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Abstract
Analog feature extraction (AFE) is an appealing strategy for low-latency and efficient cognitive sensing systems since key
features are much sparser than the Nyquist-sampled data. However, applying AFE to broadband radio-frequency (RF)
scenarios is challenging due to the bandwidth and programmability bottlenecks of analog electronic circuitry. Here, we
introduce a photonics-based scheme that extracts spatiotemporal features from broadband RF signals in the analog
domain. The feature extractor structure inspired by convolutional neural networks is implemented on integrated photonic
circuits to process RF signals from multiple antennas, extracting valid features from both temporal and spatial dimensions.
Because of the tunability of the photonic devices, the photonic spatiotemporal feature extractor is trainable, which
enhances the validity of the extracted features. Moreover, a digital-analog-hybrid transfer learning method is proposed for
the effective and low-cost training of the photonic feature extractor. To validate our scheme, we demonstrate a radar
target recognition task with a 4-GHz instantaneous bandwidth. Experimental results indicate that the photonic analog
feature extractor tackles broadband RF signals and reduces the sampling rate of analog-to-digital converters to 1/4 of the
Nyquist sampling while maintaining a high target recognition accuracy of 97.5%. Our scheme offers a promising path for
exploiting the AFE strategy in the realm of cognitive RF sensing, with the potential to contribute to the efficient signal
processing involved in applications such as autonomous driving, robotics, and smart factories.

Introduction
Fast, accurate, and low-cost interpretation of valid

information from raw signals is a fundamental capability
for cognitive sensing systems such as unmanned vehicles,
robots, and smart factories1–3. Fully digital systems are
designed to achieve this goal by digitally sampling all
received signals at high fidelity and extracting information
with digital signal processors (DSPs). While this strategy is
flexible and accurate, it overlooks the intrinsic sparsity of
critical information4,5. In situations with broadband signals
and multi-channel transceivers, the fully digital strategy
can produce a great deal of redundant data, occupying a

significant amount of memory and processing resources,
due to the slow “information rate” compared to the signal
sampling rate. This puts undue stress on high-speed
analog-to-digital converters (ADCs) and high-
performance digital signal processors (DSPs), leading to
costs that exceed the affordable limit of mobile or dis-
tributed sensing platforms. Instead, the analog feature
extraction (AFE) strategy transforms raw signals into
sparse features in the analog domain, significantly redu-
cing the data rate of backend ADCs and digital processing
while maintaining accuracy6,7. AFE is typically performed
in real-time, and the digital backend processes only a small
amount of data, making it more efficient and lower latency
than a fully digital strategy. Recently, the AFE strategy has
successfully tackled narrowband tasks including voice,
electrocardiogram, and electroencephalogram8–11, show-
ing latency and power consumption advantages. However,
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in the realm of RF sensing and detection, a large instan-
taneous bandwidth over several GHz is typically required
to achieve a good resolution of target details12,13. The
electronic RF circuit’s bandwidth and reconfigurability
bottlenecks have hindered the ability to extend the
advantages of AFE to broadband cognitive RF sensing
applications14,15.
Photonics is considered a competitive candidate for RF

signal processing due to its broadband capability and
reconfigurability. The development of microwave photo-
nics technologies has facilitated the generation, filtering,
receiving, and processing of signals with instantaneous
bandwidth over several GHz across the frequency range of
tens of GHz16–20. Furthermore, photonic integration has
enabled the creation of complicated programmable pro-
cessors21–23. Hence, emerging photonic neural network
(PNN) accelerators harness photonic devices to construct
high-performance artificial intelligence processors that
excel in terms of clock rate, throughput, and power effi-
ciency24–28. The PNN accelerators process signals in the
analog domain, and a variety of neural network models,
including fully connected29–33, convolutional34–37, and
recurrent38, have been successfully demonstrated. For
machine vision tasks, PNN accelerators are used to pro-
cess optical images directly in the analog domain39–41.
The latency of image classification can be reduced to
570 ps, indicating the latency advantage of photonic
analog processing. Recently, a PNN is adopted as the
frontend of an RF blind source separation system42. It
supports an operation bandwidth over 19.2 GHz, showing
a great potential of using photonics to process broadband
RF signals. However, this work processes the RF signals in
the spatial dimension. It cannot conduct the cognitive RF
sensing tasks which require both spatial and temporal
information. Although a photonic tensor convolutional
processor capable of processing signals from both spatial
and temporal dimensions was recently proposed43, to the
best of our knowledge, the photonic AFE for broadband
RF applications has rarely been investigated.
Here, we introduce a photonic analog feature extraction

