China. 9Guangdong Provincial Key Laboratory of
Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University,
Guangzhou 511443, China

Author contributions
G.J.C. and P.P.S. designed the study. J.H. and G.J.C. developed the concept and
wrote the paper. Y.X., X.C., and G.L. collected clinical samples. C.X., J.H., H.D., and
J.C. obtained the serum SERS dataset. P.L. and D.Z. obtained SERS datasets of
the RSGAN training data and paraquat solutions. J.H., C.Z., D.C, Q.T, and P.G.
obtained hyperspectral image datasets. J.H. wrote code and implemented the
mathematical and AI models. J.H., G.J.C., X.Y., H.P.H., and L.C. analyzed the
output data and the conclusions. G.J.C. and W.Z. performed biological
experiments and evaluations. J.H. and G.J.C. conducted data analysis and
visualization and made the figures. Y.Y. and Y.L. gave clinical and statistical

Hu et al. Light: Science & Applications           (2024) 13:52 Page 19 of 21



advice. G.J.C. and P.P.S. conducted funding acquisitions. G.J.C. and P.P.S.
conducted project administration. All authors reviewed the manuscript and
approved the final version.

Data availability
The datasets generated and analyzed during this study are available in the
GitHub repository. Source data are provided in this paper.

Code availability
Code for the modeling work is available from the corresponding authors upon
request. The link to use the proposed Raman spectral preprocessing scheme
RSPSSL with sample data for the demo is available at https://github.com/oilab-
sustech/RSPSSL.

Conflict of interest
P.P.S., J.H., G.J.C., C.X., and H.D. own a patent on the RSPSSL strategy described
in this report.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41377-024-01394-5.

Received: 18 August 2023 Revised: 2 January 2024 Accepted: 23 January
2024

References
1. Lee, K. S. et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods

Prim. 1, 80 (2021).
2. Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and

dissociation of interfacial water. Nature 600, 81–85 (2021).
3. Xiong, J. et al. Surface defect engineering in 2D nanomaterials for photo-

catalysis. Adv. Funct. Mater. 28, 1801983 (2018).
4. Cutshaw, G. et al. The emerging role of Raman spectroscopy as an omics

approach for metabolic profiling and biomarker detection toward precision
medicine. Chem. Rev. 123, 8297–8346 (2023).

5. Wu, Z. Y. et al. Non‐invasive detection, precise localization, and perioperative
navigation of in vivo deep lesions using transmission Raman spectroscopy.
Adv. Sci. 10, 2301721 (2023).

6. Chen, G. Y. et al. Revealing unconventional host–guest complexation at
nanostructured interface by surface-enhanced Raman spectroscopy. Light Sci.
Appl. 10, 85 (2021).

7. Zhang, M. et al. Deep oxidative desulfurization of dibenzothiophene with
POM-based hybrid materials in ionic liquids. Chem. Eng. J. 220, 328–336
(2013).

8. Li, Y. P. et al. Super-multiplex nonlinear optical imaging unscrambles the
statistical complexity of cancer subtypes and tumor microenvironment. Adv.
Sci. 9, 2104379 (2022).

9. Huang, L. P. et al. Rapid, label-free histopathological diagnosis of liver cancer
based on Raman spectroscopy and deep learning. Nat. Commun. 14, 48
(2023).

10. Yang, W. et al. Real-time molecular imaging of near-surface tissue using
Raman spectroscopy. Light Sci. Appl. 11, 90 (2022).

11. Dong, S. L. et al. Early cancer detection by serum biomolecular fingerprinting
spectroscopy with machine learning. eLight 3, 17 (2023).

12. Han, X. X. et al. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim.
1, 87 (2022).

13. Peterson, W., Hiramatsu, K. & Goda, K. The marriage of coherent Raman
scattering imaging and advanced computational tools. Light Sci. Appl. 12, 113
(2023).

14. Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectro-
scopy in humans. Sci. Transl. Med. 7, 274ra19 (2015).

15. Hu, H. B. et al. Improved baseline correction method based on polynomial
fitting for Raman spectroscopy. Photonic Sens. 8, 332–340 (2018).

16. Chen, Y. L. & Dai, L. K. An automated baseline correction method based on
iterative morphological operations. Appl. Spectrosc. 72, 731–739 (2018).

17. Zhang, F. et al. Baseline correction for infrared spectra using adaptive
smoothness parameter penalized least squares method. Spectrosc. Lett. 53,
222–233 (2020).

18. Wang, X. et al. Development of weak signal recognition and an extraction
algorithm for Raman imaging. Anal. Chem. 91, 12909–12916 (2019).

19. Ehrentreich, F. & Sümmchen, L. Spike removal and denoising of Raman
spectra by wavelet transform methods. Anal. Chem. 73, 4364–4373
(2001).

20. Lin, H. N. et al. Microsecond fingerprint stimulated Raman spectroscopic
imaging by ultrafast tuning and spatial-spectral learning. Nat. Commun. 12,
3052 (2021).

21. Kung, B. H. et al. Baseline correction and denoising of Raman spectra by deep
residual CNN. 2020 Conference on Lasers and Electro-Optics (CLEO). San Jose,
CA, USA: IEEE, 2020, 1-2.

22. Liu, Y. J. Adversarial nets for baseline correction in spectra processing. Che-
mometr. Intell. Lab. Syst. 213, 104317 (2021).

23. Chen, T. J. et al. Baseline correction using a deep-learning model combining
ResNet and UNet. Analyst 147, 4285–4292 (2022).

