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Spatiotemporal data fusion technologies have been widely used for land surface phenology (LSP) 
monitoring since it is a low-cost solution to obtain fine-resolution satellite time series. However, the 
reliability of fused images is largely affected by land surface heterogeneity and input data. It is unclear 
whether data fusion can really benefit LSP studies at fine scales. To explore this research question, 
this study designed a sophisticated simulation experiment to quantify effectiveness of 2 representative 
data fusion algorithms, namely, pair-based Spatial and Temporal Adaptive Reflectance Fusion Model 
(STARFM) and time series-based Spatiotemporal fusion method to Simultaneously generate Full-length 
normalized difference vegetation Index Time series (SSFIT) by fusing Landsat and Moderate Resolution 
Imaging Spectroradiometer (MODIS) data in extracting pixel-wise spring phenology (i.e., the start of 
the growing season, SOS) and its spatial gradient and temporal variation. Our results reveal that: (a) 
STARFM can improve the accuracy of pixel-wise SOS by up to 74.47% and temporal variation by up to 
59.13%, respectively, compared with only using Landsat images, but it can hardly improve the retrieval 
of spatial gradient. For SSFIT, the accuracy of pixel-wise SOS, spatial gradient, and temporal variation 
can be improved by up to 139.20%, 26.36%, and 162.30%, respectively; (b) the accuracy improvement 
introduced by fusion algorithms decreases with the number of available Landsat images per year, and 
it has a large variation with the same number of available Landsat images, and (c) this large variation is 
highly related to the temporal distributions of available Landsat images, suggesting that fusion algorithms 
can improve SOS accuracy only when cloud-free Landsat images cannot capture key vegetation growth 
period. This study calls for caution with the use of data fusion in LSP studies at fine scales.

Introduction

Land surface phenology (LSP), i.e., the seasonality of vegetated 
land surface derived from remote sensing data, can provide 
more comprehensive spatiotemporal coverage of phenological 
metrics than plot-based and in situ observations [1,2]. The LSP 
metrics (e.g., spring phenology and autumn phenology) have 
been widely used to explore the effects of environmental vari-
ables (e.g., urban warming and climate change) on vegetation 
growth and dynamics [3–5]. A majority of existing LSP studies 
conventionally applied daily satellite images (e.g., Moderate 
Resolution Imaging Spectroradiometer [MODIS] and Advanced 
Very High Resolution Radiometer [AVHRR]) [6–8], but due 
to mixed pixel effects caused by coarse spatial resolutions ranging 

from 250 m to 8 km, their results may not be reliable, especially 
complex landscapes (e.g., urban areas and fragmented crop-
lands). For example, the coarse-resolution satellite images can 
overestimate the urban–rural difference of spring phenology [9], 
and the spring phenological dates detected by coarse images 
are more controlled by the earlier spring phenological pixels at 
fine images [10,11]. On the contrary, Landsat imagery is the only 
data source for studying long-term LSP in complex landscapes 
thanks to its over 40-year archives and relatively high spatial 
resolution of 30 m [12]. However, Landsat-based LSP studies 
face a big challenge of data sparsity, since it has a 16-d revisit 
cycle and cloud-free images that are very limited in many 
regions [13]. Although some Landsat-based LSP studies recon-
structed 16-d Landsat time series using multi-year composites 
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[14] or smoothing filters [15] before LSP extraction, the former 
cannot explore interannual variations of LSP while the latter 
may result in a false early spring phenology detection [15], and 
neither can address the issue of data sparsity directly.

To solve the sparsity problem of Landsat images, various 
spatiotemporal data fusion algorithms by fusing 16-d fine-
resolution Landsat images with daily coarse-resolution satellite 
images (e.g., MODIS and AVHRR) were proposed and devel-
oped [16]. Based on the modeling strategies, these fusion 
algorithms can be generally divided into 2 major categories, 
pair-based (e.g., STARFM, ESTARFM, and Fit-FC) [17–19] 
and time series-based (e.g., SSFIT and STAIR) [20,21]. The 
pair-based fusion algorithms generate a target individual fused 
image by using one or 2 pairs of cloud-free fine- and coarse-
resolution images as input data. Each pair of images is com-
posed of one fine-resolution image and one coarse-resolution 
image acquired at the same time or a very close time. These 
pair-based fusion algorithms follow a similar principle that 
they model relationship between fine and coarse images from 
the pairs and then apply this relationship to predict fine images 
at the time there were no available fine-resolution images. 
STARFM, the most popular and representative pair-based 
fusion method, uses weight functions to model the relationship 
between fine- and coarse-resolution images. These pair-based 
fusion algorithms need to be implemented by multiple times 
to predict fine images at multiple time points to form time 
series data for LSP studies [9,10]. The possible limitations of 
applying pair-based fusion methods into LSP studies include 
their low efficiency and low accuracy if only a few cloud-free 
fine images are available, and they cannot fully utilize the infor-
mation contained in fine and coarse images. On the contrary, 
time series-based fusion methods input all available fine- and 
coarse-resolution images including those images partly cov-
ered by clouds. They output cloud-free fine time series at given 
time intervals, such as every 16 d, instead of predicting a single 
fine image. Taking the recently developed SSFIT as an example, 
time series-based fusion methods generally use the temporal 
profile extracted from coarse time series of various land cover 
types to predict fine time series. Combining cloud-free Landsat 
images and Landsat-like images produced by either pair-based 
or time series-based fusion algorithms can construct dense 
vegetation index (VI) time series at 30 m and high frequency 
(e.g., 8 and 16 d) to support LSP retrieval.