(PAFE) concept for cognitive RF sensing systems, which
uses an integrated photonic circuit as the feature extrac-
tor. The photonic circuit converts the broadband RF
signals into sparse features. Therefore, low-speed ADCs
are capable of recording the features and the computing
resource occupied by backend processing is significantly
reduced. The photonic feature extractor with tunable
components can be trained to match the application-
specific feature requirements. Furthermore, the photonic
circuit manipulates the received waveforms from multiple
spatially distributed antennas, which enables extracting
features from the spatial-temporal-joint dimension. The
validity of features is thus enhanced compared with
single-dimension feature extraction. We further propose

an analog-digital-hybrid transfer learning (ADT-learning)
scheme for low-cost and effective training of the photonic
circuit. The PAFE concept is validated with a high-
resolution radar target recognition task. Experimental and
analytical results verify that critical spatiotemporal fea-
tures are effectively extracted with a 4-time reduced
sampling rate and the targets are successfully recognized
with an accuracy of 97.5%.

Results
Photonic analog spatiotemporal feature extraction
The PAFE is based on the concept of a convolutional

neural network (CNN), as shown in Fig. 1a. Typically, a
CNN adopts multiple convolutional layers as the feature
extractor and several fully connected layers to perform
classification. In each convolutional layer, multiple input
channels are convolved by different sets of convolutional
kernels, and feature maps are obtained at the output.
Nonlinear activation and pooling layers are then used to
increase the network’s nonlinear fitting capability. Layer by
layer, the original input data is transformed into high-level
sparse features that can be classified by the fully connected
layers. In the PAFE scheme, the analog photonic circuit
performs the convolutional feature extraction, while clas-
sification is accomplished using digital electronics. The
original signals received from the RF frontend are modu-
lated onto optical carriers and directly fed into the pho-
tonic feature extractor. They are first convolved in the
temporal dimension with different kernels to yield multi-
ple outputs, which are then accumulated to obtain the
feature maps. Therefore, the feature maps include infor-
mation from both the temporal and spatial dimensions.
Multiple spatiotemporal feature maps are obtained
simultaneously using the same steps. For each feature
map, an electro-optic nonlinear activation unit (NLU) is
adopted to carry out the nonlinear activation function
such as the rectified linear unit (ReLU) in the analog
domain44–46. The striding of convolution is set larger than
1, resulting in feature maps that are smaller than the input
signals. In the digital domain, the striding operation can be
achieved by discarding output data from a non-striding
convolution. In the analog domain, striding operation is
similarly realized by not recording the unwanted wave-
form samples at the analog-to-digital conversion. Supple-
mentary note S1 provides details on the striding operation
in the analog domain. With analog striding, the required
sampling rate for recording the feature maps is lower than
that for recording the original signals. After several con-
volutional layers, the required sampling rate for recording
the feature maps is significantly reduced, so the feature
maps are digitally recorded using down-sampling ADCs
(DS-ADCs). In the digital backend, an average pooling
layer further reduces the data rate of digital processing,
and a backend algorithm is deployed in the digital
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processor. For classification tasks, several fully connected
layers can be deployed to transform the feature maps into
a one-hot vector as the classification result.
The hardware implementation of the spatiotemporal

feature extraction is exemplified in Fig. 1b. It follows the
principle of an integrated photonic tensor convolution
processor43 and corresponds to one output channel,
represented by the yellow-dashed-circle-marked box in Fig.
1a. Replicating this structure multiple times can output
multi-channel feature maps. Firstly, the analog signals are
modulated onto optical carriers of different wavelengths
and multiplexed into a single optical waveguide. Following
this, a group of delay lines applies uniform time delays to
the input signals. For each delay step, a micro-ring
weighting bank is deployed to multiply convolutional
weights to the input signals. The number of microrings in a
weighting bank equals the number of wavelengths, with

each microring tuned to modulate the transmission rate of a
specific wavelength. As a result, the signals of different
wavelengths and delay steps are specifically modulated.
Finally, photodetectors (PDs) are employed to convert the
optical signals to electrical signals and sum the power of all
wavelengths. An electronic power combiner (EPC) then
accumulates the electrical signals of all delay steps. The
multiply and accumulation process of the photonic tensor
convolutional processor is formulated as follows.