24. Wang, G. Y. et al. Deep-learning-enabled protein–protein interaction analysis
for prediction of SARS-CoV-2 infectivity and variant evolution. Nat. Med. 29,
2007–2018 (2023).

25. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw.
61, 85–117 (2015).

26. Kazemzadeh, M. et al. Deep learning as an improved method of preproces-
sing biomedical Raman spectroscopy data. Print at https://doi.org/10.36227/
techrxiv.19435718 (2022).

27. Yu, X. J. et al. A generative adversarial network with multi-scale convolution
and dilated convolution res-network for OCT retinal image despeckling.
Biomed. Signal Process. Control 80, 104231 (2023).

28. Rizvi, S. K. J., Azad, M. A. & Fraz, M. M. Spectrum of advancements and
developments in multidisciplinary domains for generative adversarial net-
works (GANs). Arch. Comput. Methods Eng. 28, 4503–4521 (2021).

29. Matinfar, M., Khaji, N. & Ahmadi, G. Deep convolutional generative adversarial
networks for the generation of numerous artificial spectrum‐compatible
earthquake accelerograms using a limited number of ground motion records.
Comput.-Aided Civ. Infrastruct. Eng. 38, 225–240 (2022).

30. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63,
139–144 (2020).

31. Ho, C. S. et al. Rapid identification of pathogenic bacteria using Raman
spectroscopy and deep learning. Nat. Commun. 10, 4927 (2019).

32. Zhu, Z. Q. et al. Brain tumor segmentation based on the fusion of deep
semantics and edge information in multimodal MRI. Inf. Fusion 91, 376–387
(2023).

33. Szegedy, C. et al. Going deeper with convolutions. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015,
1-9.

34. Priemel, T. et al. Microfluidic-like fabrication of metal ion–cured bioadhesives
by mussels. Science 374, 206–211 (2021).

35. Shen, W. et al. Reliable quantitative SERS analysis facilitated by core-shell
nanoparticles with embedded internal standards. Angew. Chem. Int. Ed. 54,
7308–7312 (2015).

36. Chen, H. Y. et al. Large-scale hot spot engineering for quantitative SERS at the
single-molecule scale. J. Am. Chem. Soc. 137, 13698–13705 (2015).

37. Wang, H. L. et al. Advances of surface-enhanced Raman and IR spectroscopies:
from nano/microstructures to macro-optical design. Light Sci. Appl. 10, 161
(2021).

38. Park, W. H. & Kim, Z. H. Charge transfer enhancement in the SERS of a single
molecule. Nano Lett. 10, 4040–4048 (2010).

39. Cheng, J. X. & Xie, X. S. Vibrational spectroscopic imaging of living
systems: An emerging platform for biology and medicine. Science 350,
aaa8870 (2015).

40. Ilchenko, O., Pilhun, Y. & Kutsyk, A. Towards Raman imaging of centimeter
scale tissue areas for real-time opto-molecular visualization of tissue bound-
aries for clinical applications. Light Sci. Appl. 11, 143 (2022).

41. Lin, H. N. & Cheng, J. X. Computational coherent Raman scattering imaging:
breaking physical barriers by fusion of advanced instrumentation and data
science. eLight 3, 6 (2023).

42. Movasaghi, Z., Rehman, S. & Rehman, I. Raman spectroscopy of biological
tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).

43. Cheng, W. T. et al. Micro-Raman spectroscopy used to identify and grade
human skin pilomatrixoma. Microsc. Res. Tech. 68, 75–79 (2005).

44. Bonnier, F. & Byrne, H. J. Understanding the molecular information contained
in principal component analysis of vibrational spectra of biological systems.
Analyst 137, 322–332 (2012).

Hu et al. Light: Science & Applications           (2024) 13:52 Page 20 of 21

https://github.com/oilab-sustech/RSPSSL
https://github.com/oilab-sustech/RSPSSL
https://doi.org/10.1038/s41377-024-01394-5
https://doi.org/10.36227/techrxiv.19435718
https://doi.org/10.36227/techrxiv.19435718


45. Lakshmi, R. J. et al. Tissue Raman spectroscopy for the study of radiation
damage: brain irradiation of mice. Radiat. Res. 157, 175–182 (2002).

46. Lafuente, B. et al. The power of databases: The RRUFF project. in Highlights in
Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) (Berlin: De
Gruyter (O), 2015), 1-30.

47. Ai, Y. J. et al. Rapid qualitative and quantitative determination of food color-
ants by both Raman spectra and Surface-enhanced Raman Scattering (SERS).
Food Chem. 241, 427–433 (2018).

48. Huang, Z. L. et al. Homogeneous multiplex immunoassay for one-step pan-
creatic cancer biomarker evaluation. Anal. Chem. 92, 16105–16112 (2020).

Hu et al. Light: Science & Applications           (2024) 13:52 Page 21 of 21


	RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization
	Introduction
	Results
	Research pipeline
	Auxiliary task: The RSGAN�Model
	The spectral preprocessing model: RSBPCNN
	Experimental data preprocessing trial: Capacity and fidelity of the RSPSSL�scheme
	Contribution in complex analyte classification: Cancer diagnosis�trial
	Performance in quantification: Paraquat concentration prediction
	Chemical resolution improvement through Raman hyperspectral image preprocessing

	Discussion
	Materials and methods
	Clinical samples
	Materials
	Primary spectral training datasets for the RSGAN model training
	Serum SERS detection
	Paraquat solution SERS detection
	Cell culture and tissue preparation
	Raman hyperspectral imaging
	Accuracy metrics
	Established spectral preprocessing methods
	Statistics and reproducibility

	Acknowledgements
	Acknowledgements