In recent years, a large number of LSP studies employed 
fine-resolution data derived from spatiotemporal fusion algo-
rithms. For example, the STARFM fusion algorithm was used 
for extracting crop phenology from 2001 to 2014 in central 
Iowa [22], characterizing phenology patterns in dryland forests 
in 2006 [23], investigating dryland vegetation phenology across 
an elevation gradient in Arizona, USA [24], improving the 
mapping of crop types using phenological features in the 
Midwestern USA [25], estimating phenology metrics of sub-
Alpine forests in South Korea [26], supporting a phenology-
based classification of paddy rice in Northeastern China [27], 
and exploring the scaling effects of LSP detection [10]. Never-
theless, several studies suggested that the performance of fusion 
algorithms is strongly related to the land surface heterogeneity 
and the input images [28,29]. However, it is unclear to what 
extent the fusion of Landsat and MODIS images can help LSP 
studies, and no study has explored this question.

To this end, this study aims to investigate the effectiveness 
of representative spatiotemporal data fusion algorithms in 

LSP studies at fine scales. To achieve this objective, this study 
designed a sophisticated simulation experiment using 30-m 
cloud-free Harmonized Landsat Sentinel-2 (HLS) data to assess 
the performance of 2 representative fusion algorithms (i.e., clas-
sic pair-based STARFM and recently developed time series-
based SSFIT) for spring phenology (i.e., the start of the growing 
season [SOS]) detection in a heterogeneous area. More specifi-
cally, we evaluated the accuracy improvement introduced by 
fusion algorithms in terms of pixel-wise SOS, spatial gradient, 
and temporal variation, under different cloud frequencies. It is 
worth noting that we do not intend to compare many fusion algo-
rithms since there are more than 100 fusion algorithms published 
in the past 2 decades [29]. Our main objective in this study is to 
raise people's awareness of the real benefit brought by data fusion 
to phenology monitoring and provide an approach that can 
be used to evaluate the effectiveness of any fusion algorithms in 
phenology studies. The findings of this study could help users to 
select appropriate fusion algorithms in LSP studies and inspire 
future development and improvement for fusion algorithms.

Materials and Methods

Study area and data used
The study area (central coordinate: 41.26° N, 111.98° W) is in 
Ogden, Utah, USA (Fig. 1A). This area was selected because of 
the following criteria: (a) a less cloudy region can make it pos-
sible to collect dense cloud-free HLS time series as reference 
data for the simulation experiment [30]; (b) abundant land 
cover types including forest, grassland, shrubland, cropland, 
artificial surface, wetland and water body according to a global 
land cover product [31] (Fig. 1B) and (c) large spatial hetero-
geneity of spring phenology [6]. Therefore, the selected study 
area is an ideal location for conducting this simulation study.

The HLS V1.4 dataset covering the study area from 2018 to 
2020 was used in this study. HLS data are 30-m high-frequency 
optical images combining Sentinel-2A, Sentinel-2B and Landsat 
8 images [32,33], which reduces the cloud effects to the largest 
extent. The harmonized procedures for producing HLS data 
include atmospheric correction, geographic registration, nor-
malization of solar and viewing angles and spectral bandpass 
adjustment between sensors [32]. By validation with ground 
observations, existing studies suggested that HLS data are 
promising for extracting LSP metrics [34,35].

Experiment design
In this study, the modified Enhanced Vegetation Index (EVI2) 
derived from HLS time series was used to extract SOS. EVI2 is 
not sensitive to the background reflectance (e.g., bright soils 
and photosynthetically active vegetation), which can well cap-
ture the biophysical properties of the land surface and has been 
used by agencies to produce official vegetation phenology prod-
ucts (e.g., MCD12Q2 and VNP22Q2) [1,34]. Figure 2 shows 
the steps of the experiment in this study. First, to mimic Landsat 
time series with a 16-d temporal resolution, the original HLS 
data were processed to produce cloud-free 16-d reference 
Landsat EVI2 time series. Then, 2 typical spatiotemporal data 
fusion algorithms (i.e., STARFM and SSFIT) were used to fuse 
Landsat and MODIS EVI2 images by manipulating input data 
to simulate various cloud situations, respectively. Meanwhile, 
the linearly interpolated Landsat time series without fusing 
with MODIS was produced as a benchmark [36,37]. Lastly, 
the dates of SOS were extracted from 2 fused time series and 
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linearly interpolated time series for assessing the effectiveness 
of STARFM and SSFIT.

Generation of reference Landsat EVI2 time series
Reference Landsat time series with a 16-d temporal resolution 
was derived from the original HLS dataset by a series of stan-
dardized processing, as shown in Fig. 3. First, we used the 
Automatic Time-Series Analysis, an automatic cloud and cloud 

shadow detection algorithm based on time-series images, to 
screen cloud and cloud shadow of the HLS images [38], since 
the cloud quality assurance (QA) band of the HLS dataset has 
considerable errors [34]. To refine clear observations, we fol-
lowed the approaches adopted in [34], i.e., the MACCS-ATCOR 
Joint Algorithm cloud detection and 3-point despiking meth-
ods, to further eliminate the outliers namely the bright anom-
alies from undetected clouds and smoke and the negative 

Fig.  1.  True-color image and land cover map of the study area. (A) Landsat true-color image of the study area on 2020 September 16 and (B) its land cover map.