yn;t ¼
XM�1

m¼0

Xσ�1

i¼0

wm;n;i � xm;tþi�τ ð1Þ

where xm,t is the input signal of the m-th channel, wm,n,i is
the convolutional kernel, and yn,t is the output signal of
the n-th channel. As the first accumulation represents the
temporal convolution with the kernel width of σ and the
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Fig. 1 Conceptual schematics of the PAFE. a Architecture of analog spatiotemporal feature extraction and digital classification. The raw waveforms
from the multichannel RF front end are processed by the photonic feature extractor in the analog domain. A blue double line represents a temporal
convolution with strides. After several convolutional layers, the feature maps are digitally recorded by DS-ADCs. Fully connected layers are built in the
digital domain as the classifier. b An example of the hardware implementation of the PAFE concept. c The schematic of ADT-learning. The first step
pretraining is fully digital for training the feature extractor (FE). The second step uses the trained feature extractor in the analog domain to acquire a
dataset composed of feature maps. Then retrain the digital classifier (DC). The third step is inference with the trained analog feature extractor and the
retrained digital classifier
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second accumulation suggests spatial information synth-
esis across theM input channels, the output signal yields a
spatiotemporal feature map. The feature map is activated
by a subsequent nonlinear unit (NLU) and enters the next
convolutional layer for deeper feature extraction. As long
as one output channel is implemented, integrating more
weighting banks on the chip can calculate the complete
convolutional layer, which is discussed in refs. 43,47.
A valid feature extractor must be obtained through

proper training of the convolutional kernels. However, it
can be challenging and costly to train the photonic feature
extractor conventionally with digital computers and
digital data in the context of the PAFE scheme. Training
the PAFE requires raw signals from the RF frontend
captured in digital format, which necessitates the
deployment of an expensive high-speed sampling system
solely for PAFE parameter training. Moreover, con-
structing a sufficient training dataset demands a large
number of examples acquired in numerous scenarios,
which is difficult to achieve in the real world due to the
expense of a high-speed multichannel RF sampling system
and the unacceptable effort of building such plentiful
sensing scenarios. To address this problem efficiently, we
propose an analog-digital-hybrid transfer learning (ADT-
learning) scheme. This scheme relies on a three-step
process illustrated in Fig. 1c. The first step is pretraining
with fully digital data generated by simulation. A CNN
model that is identical to the PAFE model is trained with
the simulated dataset. As long as the simulation is similar
to the practical scenarios, the pretraining will obtain a
valid feature extractor. Then, the parameters of the fea-
ture extractor are fixed. The second step involves transfer
learning, where the trained feature extractor’s parameters
are loaded onto the photonic feature extractor that
extracts analog feature maps. Practical scenarios are built
for capturing these feature maps. Only the final feature
maps are digitally recorded with the DS-ADCs. During
transfer learning, the classifier is retrained with the
experimentally recorded analog feature maps, which rea-
sonably compensate for the gaps between the simulated
and practical scenarios and between the digital CNN and
photonic circuit models. The third step is using the
trained analog feature extractor and the retrained digital
classifier for inference. Typically, a dataset for transfer
learning can be much smaller than that of conventional
training. The effort and cost to build scenarios are sig-
nificantly reduced. It makes the ADT-learning scheme a
feasible approach to well-train analog feature extractors.