Fig.  2.  Flowchart of assessing the performance of STARFM and SSFIT for SOS detection.

D
ow

nloaded from
 https://spj.science.org on M

arch 31, 2024

https://doi.org/10.34133/remotesensing.0118


Tian et al. 2024 | https://doi.org/10.34133/remotesensing.0118 4

anomalies from undetected cloud shadows of HLS time series. 
Second, we excluded snow-contaminated pixels identified by 
the HLS snow QA band and the Normalized Difference Forest 
Snow Index (NDFSI > 0.4) [34,39]. Snow-contaminated pixels 
were filled by a background value that refers to the fifth per-
centile of all snow-free EVI2 values from 2018 to 2020 at each 
pixel [34]. Third, the clear and filled observations together were 
used to produce a 16-d EVI2 time series by the maximum value 
composite (MVC) method. The MVC method is operated by 
outputting EVI2 maximum within a predetermined compos-
ite period (e.g., 16 d), which can further reduce the noises of 
time-series data [40,41]. Last, to generate a high-quality refer-
ence Landsat EVI2 time series (30 m and 16 d), the 16-d EVI2 
composites were smoothed by the penalized cubic smoothing 
splines to eliminate noises and fill missing data [1,34], as red 
curve (i.e., namely Reference time series) shown in Fig. 3.

Reconstruction of Landsat EVI2 time series by  
STARFM and SSFIT
To represent 2 types of fusion algorithms, STARFM, a classic 
pair-based fusion algorithm [17], and SSFIT, a recently devel-
oped time series-based fusion algorithm [21], were used to 
reconstruct fused Landsat-like images at a spatial resolution of 
30 m, respectively.

1. STARFM
STARFM is a pair- and weight-based algorithm that the sys-

tematic error between 2 satellite sensors does not vary with 
time. Although STARFM was initially proposed and developed 
to fuse surface reflectance, its reliability and capability for fusing 
VIs (e.g., NDVI) have been verified [42]. Therefore, we used the 
EVI2 time series as input data for STARFM, and for upscaling 
a coarse-resolution EVI2 image to a fine image with the same 
spatial resolution and coordinate system, the fine-resolution 
EVI2 is:

where (x, y) is a pixel location, tk is the acquisition date for both 
fine- and coarse-resolution data, C(x, y, tk) means the coarse-
upsampled EVI2 at date tk, and εk refers to the difference between 
2 observed EVI2 values due to systematic bias [17]. Furthermore, 
STARFM assumes that the land cover type and system bias at 

pixel (x, y) do not change between the prediction date t0 and 
the reference date tk, namely ε0 = εk, and therefore:

By integrating additional information from similar adjacent 
pixels within a searching window, the EVI2 of a fine-resolution 
pixel at date t0 can be evaluated with a weight function [17], 
as Eq. 3:

where (xi, yi) is the location of the ith similar adjacent pixels, Wi 
represents its weight, ns is the total number of similar adjacent 
pixels, and nk is the number of reference dates [17]. The weight 
Wi is determined by considering both the spatial distance 
between pixels and the spectral difference between the coarse- 
and fine-resolution images at tk [17].

2. SSFIT
SSFIT is a time series-based fusion algorithm that can 

produce VI time series with fine spatial resolution and fre-
quent coverage at multiple dates simultaneously [21]. It 
builds a VI time series as a linear combination of multiple 
bases (i.e., basic components) and aims to determine the 
bases and coefficients:

where bc(xi, yi, t0) is the value of the cth base for the pixel located 
at (xi, yi) at date t0, ac(xi, yi) is its base coefficient, ε is the model 
residual, and nb is the number of the bases [21]. Considering 
that the temporal patterns of time series are locally transferable 
between coarse and fine resolutions, SSFIT employs the singu-
lar value decomposition method to determine the bases from 
coarse images locally with a moving window, and the bases are 
then applied by the fine pixels within the window [21]. As for 
the base coefficients, they can be generated by typical curve 
fitting method. To guarantee enough sample points for curve 
fitting and the robustness of results, SSFIT uses simple time 
series-based and gap-filling processing to construct an initial 
time series FGF before fitting:

where CR(x, y, tk) and CR(x, y, t0) are EVI2 values at date tk and 
t0 of the coarse reference time series, respectively, which is 
regarded as the most similar coarse-resolution time series to 
the observed fine-resolution time series [21]. The base coeffi-
cients are then produced by the weighted least squares, where 
the weight is derived from the similarity between the coarse 
reference time series and the observed fine time series:
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Fig. 3. Data preprocessing of HLS EVI2 time series for a pixel (central coordinate: 
41.29° N, 111.91° W). The Reference time series shown in red means the smooth time 
series using the penalized cubic smoothing splines method.
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where tj is the jth date (either t0 or tk), nt is the length of the 
complete time series, and F̂(x, y, tj) is the reconstructed EVI2 
value by the linear combination using the extracted bases and 
the estimated coefficients [21]. With both the bases and the 
optimal coefficients, the entire EVI2 time series of the fine-
resolution pixel is reconstructed by the linear combination. It 
should be noted that in STARFM, tk and t0 represent a specific 
date, respectively, whereas in SSFIT, they represent multiple 
dates.

Considering that actual cloud conditions (i.e., frequency 
and seasonal distribution) vary with regions and the percent 
of global average cloud cover from Landsat-8 daytime obser-
vations is normally 40% to 50% [13,43]. We randomly selected 
the numbers of Landsat EVI2 images ranging from 4 to 13 
(annual cloud cover from around 80% to 40%, as shown in 
Fig. 4) from the 16-d Landsat EVI2 time series as the input 
data for STARFM and SSFIT in this study. Figure 4 shows the 
DOY (i.e., day of year) of selected Landsat images (repre-
sented by black square dots) for different numbers of available 
Landsat images. To avoid the impact of confounding factors 
(e.g., registration error and observing geometry) on the study 
[42], the cloud-free MODIS EVI2 at 240 and 480 m required 
by STARFM and SSFIT were simulated by aggregating 16-d 
Landsat EVI2 time series instead of using real MODIS EVI2 
time series, which can better explore the performance of data 
fusion algorithms exclusively. This strategy has been widely 
used by previous studies to compare the performance of dif-
ferent fusion algorithms [42,44], and it was verified that the 
experiments using simulated MODIS data could generally 

receive consistent results with real MODIS data [42]. The 
selected Landsat EVI2 images and MODIS EVI2 images were 
input into STARFM and SSFIT to produce Landsat-like 16-d 
EVI2 time series (named as fused time series). To represent 
different cloud conditions and obtain statistically meaningful 
results, the above simulation experiment was repeated 100 
times (Figs. 2 and 4).

Spring phenology detection and accuracy assessment
Linear interpolation of cloud-free observations is a common 
practice to generate time series for detecting vegetation phenol-
ogy [36,37]. Therefore, to evaluate whether fusing Landsat with 
MODIS by fusion algorithms (i.e., STARFM and SSFIT) can 
benefit the LSP studies, the input Landsat EVI2 images used in 
each simulation were linearly interpolated to generate a 16-d 
time series as a benchmark (named as interpolated time series). 
As a result, we collected 3 types of time series, i.e., the reference, 
fused, and interpolated ones. Spring phenology (i.e., SOS) was 
extracted from the 3 types of time series for vegetation pixels 
in the study area. To focus on the vegetated pixels with observ-
able phenology, the pixels meeting one of the following criteria 
were treated as nonvegetation (e.g., water and bare soil): the 
annual average EVI2 was less than 0.1 [45], the annual maxi-
mum EVI2 was less than 0.2 or less than 1.35 times of the annual 
minimum EVI2 [46], and the annual EVI2 maximum did not 
occur in summer seasons [46,47]. The dates of SOS were extracted 
by the 15% dynamic threshold method, in accordance with the 
previous studies [1,34] and some official phenology products 
(e.g., MODIS MCD12Q2).

Fig.  4.  Schematic diagram of selecting 4 to 13 HLS images randomly each year as input data of STARFM and SSFIT. DOY, day of year.
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In addition, the threshold of 15% can produce highly similar 
phenology extraction results with other phenology extraction 
methods (e.g., curvature-based method) [41,46]. The threshold 
method has minimal manipulation on the original VI time 
series, while other methods, such as double logistic function 
fitting and spline fitting, smooth the raw VI time series to some 
extent which distracts our research question on investigating 
the performance of VI reconstruction by fusion.

The dates of SOS extracted from the fused and interpolated 
time series were compared with that from the reference time 
series for assessing the accuracy of fusion algorithms. In addi-
tion to the pixel-wise SOS, spatial gradient and temporal varia-
tion were also evaluated since they are the targets of many 
phenology studies [48]. For each vegetation pixel, its spatial 
gradient is calculated as the difference between itself and its 
eight neighboring pixels in a 3×3 window. Its temporal varia-
tion is computed as the anomaly of SOS values from 2018 to 
2020. For each of the pixel-wise SOS, spatial gradient, and tem-
poral variation, its pixel-level error is quantified by the differ-
ence between the estimated and reference values (i.e., estimated 
values minus reference values), and its image-level accuracy 
was quantified by a basic and commonly used index, root mean 
square error (RMSE):

where yi and ŷi are reference and estimated phenology variables 
of ith vegetation pixel, respectively, and m is the total number 
of vegetation pixels. Moreover, we quantified the improvement 
of STARFM and SSFIT over the benchmark, ∆I, according to 
Eq. 8:

where RMSEinterpolated and RMSEfused are RMSE values of the 
benchmark and fused results respectively. Positive ∆I values 
indicate STARFM and SSFIT receiving better results than those 
of the benchmark.

To investigate the effects of the temporal distribution of 
input Landsat images in the growing period on SOS detection, 
we adopted an index of evenness to measure the temporal 
distributions of input Landsat images in the growing period 
[49]. Considering that observations around the start of a year 
and EVI2 maximum are more important for SOS detection, 
these observations were given higher weights in calculating 
the index of evenness. An example (e.g., 4 available images 
each year) of computing the evenness index is as below. In this 
case, we first assigned the weight of each position using a qua-
dratic function (i.e., high weights to the first and last positions, 
while the low weights to the middle ones), as Fig. 5. We further 
calculated the evenness index (E) using Eq. 9 [49].

where ewi is the expected weight (i.e., expected perfect even-
ness), and owi is the observed weight. E refers to the evenness 
index, ranging from 0 to 1. The E values close to 1 indicate 
higher evenness. For example, in Fig. 5, the E values of expected 
distribution, observed#1 and observed#2 are 1, 0.8, and 0.5, 
respectively.