High-resolution radar target recognition
The photonic analog feature extractor (PAFE) is capable

of tackling broadband RF signals, and thus, we demon-
strate its effectiveness through a high-resolution radar
target recognition task. The photonic analog feature

extractor is configured as two convolutional layers, while
the digital classifier consists of two fully connected layers.
The first convolutional layer is composed of two input
channels and four output channels with a kernel width of
3 and a stride of 2. Signals are acquired directly from the
RF frontend shown in Fig. 2a, with two transceivers
transmitting the same RF pulse signal with a 3-dB band-
width of 8–12 GHz to detect the range profile of the target
at different angles. The signals from both angles are
modulated onto the optical carrier with dual parallel
Mach-Zehnder modulators (DPMZMs) working in the
carrier-suppressed single-band mode. The optical signals
are then processed by the photonic integrated circuit. The
adopted photonic integrated circuit is fabricated with a
standard silicon-on-insulator process, shown in Fig. 2b. It
has the same structure as the schematic in Fig. 1b, con-
taining a 4-wavelength WDM, three microring resonator
(MRR) weighting banks, and two spiral delay line between
each weighting bank. The WDM is designed by the
asymmetric Mach-Zehnder interferometer tree archi-
tecture48. Its channel spacing is 2 nm. An MRR weighting
bank is shown in Fig. 2c, containing four thermo-optic
tunable MRRs with a 10-nm free spectrum range. Their
original resonance points are depicted in Fig. 2d, close to
the designed 2-nm spacing. In order to apply weights to
the MRRs, we measured their transmission-voltage curves
as shown in Fig. 2e. Because of the fabrication error, we
applied different offset voltages to these MRRs to shift
their resonance points to the adopted wavelengths
(1550.8 nm and 1552.8 nm). With these curves, the EVS
generates corresponding voltages to apply weights.
As a proof-of-concept, we employ the photonic inte-

grated circuit repeatedly to complete the feature extrac-
tor. Details of the photonic circuit reusing are described in
the Methods. The output of the photonic integrated cir-
cuit corresponds to the spatiotemporal feature map of one
output channel. Tuning the parameters on the photonic
circuit and repeating the experiment allows for the
acquisition of other feature maps of the first convolutional
layer. The analog feature maps of the first layer should
undergo nonlinear activation and be sent to the next layer
for further feature extraction. In the experiment, an
oscilloscope is used to observe and temporarily record the
intermediate feature maps. Four intermediate feature
maps of the first layer are recorded digitally so that we can
reuse the same photonic circuit to handle the second
convolutional layer. A digital nonlinear activation is
conducted on the recorded intermediate feature maps to
imitate an electro-optic nonlinear unit. We should note
that a complete PAFE system (shown as Fig. 1a) does not
require digital components to record the intermediate
feature maps. Supplementary note S2 discusses the fea-
sibility of implementing a complete PAFE system. The
delay unit of the first layer is 200 ps, which represents a
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sampling rate of 5 GSa/s and fulfills the Nyquist bandpass
sampling of the 8-12 GHz pulse echoes. Here, tunable
delay lines (TDLs) are used after the photonic circuit to
precisely adjust the relative delay amount of the output
ports. For the second convolutional layer, the number of
input channels and output channels is set to 4. The kernel
width is 3, and the stride is 2. The activated feature maps
from the first layer are generated by the arbitrary

waveform generator (AWG), modulated on the optical
carriers with DPMZMs operating in intensity-modulation
mode and convolved by the photonic circuit. Considering
that the stride of the first layer is 2, the delay unit for the
second layer is 400 ps to avoid processing unwanted
waveform points. TDLs are again used to setup the 400-ps
relative delay amount. With the experimental setup
described above, the analog feature extractor is
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conducted. The final feature maps are digitally recorded
via DS-ADCs at the sampling rate of 1.25 GSa/s (800-ps
time interval) to discard the unwanted waveform points of
the second convolutional layer. Hence, the sampling rate
of the DS-ADC is one-fourth of that required by Nyquist
sampling the original RF signals.
Figure 2f displays four aluminum reflective targets with

distinct shapes (“I”, “M”, “L”, and “C”), utilized for the
target recognition task, with the objective of correctly
classifying the targets at various observing angles. To
achieve this, the analog feature extractor parameters were
trained based on ADT learning. The pretraining process is
explained in the Methods section, and the results of
pretraining are depicted in Fig. 2g. The loss functions of
training and testing drop consistently and the recognition
accuracies increase consistently, demonstrating successful
training. The average testing accuracy reaches 99.5% in
the pretraining. Figure 2h presents the trained parameters
of convolutional kernels that show structures capable of
edge detection, smoothing, and other patterns across both