Results

Spatial patterns of SOS errors
To visualize the pixel-level SOS errors in the study area, the 
spatial distributions and histograms of SOS errors when using 
4, 8, and 12 Landsat images in one of the 100 simulations were 
shown in Fig. 6. We can see that the results of STARFM and 
SSFIT using MODIS images with 240 m have slightly higher 
accuracy than those of 480 m (i.e., more SOS errors close to 
0 in the histograms). The errors of STARFM significantly 
decreased with the increasing number of input Landsat images, 
while the errors of SSFIT have muted changes for increasing 
numbers of input Landsat images (Fig. 6). In addition, the 
errors of fused results (i.e., STARFM and SSFIT) were smaller 
than those of interpolation when 4 input Landsat images were 
used (i.e., more dark-blue pixels in spatial patterns and wider 
error ranges in the histograms), but the errors of SOS derived 
from fused results were larger than those derived from inter-
polation when more input data were used (e.g., 8 and 12 
Landsat images). Regarding the spatial distributions of SOS 
errors, the fused results have higher spatial heterogeneity than 
those interpolated ones, suggesting that the accuracy of time 
series reconstruction by data fusion algorithms varies pixel by 
pixel. It should be noted that Fig. 6 only represents one of the 
100 simulations for exemplification, which cannot reach a gen-
eral conclusion about the effectiveness of fused algorithms in 
LSP studies.

Accuracy of pixel-wise SOS, spatial gradient, and 
temporal variation
To comprehensively evaluate the performance of data fusion 
algorithms, the RMSE values of all 100 simulations and the 
improvement of fused results over the benchmark interpolation 
(i.e., ∆I) were summarized in boxplots (Fig. 7). Regarding the 
median RMSE values of all simulations, STARFM and SSFIT 
using 240-m MODIS images can produce slightly better results 
than using 480-m MODIS images. For pixel-wise SOS, both 
STARFM and SSFIT can obtain lower RMSE (i.e., higher accu-
racy) than the benchmark interpolation when the number of 
input Landsat images was less than or equal to 6 (Fig. 7A and 
D), while for spatial gradient, only SSFIT with 4 input Landsat 
images can produce lower RMSE. Regardless of how many 
Landsat images were used as input, STARFM cannot achieve a 
lower RMSE than those of interpolation (Fig. 7B and E). For 
temporal variation, both STARFM and SSFIT can produce SOS 
results of higher accuracy than those of benchmark when the 
number of input Landsat images was fewer than or equal to 
6 and 7, respectively (Fig. 7C and F). The median ∆I values 
of all simulations in Fig. 7 suggested that with the use of 4 input 
Landsat images, 2 fusion algorithms can improve the accuracy 

(7)RMSE =

�

∑m
i

�

yi− ŷi
�2

m

(8)ΔI =
RMSEinterpolated − RMSEfused

RMSEinterpolated
× 100%

(9)E =

∑

min
�

ewi, owi

�

∑

ewi

Fig.  5.  Schematic diagram of calculating the evenness index for an example of 4 
available images each year (N = 4). Red points mean the image distributions. w refers 
to the weight of each available image.
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of pixel-wise SOS and temporal variation of the benchmark by 
up to 74.47% and 59.13% for STARFM and 139.2% and 162.3% 
for SSFIT, respectively. For spatial gradient, the median ∆I val-
ues of STARFM were less than zero regardless of the number 
of input Landsat images were used (Fig. 7H), but the accuracy 
of SSFIT can be increased by up to 26.36% when 4 Landsat 
images were used (Fig. 7K), suggesting that fusing Landsat with 
MODIS images by pair-based fusion algorithm (i.e., STARFM) 
cannot improve studies of the phenology spatial gradient but 
a time series-based algorithm (i.e., SSFIT) can.

It is worth noting that among the 100 simulations for each 
number of input Landsat images, the accuracy (i.e., RMSE) of 
STARFM shows large variations (e.g., RMSE ranging from 8 to 
35 d for STARFM pixel-wise SOS when 4 input Landsat images 
were used), while the accuracy of SSFIT has minimum varia-
tions among 100 stimulations. This suggested that the accuracy 
of the pair-based fusion algorithm is sensitive to the distribu-
tion of input Landsat images, but the time series-based fusion 
algorithm is not (Fig. 7A to F). Nevertheless, as the accuracy 
and variations of benchmark interpolation increase with the 

number of input data, the ∆I values (i.e., accuracy improve-
ment) of STARFM and SSFIT also show large variations among 
100 simulations for each number of input Landsat images (Fig. 
7G to L), which implies that the accuracy improvement of 
STARFM and SSFIT are strongly affected by the temporal dis-
tribution of input Landsat images, which will be discussed in 
Discussion.