temporal and spatial dimensions when working on the
inputs, implicitly suggesting the efficient extraction of
spatiotemporal features.
With the pre-trained convolutional kernels, we acquire

the feature maps of the target using the photonic circuit.
Several examples are shown in Fig. 3a–d. The feature
maps of convolutional layer 1 help us analyze how the
CNN recognizes the targets. Different target shapes result
in differing numbers of scatters, with “M” and “C” pro-
ducing more sub-echoes with more peaks on the feature
maps than other shapes. Additionally, peak locations vary
by shape, which may be a crucial element in differ-
entiating between “I” and “L”. However, the feature maps
of the second layer are more abstract and incomprehen-
sible. The final feature maps are then used for transfer
learning to fine-tune the digital classifier, which sig-
nificantly increases classification accuracy to 97.5% on
average, from the result depicted in Fig. 3e. Figure 3f, g
show the classification results before and after transfer
learning, respectively. Without transfer learning, the
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classification accuracy is even lower than the accuracy of
random guesses. It indicates that the inconsistency
between the digital CNN model and the analog feature
extractor and the inconsistency between the simulated
echoes and the experimental echoes have a substantial
impact on the pre-trained classifier. Hence, the transfer-
learning is critical for the digital classifier to achieve high-
accuracy recognition.
To ascertain the validity of the analog feature extractor,

we apply the t-stochastic neighbor embedding (t-SNE)49

as the dimensionality-decreasing tool to inspect the fea-
tures extracted by the photonic circuit. From Fig. 3h we
observe that the extracted features of every specific target
tend to gather. Although the features cannot be directly
separated, they can become linearly separatable with the
nonlinear transformation of the fully connected layers.
However, the non-transferred classifier fails to transform
features in the correct way such that they remain non-
distinguishable. The transferred classifier successfully

transforms them into linearly separable features, leading
to high classification accuracy. Consequently, the results
demonstrate that the analog feature extractor can obtain
valid features for high-accuracy classification, and cor-
rectly transferred digital classifiers yield accurate classifi-
cation results.
We conducted a comparison study with various neural

network configurations to evaluate the effectiveness and
functionality of the PAFE. Figure 4a–c depict the confu-
sion matrices and t-SNE results of three configurations
with different input data down-sampling techniques and
neural network structures: (1) Two-channel Nyquist-
sampled input data and only a classifier, (2) Single-
channel Nyquist-sampled input data and a full CNN, and
(3) Two-channel down-sampled input data and a full
CNN. Figure 4d shows their classification accuracies,
which are notably lower than those achieved by the PAFE.
The t-SNE results show that neural networks failed to
distinguish the targets under these three configurations.
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Comparing Configuration (1) to the PAFE reveals that the
convolutional feature extractor is indispensable to extract
critical information of the target echoes. The single-
channel data of Configuration (2) does not carry sufficient
information to distinguish targets, despite its complete
neural network. PAFE’s capability of extracting spatial-
temporal-joint features is a vital factor in obtaining good
recognition performance. Finally, the result of configura-
tion (3) indicates that critical information loss may occur
if the input echoes are directly down-sampled instead of
down-sampled by a feature extractor. Therefore, the
numerical study confirms that the PAFE extracts spatio-
temporal features through convolving multi-channel
input signals, resulting in accurate recognition with
down-sampled digital data.

Discussion
As an analog computing strategy, the performance of

PAFE is subject to analog errors, primarily from noise,
weight deviation, and nonideal electro-optic NLUs.
Feedback-controlling methods offer a way to achieve high-
precision weights over 9 bits50. Therefore, we conducted
an analysis of the impact of random noise and nonideal
electro-optic NLUs on the performance of PAFE, as illu-
strated in Fig. 4e, f. Further details of the analysis can be
found in Supplementary Note S3. Because the parameters
loaded onto the photonic feature extractor were obtained
from pretraining using simulated data and a digital CNN
model, random noise and nonideal NLU of the photonic
feature extractor deteriorate the quality of the extracted
feature maps. Figure 4e illustrates how such deterioration
significantly reduces the accuracy of digital classification
without transfer learning. With minor NLU errors, the
random noise consistently worsens the accuracy. As the
NLU error increases, although the influence of the random
noise diminishes, the accuracy decreases to roughly 70%.
Figure 4f shows that after transfer learning, classification
performance is enhanced to over 95% accuracy in most
cases. This suggests that transfer learning can compensate
for minor inconsistencies between analog NLU and digital
NLU. Thus, although the NLU in our proof-of-concept
experiment was implemented with a digital processor, the
PAFE concept would be effective with analog electro-optic
nonlinear units. Considering that a complete PAFE system
should be implemented with future engineering works,
Supplementary note S2 discusses the engineering feasi-
bilities for a complete PAFE system. Also, we conducted a
demonstration of a small-size two-layer PAFE system,
where all linear and nonlinear operations are carried out
by analog devices in real-time, as a part of our proof-of-
concept experiment. Supplementary note S4 describes the
details and results of this demonstration. It verifies the
feasibility of a multi-layer spatiotemporal feature extractor
and the reduction of ADC sampling rate.

To leverage the advantages of the AFE strategy in cog-
nitive RF sensing systems, we propose the PAFE concept
based on integrated photonics. The PAFE processes the
analog signals directly from the RF frontend, with the
photonic circuit playing the role of convolutional layers in
a CNN to transform the raw input signals into valid
spatiotemporal features. These sparse features allow the
use of down-sampling ADCs to record the extracted
features, instead of Nyquist sampling. Moreover, we
propose the ADT-learning method for efficient training of
the analog feature extractor and the digital classifier
without introducing extra training effort or changing
hardware configuration. In our proof-of-concept experi-
ment, a high-resolution radar target recognition task is
demonstrated to validate the PAFE concept. The sampling
rate of the ADCs is reduced by 4 times compared with the
Nyquist sampling while the classification accuracy reaches
97.5%. Numerical analysis verifies the effectiveness of the
PAFE and the ADT-learning method for extracting valid
sparse features. We believe that our proposal will catalyze
the development of naturally-efficient AFE strategies for
broadband RF signal processing, and provide a promising
path for the next-generation cognitive RF sensing systems.

Materials and methods
Experimental setup
The radar-transmitted signal is Gaussian pulses so that

the echoes can be directly processed with the PAFE without
decoding process such as pulse compression. The signal is
generated by an arbitrary waveform generator (AWG,
Keysight, M8195A) and amplified by a power amplifier
(Connphy, TLPA1G-18G-40-33). Two TAs transmit the
same signal by adopting a microwave power splitter. For
receiving, low-noise amplifiers (Connphy, TLPA1G-18G-
40-33) are used to raise signal power to drive the DPMZMs
(EOSPACE, IQ-0DVS-35-PFA-PFA-LB). For both trans-
mitting and receiving, the microwave wires are strictly the
same long to guarantee the same propagation length of the
signals. According to the multi-input multi-output (MIMO)
radar principle, a large angle among receivers usually pro-
vides a good spatial resolution. So, the first pair of TA and
RA is located 90° away from the second pair. For the first
layer, the DPMZMs are configured as the single-sideband
carrier suppressed mode. The RF-modulated optical signal
has only one sideband (shown in Fig. S7) so that it can be
weighted via microrings on the photonic chip. After the
photodetection, the single sideband optical signal produces
a baseband electrical signal. For the second layer, the
DPMZMs are configured in normal MZM mode to accept
baseband electrical signals. As the signals are modulated
onto the optical carrier, the integrated photonic circuit
finishes spatiotemporal convolution with the assistance of
TDLs, PDs, and the EPC. Because the spiral delay lines on-
chip are not tunable, we adopt the TDLs (General
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Photonics, VDL-001-15-60-PP-FC/APC) to adjust the delay
amount of each optical path so that the strided convolution
of two layers is correctly realized. Strided convolution in the
analog domain is further described in Suppl. Note S1. Three
PDs (EOT, ET3500F) with 15-GHz bandwidth convert
optical power to electric signal. The EPC is implemented
with a 4-way resistive power combiner (Talent Microwave,
RC4DC180SE) with bandwidth ranging from direct-current
to 18GHz. The EVS is implemented with DAC8564 and
OPA172 chips mounted on a homemade printed circuit
board. Its voltage resolution is better than 1mV.
Since the integrated scale of the photonic circuit is