Impacts of temporal distribution of image pairs
Since the detection of SOS primarily uses the EVI2 observa-
tions distributed in the growing period, it is reasonable to 
hypothesize that fusing Landsat with MODIS images by 
STARFM and SSFIT can benefit spring phenology studies when 
cloud-free Landsat images are rarely available in the growing 
period. To test this hypothesis, the numbers of Landsat images 
within the growing period (i.e., from the beginning of a year 
to the date of EVI2 maximum) were counted for simulations 
with the same amount of input Landsat images, and then they 
were divided into 2 groups, i.e., ∆I>0 (fusion better than inter-
polation) and ∆I<0 (fusion worse than interpolation), followed 

Fig.  6.  The spatial patterns of SOS errors (estimated values minus reference values) of STARFM and SSFIT using 240-m MODIS images and 480-m MODIS images, and the 
linear interpolation with the use of 4, 8, and 12 Landsat images as input data in one simulation. The bottom panels are histograms of SOS errors. The temporal distributions 
of available Landsat images are 4 images (4th, 9th, 11th, and 20th), 8 images (4th, 6th, 9th, 12th, 14th, 17th, 18th, and 20th) and 12 images (1st, 2nd, 4th, 5th, 8th, 10th, 11th, 
14th, 16th, 17th, 20th, and 22nd), respectively.
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Fig. 7. Accuracy of phenology results. (A to F) Boxplots of RMSE values of phenology results by fused algorithms and interpolation in all 100 simulations. (G to L) Boxplots of 
ΔI values showing the improvement of STARFM and SSFIT over the benchmark interpolation using different numbers of input Landsat images.
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by testing whether the number of images in growing period 
has a significant difference between 2 groups using a 2-sample 
t test (Fig. 8). In general, both fusion algorithms (i.e., STARFM 
and SSFIT) showed that the cases of ∆I<0 have significantly 
more input Landsat images in the growing period than cases 
of ∆I>0 in terms of pixel-wise SOS, spatial gradient, and tem-
poral variation. This suggests that fusion algorithms can improve 
the accuracy of SOS detection in terms of pixel-wise SOS, spa-
tial gradient, and temporal variation even when fewer Landsat 
images are available during the growing period.

Although Fig. 8 indicated better performance of fusion algo-
rithms when available Landsat images in the growing period 
are fewer, the larger overlap between 2 groups (i.e., ∆I>0 and 
∆I<0) cannot be ignored. This potentially suggested that the 
number of available Landsat images in the growing period is 
not the only factor determining the effectiveness of fusion algo-
rithms. Therefore, we further adopted an index of evenness 
[49] to investigate whether fused algorithms can greatly improve 
the phenology extraction accuracy when temporal distribu-
tions of Landsat images are uneven so that they cannot delin-
eate the critical stages of vegetation growth (Fig. 9). The negative 
relationship (i.e., slope) between ∆I and evenness for pixel-wise 

SOS, spatial gradient, and temporal variation confirmed that 
fusion algorithms have greater improvement when the tempo-
ral distribution of input Landsat images was more uneven (Fig. 
9). This relationship became stronger when the total amount 
of available Landsat images decreased, thereby suggesting that 
fusing Landsat with MODIS images using both pair-based and 
time series-based fused algorithms can indeed improve phenol-
ogy studies in heterogeneous areas where persistent clouds 
exist during the growing season, but the improvement is lim-
ited when there are sufficient Landsat images to capture the 
growing stages.

Discussion

Inspection of reconstructed EVI2 time series
The accuracy improvement (i.e., ∆I) of SOS results derived 
from the STARFM and SSFIT over the benchmark interpola-
tion is greatly related to the number of input Landsat images 
(i.e., the more input Landsat images, the lower accuracy improve-
ment), and even the fusion algorithms fail to improve SOS 
accuracy when input Landsat images are sufficient (Fig. 7). As 

Fig. 8. Number of available Landsat images in the growing period for cases of ΔI<0 and ΔI>0. (A to C) STARFM and (D to F) SSFIT. Asterisk marks and ns indicate the 
significance of t test between the 2 groups, and the error bar is the standard deviation. ns, not significant.
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the SOS results are extracted from EVI2 time series (see 
Materials and Methods), it is reasonable to hypothesize that 
the accuracy of SOS results is linked with the accuracy of EVI2 
time series reconstructed by interpolation, STARFM and 
SSFIT. Figure 10A to C shows the reference and 3 constructed 
EVI2 profiles for one pixel. It demonstrates that all 3 con-
structed EVI2 profiles are closer to the reference profile with 
an increased number of input Landsat images, but the inter-
polated one improves faster than the 2 fused ones. Based on 
this, we further investigated the impacts of the number of input 
Landsat images on the accuracy (i.e., RMSE) of reconstructed 
EVI2 time series, as shown in Fig. 10D. We found that inter-
polated EVI2 time series have higher accuracy than fused ones 
when the number of input Landsat images is sufficient (e.g., 7 
well-distributed Landsat images), thereby suggesting that the 
improvement brought by the STARFM and SSFIT is highly 
dependent on the availability of Landsat images (Fig. 7).

Impacts of resolution difference between fine and 
coarse images
For assessing SOS accuracy in terms of pixel-wise SOS, spatial 
gradient, and temporal variation, 2 fusion algorithms showed 
that 240-m MODIS images can produce slightly better results 
than using 480-m MODIS images (Figs. 6 and 7). We thus fur-
ther quantified how much the accuracy of SOS can be improved 
using 240-m MODIS compared with 480-m MODIS (Fig. 11). 
It indicated that 240-m MODIS images can produce more accu-
rate SOS results than those of 480-m MODIS images regardless 
of the number of input Landsat images used, which indicates 
that fusion algorithms can capture more spatial details and 
information from 240-m MODIS images for improving the 
accuracy of SOS detection. Meanwhile, for STARFM, the accu-
racy improvement brought by 240-m MODIS images decreased 
with the number of input Landsat images in terms of pixel-wise 
SOS, spatial gradient, and temporal variation, and vice versa 

Fig. 9. The scatterplots between the improvement of fused algorithms over interpolation (ΔI) and the evenness of temporal distribution of input Landsat images. (A) STARFM and 
(B) SSFIT. Red lines represent the linear regression of ΔI against the evenness, and yellow shades represent the 95% confidence interval. **: P value < 0.01, *: P value < 0.05. 
ns, not significant.
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Fig. 10. Comparison of reference and reconstructed EVI2 time series of a pixel. (A to C) The use of 4, 8, and 12 Landsat images as input data in one simulation. (D) The accuracy 
(i.e., RMSE) of EVI2 time series reconstructed by interpolation, STARFM, and SSFIT in all 100 simulations.