smaller than the complete feature extractor, we reuse the
photonic integrated circuit to implement the feature
extractor part by part as a proof-of-concept. For the first
layer with 2 input channels and 4 output channels, the
photonic circuit is reused 4 times to obtain the output
feature maps. The intermediate feature maps are tem-
porarily recorded by an oscilloscope (Keysight, DSO-S)
into digital data. A digital ReLU nonlinear activation
function is applied to the intermediate feature maps. The
second layer is designed with 4 input channels and 4
output channels. Although the fabricated chip shown in
Fig. 2b supports 4 input channels at once, limited by the
2-channel AWG, the chip is operated with two input
channels. The second layer is sequentially finished with
8-time reusing. Given that the adopted integrated pho-
tonic circuit can only compute positive weights, the
negative weights are computed with another run. And
then subtract the negative output from the positive out-
put. Note that the proof-of-concept experiment demon-
strates the proposed PAFE concept part by part, the
Suppl. note S2 discusses the further engineering con-
siderations for implementing a complete PAFE system.

Building the pretraining dataset
The ADT-learning requires a dataset for pretraining the

analog feature extractor. The stochastic characteristics of
the pretraining dataset should be similar to that of the
practical radar echoes so that the pre-trained feature
extractor can be easily adapted to practical situations. In our
experiment, the pretraining dataset is built following the
sub-echoes accumulation theory of radar detection51. We
model the shape of the targets (“I”, “M”, “L”, “C”) in a
computer and then simulate the radar echoes of the targets
via ray tracing, or the geometric optical (GO) method in
radar books51, which is depicted in Fig. S8. The transmitted
signal is regarded as rays and the reflected rays that enter
the receiving antenna are recorded as sub-echoes. The
accumulation of all sub-echoes obtains the radar echo. By
rotating the targets to different angles, we collect different
echoes of these targets. For each target, we collected 500
echoes from randomly selected angles, and there was a total
of 2000 echoes collected for four targets. 40 randomly

picked examples of the dataset are shown in Fig. S9. The
dataset is randomly divided into two parts with 1600 echoes
and 400 echoes, respectively. The former is the training set
and the latter is the validation set. Here, we should note that
although the GO method is commonly used for target
modeling, it may be inaccurate when the curvature of the
surface is smaller than the wavelength. In our case, the
reflectivity of the target edges is much stronger than their
corners, so the GO method is suitable and simplifies the
modeling. If we need to achieve a much more precise
pretraining or the target is rough with a feature size com-
parable with the RF wavelength, precise modeling methods
such as FDTD should be used. In our experiment, targets
with letter shapes are detected from the lateral direction.
For complex targets with 3D structures, front-looking
detection is feasible and the proposed spatiotemporal fea-
ture extraction concept is also applicable to these targets.

ADT-learning
As the PAFE concept applies an analog feature extractor,

the conventional training method is costly and even
impractical to perform. Also, the mismatch of the digital
neural network model and analog hardware model will cause
severe performance degradation of conventional training.
The ADT-learning method is proposed for solving the
training problem of the analog feature extractor. Firstly, fol-
lowing the experimental setup, a CNN model is constructed
on a computer. The CNN contains two convolutional layers
and two fully connected layers. The convolutional kernel of
the first convolutional layer has the shape of [kernel width,
input channel, output channel] =[3,2,4] and the second
convolutional layer has the kernel of [kernel width, input
channel, output channel] =[3,4,4]. The stride for these
convolutional layers is set as 2. The activation function used
for convolutional layers is the ReLU function. For the fully
connected layers, the number of neurons is set as 256 and 4
for the first and the second fully connected layers, respec-
tively. The activation function is ‘tanh’ and ‘sigmoid’ for these
two layers, respectively. With the above CNN model, we
apply the simulated pretraining dataset to train the CNN.
The trained parameters of the convolutional layers are stored
as the parameters of the analog feature extractor. The second
step of ADT-learning is transfer-learning. The photonic
analog feature extractor collects feature maps from the
experimental setup. Eighty groups of feature maps are col-
lected for each target, and 320 groups of feature maps are
available for transfer learning. In the transfer learning step,
only the fully connected layers are retrained. Randomly
selected 220 groups of feature maps are used for training and
the remaining 100 groups are used for validation.
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