Fig. 11. Improved accuracy, i.e., (RMSE480m − RMSE240m)/RMSE480m, derived from 240-m SOS results and 480-m SOS results. (A) Pixel-wise, (B) spatial gradient, and 
(C) temporal variation. The solid lines refer to the mean, and shaded errors are 0.5*standard deviation.
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for SSFIT (Fig. 11). This implies that 240-m MODIS images 
can contribute more to the pair-based fusion algorithm (i.e., 
STARFM) when there are fewer Landsat input images, and less 
to the time series-based fusion algorithm (i.e., SSFIT) when 
there are more Landsat input images, respectively.

Performance of fusion algorithms in real-world  
cloud situations
To assess the performance of fusion algorithms on the LSP 
studies under actual cloud cover conditions, we selected 3 
study sites with different levels of cloud coverage including 
mild (40% annual cloud cover, Beijing, China), moderate 
(60% annual cloud cover, Chestertown, USA), and severe 
(80% annual cloud cover, Amazon rainforest), respectively. 
We extracted their 20-year cloud covers from the QA band 
of Landsat 7 Collection 1 calibrated top-of-atmosphere (TOA) 
reflectance products from 2001 to 2020 by Google Earth 
Engine (GEE) (Fig. 12) and the images of cloud coverage 
lower than 30% were judged as available. Meanwhile, to cope 
with the 20-year actual cloud cover, we generated a set of 
20-year reference EVI2 time series by left- or right-shifting 
one-year EVI2 based on the temporal trend of each pixel. The 
temporal trends were rescaled the 3-year standard deviation 
of spring phenology into −1 to +1 d/year which is a reason-
able phenological dynamic range in the northern middle-high 
latitudes [45]. Then, we reconstructed fine-scale EVI2 time 
series based on the 20-year reference EVI2 time series and 
3 actual cloud conditions by interpolation, STARFM, and 
SSFIT, respectively (see Materials and Methods). Last, we 

extracted the SOS results from these time-series data for each 
pixel and calculated the RMSE of SOS results between refer-
ence and reconstructed time-series data, as shown in Fig. 12. 
We found that the accuracy of SOS results (i.e., RMSE) derived 
from the interpolated EVI2 time series is highly affected by 
the cloud cover, i.e., the more cloud covers, the lower SOS 
accuracy. Moreover, the fusion algorithms can integrate more 
useful information into fused EVI2 time series to produce 
the SOS results with higher accuracy, especially in severe and 
moderate cloud cover conditions (Fig. 12). Even so, the fusion 
algorithms have minor contributions to the accuracy improve-
ment of SOS results than those of the interpolation method 
under the mild cloud cover condition, suggesting the limita-
tions of fusion algorithms to SOS extraction under severe and 
moderate cloud cover conditions.

Investigation of data fusion with real MODIS data
To avoid the effects of confounding factors (e.g., registration 
error and observing geometry) on assessing the performance 
of fusion algorithms on the LSP studies, we used simulated 
MODIS EVI2 derived from resampled Landsat EVI2 time series 
(see Materials and Methods). Even though some previous stud-
ies have used this strategy to assess the performance of various 
fusion algorithms [42,44] and reported a good consistency 
between real and simulated MODIS images [42], we further 
compared the SOS accuracy (i.e., RMSE) extracted by STARFM 
and SSFIT fused EVI2 derived from the real and simulated 
MODIS EVI2, respectively (Fig. 13). We found that the gradients 
of SOS accuracy varied with the number of input Landsat 

Fig.  12.  The number of cloud-free available images each year from 2001 to 2020 of 3 study sites: Amazon, Chestertown, and Beijing. The red solid lines represent the 20-year 
average numbers of available images, which means the severe (80%), moderate (60%), and mild (40%) cloud cover conditions, respectively (the upper panels). The accuracy 
of SOS results (i.e., RMSE) extracted by interpolated, STARFM and SSFIT EVI2 time series under 3 levels of cloud cover conditions (the lower panels). The error bars are one 
standard deviation.
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images have high similarity (i.e., the more input Landsat images 
used, the higher SOS accuracy) for both fusion algorithms no 
matter what input images were used (i.e., real and simulated 
MODIS images). However, the SOS extraction results derived 
from real MODIS images have lower accuracy (i.e., higher 
RMSE) and greater variations (i.e., a wider range of standard 
deviation) than those of simulated MODIS images, which are 
primarily caused by the effects of confounding factors under 
real conditions of data acquisition.

Implications and limitations
In recent years, an increasing number of LSP studies have used 
fused fine-resolution images derived from spatiotemporal data 
fusion algorithms [9,10,22,23]. However, several existing stud-
ies reported that the fused images are highly affected by the land 
surface heterogeneity and the input images [28,29]. Therefore, 
whether the fused fine-resolution images can be used to extract 
LSP accurately is still unknown. In this study, we explored the 
effectiveness of 2 typical data fusion algorithms (i.e., pair-based 
STARFM and time series-based SSFIT) for fine-scale spring 
phenology detection in terms of pixel-wise SOS, spatial gradi-
ent, and temporal variation, respectively (Fig. 7). We also inves-
tigated the effects of the number and temporal distribution of 
input Landsat images on the accuracy of SOS detection, respec-
tively (Figs. 8 and 9), which may benefit future LSP studies at 
fine scales in complex landscapes. According to our results and 
findings, Table summarize the recommended strategies in dif-
ferent scenarios to serve as a guideline for future LSP studies.

In this study, there are several limitations. First, to exclude 
the effects of temporal resolutions on spring phenology detec-
tion, we unified the fused, interpolated and reference images 
into 16 d as same as Landsat archives, but satellite time series 
with shorter temporal intervals (e.g., 3, 5, and 8 d) have also 
been broadly applied into LSP studies [1,41,50]. Second, as 
spring phenology is a hot spot of current LSP studies [2,3,47], 

we only explored the effectiveness of fusion algorithms for 
spring phenology detection. However, our conclusions can be 
extended to other phenological metrics (e.g., autumn phenology). 
Third, in this study, we selected and tested the performance 
of 2 representative algorithms (i.e., classic pair-based STARFM 
and recently developed time series-based SSFIT) for spring 

Fig. 13. Comparison of the SOS accuracy (i.e., RMSE) extracted by fused images using real and simulated MODIS input data with the use of 4, 8, and 12 Landsat input images. 
(A) STARFM and (B) SSFIT. The error bars are one standard deviation.

Table.  Recommended strategies in different scenarios. The se-
vere, moderate, and mild cloud covers are around 80%, 60%, 
and 40%, respectively.

Scenarios Interpolation STARFM SSFIT

Severe cloud cover and 
bad data evenness in 
the growing season

× √ √

Severe cloud cover and 
good data evenness in 
the growing season

× √ √

Moderate cloud cover 
and bad data evenness 
in the growing season

× × √

Moderate cloud cover 
and good data evenness 
in the growing season

× √ ×

Mild cloud cover and 
bad data evenness in 
the growing season

√ × ×

Mild cloud cover and 
good data evenness in 
the growing season

√ × ×
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phenology detection. According to the statistics of a literature 
review [29], there are more than 100 methodology papers 
regarding spatiotemporal data fusion published by 2021. 
Instead of including many spatiotemporal fusion algorithms 
into the comparison, this study provided a framework and an 
example to investigate the effectiveness of data fusion algo-
rithms on LSP detection. Fourth, we primarily explored the 
effectiveness of data fusion algorithms in fine-scale LSP studies 
by the threshold-based phenology extraction method at a 
threshold of 15%, which is widely used to define spring phenol-
ogy in plenty of LSP studies [1,41], and even official phenology 
products (e.g., MCD12Q2). Even so, we also compared the SOS 
accuracy (i.e., RMSE) extracted by threshold- and curvature-
based methods (Fig. 14). The curvature-based method is used 
to determine spring phenology when the rate of change of cur-
vature of the EVI2 time series reaches its local first maximum 
value [51]. Some previous studies have reported that the SOS 
extraction results derived from the threshold- and curvature-
based methods have high consistency [15,41], and we further 
found that the accuracy gradients of SOS results derived from 
fused images are not affected by the selection of extraction 
methods (Fig. 14). We highly recommend future studies to 
assess the performance of more data fusion algorithms on more 
phenological metrics using more extraction methods, which 
can promote the applications of spatiotemporal fusion tech-
nologies and benefit some LSP studies (e.g., detecting pheno-
logical differences on both sides of the Qinling ridgeline).

Conclusion

It is still unknown whether spatiotemporal fusion technologies 
can accurately capture spatial and temporal variations of LSP at 
fine scales. Accordingly, this study compared the spring phenol-
ogy (i.e., SOS) extracted from four 16-d EVI2 time series data-
sets, i.e., cloud-free Landsat time series derived from HLS data 
(used as reference), interpolated time series from Landsat images 
with clouds (used as benchmark), and 2 fused time series by 

STARFM and SSFIT. In light of our results, we found that both 
fusion algorithms (i.e., STARFM and SSFIT) can generally cap-
ture more accurate spring phenology information than the 
benchmark, in terms of pixel-wise SOS and temporal variation 
at fine scales when the amount of available Landsat images is 
very limited. However, for spatial gradient, STARFM can hardly 
obtain more accurate results than those of benchmark, and only 
SSFIT with 4 input Landsat images can improve the accuracy of 
SOS spatial gradient. Further investigation of the temporal dis-
tribution of Landsat images suggested that fusion algorithms 
can efficiently assist the LSP studies when available Landsat 
images cannot cover the critical phenological stages in the veg-
etation growing season. This is the first study to explicitly assess 
the effectiveness of spatiotemporal fusion technologies in LSP 
studies, even though they have been widely used in this field. 
Considering the cloud situation varying with regions signifi-
cantly, our study provides guidance to future fine-scale LSP stud-
ies for applying spatiotemporal fusion in complex landscapes.
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